Domain Transfer for Reinforcement Learning Agents

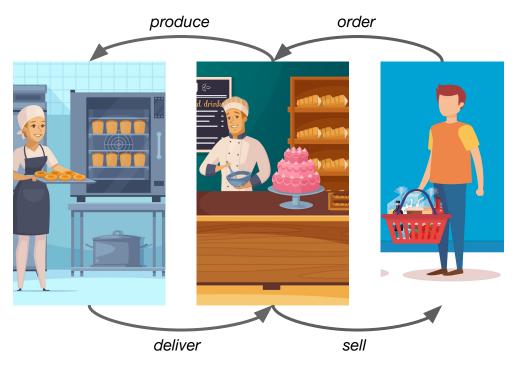
Final Presentation - PreciBake Ahmad Qasim, Murat Can Karacabey Abdul Moeed, Sebastian Oehme

Mentors: M. Sundholm, H. Belhassan TUM-Mentor: M. Rauchensteiner

Data Innovation Lab Department of Mathematics Technische Universität München

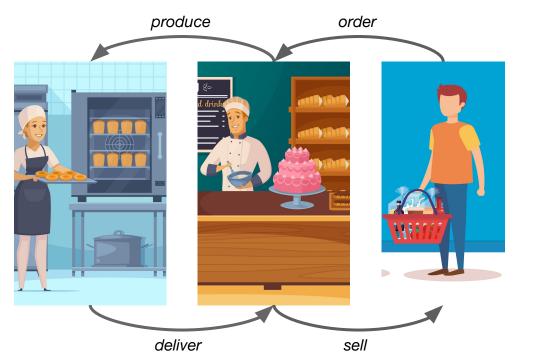
München, 17. February 2020

Inventory Control



Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020 Images: freepik.com 3

Inventory Control



Main goal:

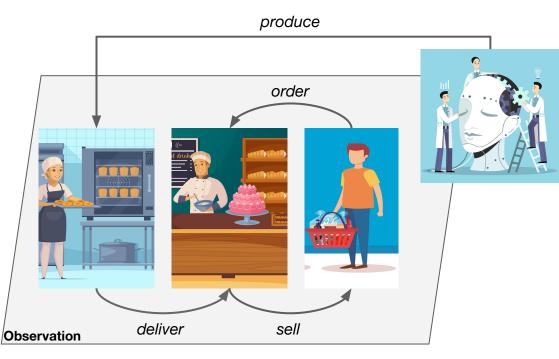
• Maximize product sales

ПП

Sub-goals:

- Minimize waste
- Maximize freshness
- Minimize waiting time for customer

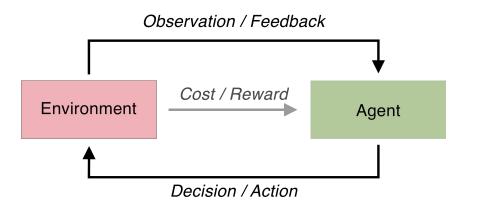
Inventory Control with Reinforcement Learning



Create an agent that

- Satisfies problem constraints
- Safely operates in real world after training on simulation (domain transfer)

Reinforcement Learning (RL)



On each **episode**, agent must take **actions** that maximize expected **reward** for each **state**

Example - RL

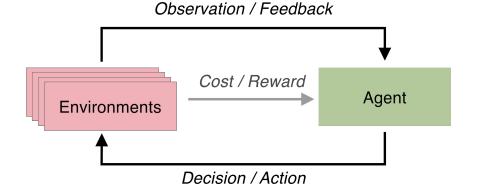
D:/Box/Programs/PycharmProjects/reinforcement-learning/dynamics_randomi... — X

Task: Balance pole on cart

- State
 - Cart position, velocity
 - Pole angle
- Actions
 - Move left or right
- Reward
 - +1 for each time step
 - 0 when pole falls

Cartpole - OpenAl Gym

RL with Dynamics Randomization



Idea: To generalize to new environments, sample a different environment on each episode

Practice: Environment is defined by certain parameters, sample different values of these parameters on each episode

Dynamics Randomization - Example

D:/Box/Programs	s/PycharmProjects/i	reinforcement-	learning/dynamic	s_randomi	 ×

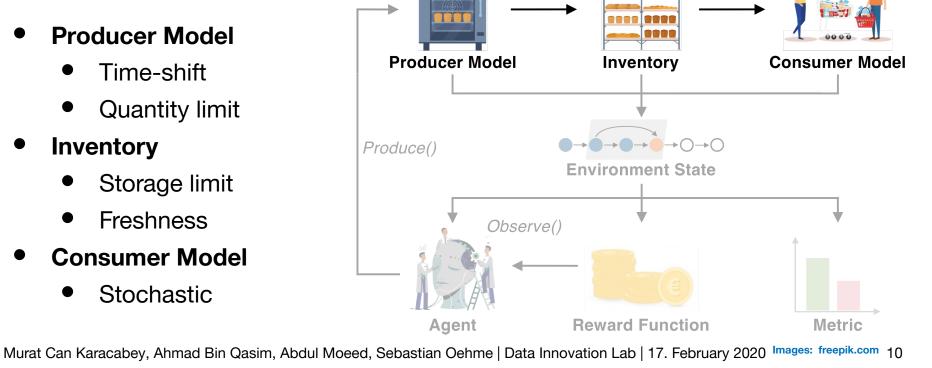
Per episode, sample

- Pole Length: [0.3, 0.6]
- **Pole Mass:** [0.5, 1.5]

Cartpole - OpenAl Gym

Environment

- **Producer Model**
 - Time-shift
 - Quantity limit
- Inventory
 - Storage limit
 - Freshness
- Consumer Model
 - **Stochastic**



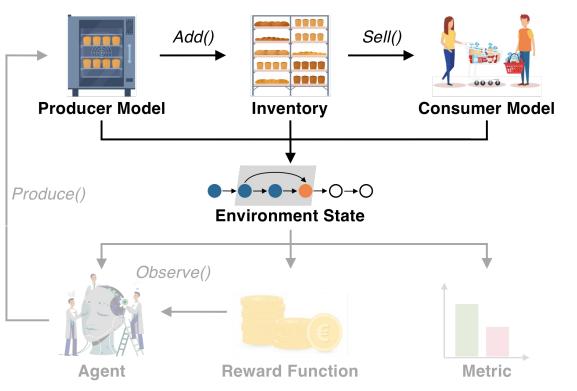
Add()

Sell()

....

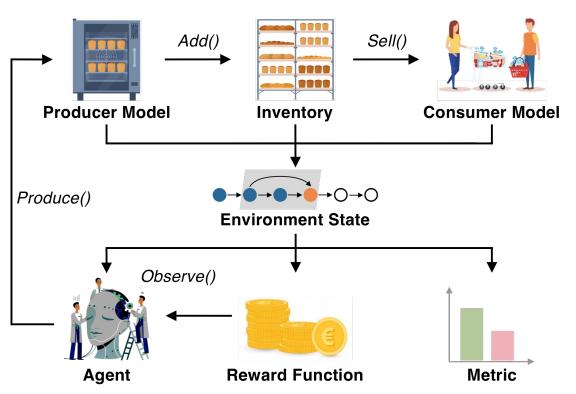
Environment

- Environment State
 - Production queue
 - Order queue
 - Inventory
 - Number of the items
 - Age of the items



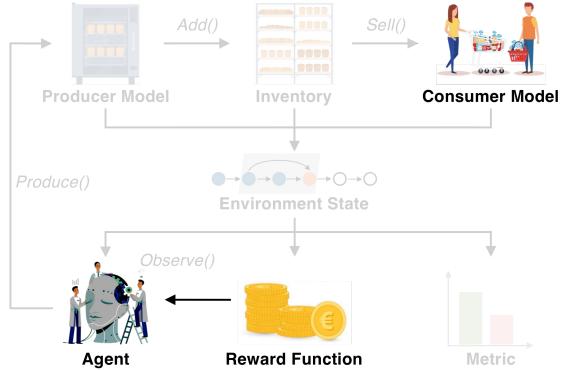
Environment

- Agent
 - Decides on what to produce
- Reward
 - Agent-specific evaluation of the state
- Metric
 - Common evaluation of the agents' performances



Environment - Our Task

- Main task:
 - Create a robust agent that can perform well in varying demand trends
- Requires:
 - An expressive consumer model



Consumer Model

- Simulate behavior of giving orders
- Requirements for the model
 - Expressibility
 - Flexibility
- Problem
 - No real world data available

Consumer Model

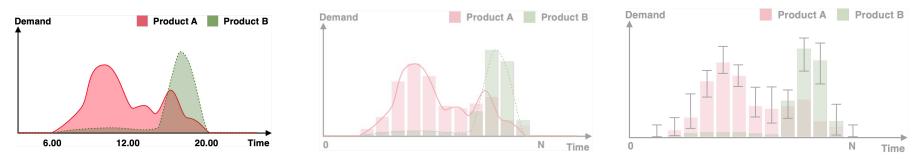
- Simulate behavior of giving orders
- Requirements for the model
 - Expressibility
 - Flexibility
- Problem
 - No real world data available

Solution approaches

- 1. Learn a model from a public dataset
- 2. Use a generative model to generate data

Generative Consumer Model

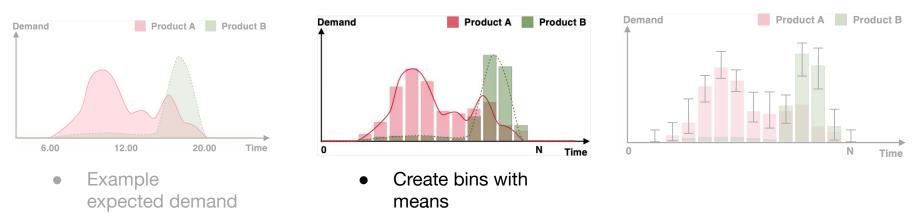
A generative model that is based on Poisson Distribution



• Example expected demand

Generative Consumer Model

A generative model that is based on Poisson Distribution



• Generate demand

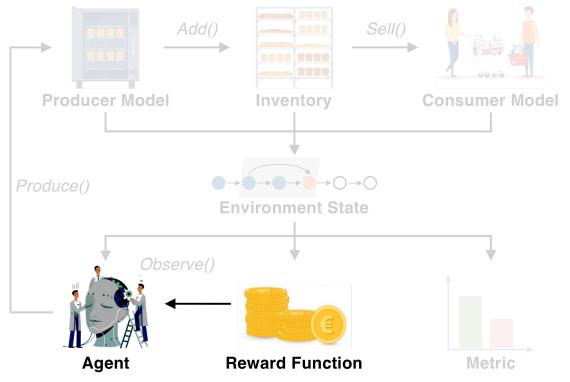
Generative Consumer Model

A generative model that is based on Poisson Distribution

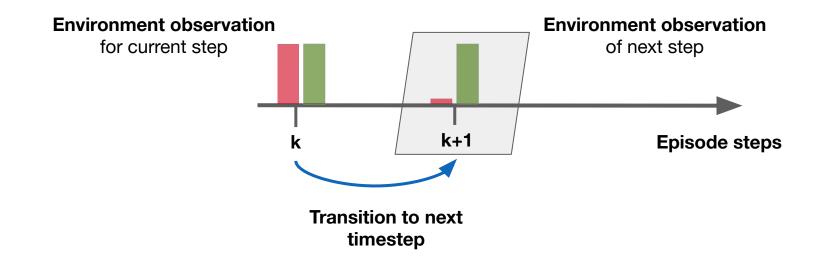
Generate demand

Environment

- Agent has to choose
 - Product type
 - Product quantity



Agents Overview



Product A Product B

Agents

Baseline

Deep Deterministic Policy Gradient (DDPG)

- Benchmark for comparison
- Simulates a real bakery decision process
- Fill inventory if below threshold

- Model-free
- High-performing RL algorithm
- Using Deep RL to estimate best action
- Reward engineering

Dynamic Programming (DP) with Demand Prediction

- Model-based
- Adapted from D. Bertsekas
- Interpretable and follows the principle of optimality
- Cost function

Ш

gents

Baseline

- Benchmark for comparison
- Simulates a real bakery decision process
- Fill inventory if below threshold

Deep Deterministic Policy Gradient (DDPG)

- Model-free
- High-performing RL algorithm
- Using Deep RL to estimate best action
- Reward engineering

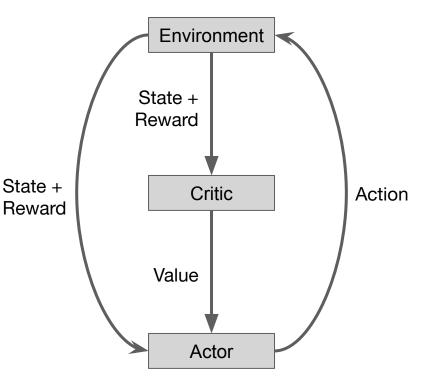
Dynamic Programming (DP) with Demand Prediction

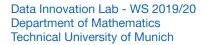
- Model-based
- Adapted from D. Bertsekas
- Interpretable and follows the principle of optimality
- Cost function

Ш

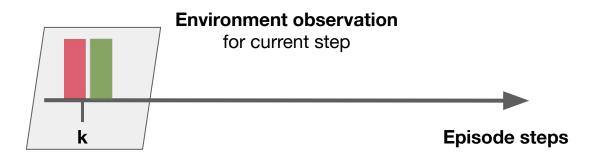
DDPG

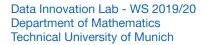
- Environment has a state and returns a reward
- Critic estimates the value of state
- Actor generates actions
- Challenges:
 - Several hyper-parameters to tune
 - Reward engineering



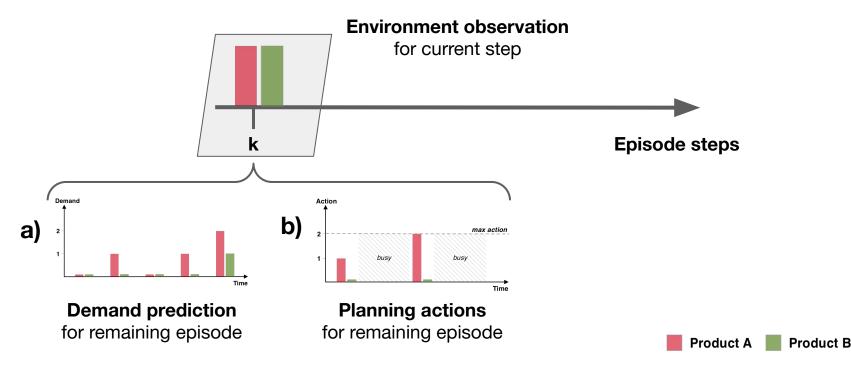


DP Agent overview





DP Agent overview



Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

25

Demand Model

- Predicts future consumer orders
- DP agent acts based on it
- DP agent's performance, highly dependent on demand model

Demand Model

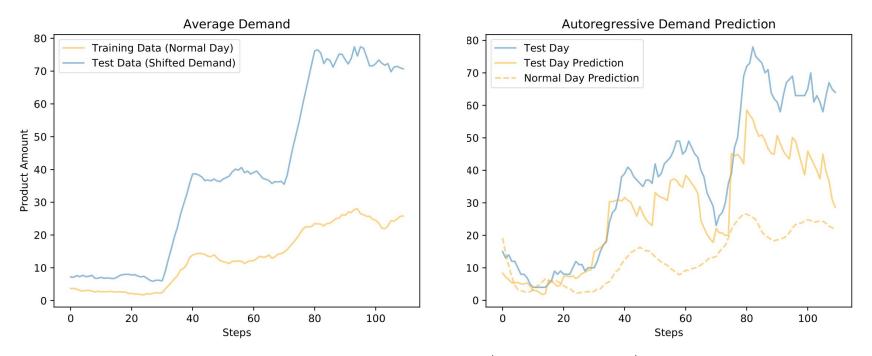
- Predicts future consumer orders
- DP agent acts based on it
- DP agent's performance, highly dependent on demand model

Tried different approaches

Final model: Autoregressive Model (AR)

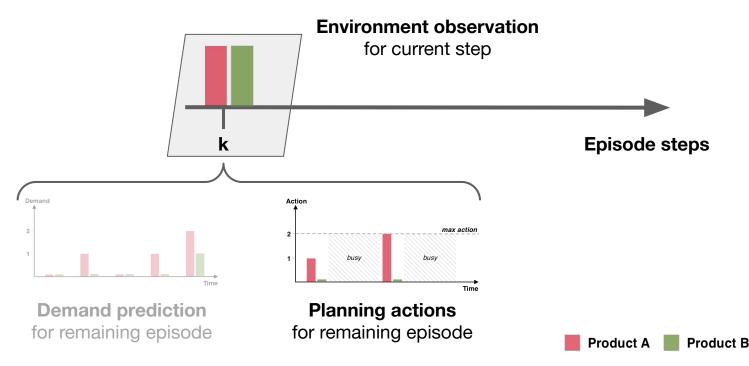
- predicts based on real consumer orders
- self-adjusts

Demand Model - AR



Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

DP Agent



Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

ТШ

Dynamic Programming

- Discrete-time equation
 - $\tilde{x}_{k+1}^i = \tilde{x}_k^i + d_k^i w_k^i$
 - Inventory \tilde{x}_k^i
 - Delivery d_k^i
 - Demand w_k^i
- Incorporated
 - Production time-shift
 - Multi-products

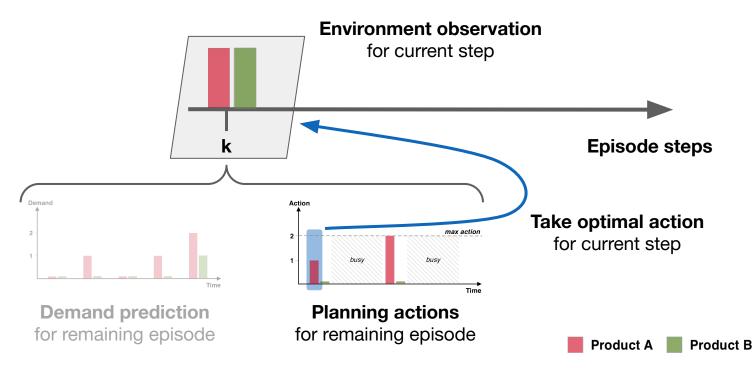
Dynamic Programming Algorithm

- Discrete-time equation
 - $\tilde{x}_{k+1}^i = \tilde{x}_k^i + d_k^i w_k^i$
 - Inventory \tilde{x}_k^i
 - Delivery d_k^i
 - Demand w_k^i

• cost-to-go g_k

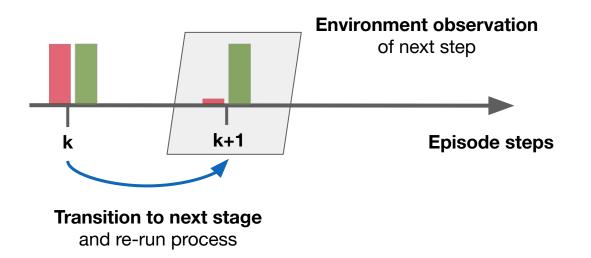
- Inventory Control
 - Fixed demand to the prediction: \overline{w}_k^i
 - Solve deterministic problem: minimize $g_N(\tilde{x}_N^i) + \sum_k^{N-1} g_k(\tilde{x}_k^i, d_k^i, \bar{w}_k^i)$
- Uses Principle of Optimality (Bellmann)
 - Sequentially calculate optimal costs of tail subproblems
 - Going from shorter to longer problems

DP Agent



Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

DP Agent



Product A 📃 Product B

Results - Test cases

In-distribution

• Out-of-distribution (domain transfer to new day / location)

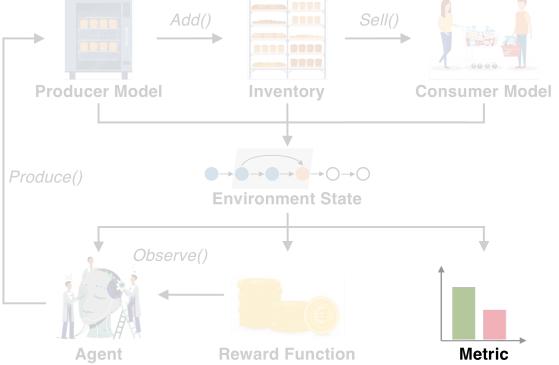
+50% consumer demand "Busy"

"Idle"

- -50% consumer demand
- [-50%,+50%] consumer demand "Chaotic"

Metrics

S_{ratio} **Product sales: Producer Model** sales out of total orders Produce() *p*_{ratio} **Freshness:** (reciprocal) average age of the products



Results

Freshness Sales Random Random Higher mean Lower mean Higher mean Lower mean Similar Similar demand demand demand demand mean mean demand demand ([-50%,+50%]) (+50%) (-50%) (+50%) (-50%) ([-50%,+50%]) **Baseline** DDPG DDPG w/ DR DP w/ AR DP w/ Oracle

 Color scale for sales ratio
 Color scale for freshness (reciprocal) ratio

 0.000
 0.125
 0.250
 0.375
 0.500
 0.625
 0.750
 0.875
 1.000
 1.625
 3.250
 4.875
 6.500
 8.125
 9.750
 11.375
 13.000

Results

ТUП

Sales Freshness Random Higher mean Lower mean Higher mean Lower mean Random Similar Similar demand demand demand demand mean mean demand demand (+50%) (-50%) (+50%) ([-50%,+50%]) (-50%) ([-50%,+50%]) 0.4121 **Baseline** 0.5503 0.8188 0.5867 5.3800 4.0300 10,1690 6.4300 DDPG DDPG w/ DR DP w/ AR DP w/ Oracle

 Color scale for sales ratio
 Color scale for freshness (reciprocal) ratio

 0.000
 0.125
 0.250
 0.375
 0.500
 0.625
 0.750
 0.875
 1.000
 1.625
 3.250
 4.875
 6.500
 8.125
 9.750
 11.375
 13.000

Baseline - Produces more than required, products less fresh

Results

Sales Freshness Random Higher mean Lower mean Higher mean Lower mean Random Similar Similar demand demand demand demand mean mean demand demand (+50%) (-50%) ([-50%,+50%]) (+50%) (-50%) ([-50%,+50%]) **Baseline** 0.5503 0.4121 0.8188 0.5867 5.3800 4.0300 10,1690 6.4300 DDPG DDPG w/ DR DP w/ AR DP w/ Oracle 0.6716 0.488 0.9521 0.6347 3.5250 2.7700 2,4500 3.6650 Color scale for sales ratio Color scale for freshness (reciprocal) ratio 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 0.000 1.625 3.250 4.875 6.500 8.125 9.750 11.375 13.000

DP with Oracle - Upper bound

Results

	Sales					Freshness					
	Similar demand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])		imilar emand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])		
Baseline	0.5503	0.4121	0.8188	0.5867	5.	.3800	4.0300	10.1690	6.4300		
DDPG	0.4412	0.3316	0.7343	0.4222	2.	.5700	1.5399	6.5000	2.1500		
DDPG w/ DR	0.2512	0.1902	0.4055	0.2597	1.	.6750	0.9650	1.9200	1.2600		
DP w/ AR											
DP w/ Oracle	0.6716	0.488	0.9521	0.6347	3.	.5250	2.7700	2.4500	3.6650		
			Color scale for <i>freshness</i> (reciprocal) ratio								
	0.000 0.125	0.250 0.375 0.50	0 0.625 0.750	0.875 1.000	0.000	1.625 3	8.250 4.875 6.50	00 8.125 9.750	11.375 13.000		

DDPG, DDPG with Dynamics Randomization - Produces less than required

Results

		Sa	les	
	Similar demand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])
Baseline	0.5503	0.4121	0.8188	0.5867
DDPG	0.4412	0.3316	0.7343	0.4222
DDPG w/ DR	0.2512	0.1902	0.4055	0.2597
DP w/ AR	0.5649	0.4013	0.8934	0.5736
DP w/ Oracle	0.6716	0.488	0.9521	0.6347

 Color scale for sales ratio

 0.000
 0.125
 0.250
 0.375
 0.500
 0.625
 0.750
 0.875
 1.000

Salaa

ТШ

Freshness

Similar demand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])
5.3800	4.0300	10.1690	6.4300
2.5700	1.5399	6.5000	2.1500
1.6750	0.9650	1.9200	1.2600
3.2736	1.6421	13.0000	3.6578
3.5250	2.7700	2.4500	3.6650

Color scale for <i>freshness</i> (reciprocal) ratio								
0.000	1.625	3.250	4.875	6.500	8.125	9.750	11.375	13.000

DP with Autoregressive (AR) Prediction - Balances well between both metrics

Results

	Sales						
	Similar demand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])			
Baseline	0.5503	0.4121	0.8188	0.5867			
DDPG	0.4412	0.3316	0.7343	0.4222			
DDPG w/ DR	0.2512	0.1902	0.4055	0.2597			
DP w/ AR	0.5649	0.4013	0.8934	0.5736			
DP w/ Oracle	0.6716	0.488	0.9521	0.6347			

Color scale for <i>sales</i> ratio									
0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000	

Salaa

Overall - good performance, improvements possible

Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

41

Freshness

Similar demand	Higher mean demand (+50%)	Lower mean demand (-50%)	Random mean ([-50%,+50%])
5.3800	4.0300	10.1690	6.4300
2.5700	1.5399	6.5000	2.1500
1.6750	0.9650	1.9200	1.2600
3.2736	1.6421	13.0000	3.6578
3.5250	2.7700	2.4500	3.6650

Color scale for freshness (reciprocal) ratio								
0.000	1.625	3.250	4.875	6.500	8.125	9.750	11.375	13.000

Summary

Brief Overview

- Explore the available methods for domain transfer
- Create a consumer model suitable for the task
- Create a demand model that predicts the demands
- Implement Model-free (DDPG) and Model-based (DP) agents
- Compare agents with the baseline

• Future Work

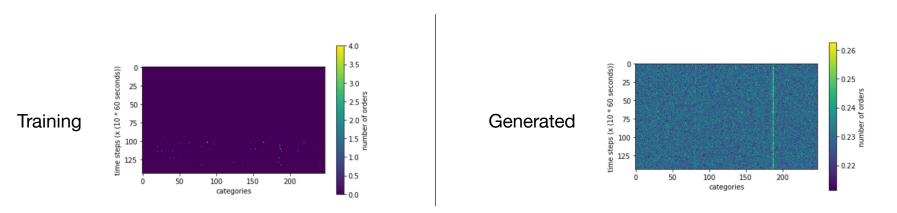
- Improvement in consumer model with learning-based methods (e.g. LSTM)
- Approximate Dynamic Programming in case the state space is high

Thank you for your attention! Questions?

Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020 Image kochrezepte.at 43

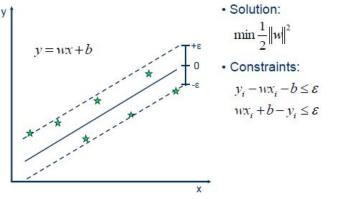
Backup - VAE

Take away Data



Backup - Support Vector Regression

- Kernel Function maps data to higher dimensions
- At higher dimensions linear separation is possible
- A hyperplane between the data points
- A soft margin of tolerance for the hyperplane
- Minimizes the MSE (mean squared error)



Backup - Autoregressive Model

$$X_t = c + \sum_{i=1}^p \varphi_i X_{t-i} + \epsilon_t$$

Here, Φ are the parameters, X are the observations, ε is white noise and c is the constant

- The output depends on the previous observations X
- The parameters Φ are adjusted
- Goal is to minimize MSE (mean squared error)

Backup - Consumer models

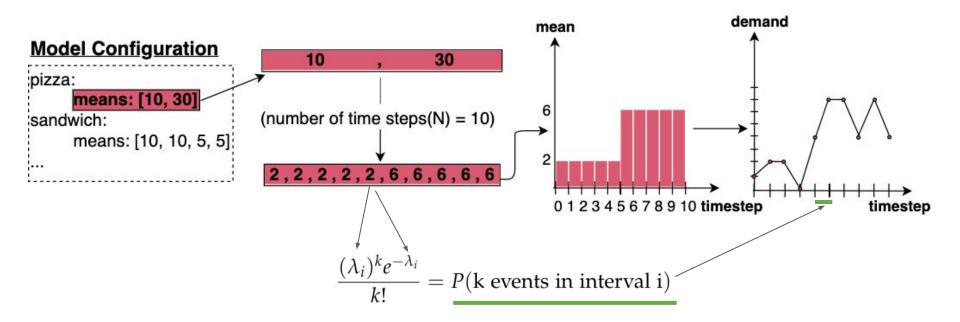
• Average

• For given time *t*, take average of all orders at this time

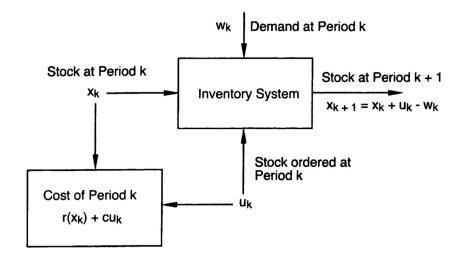
Random Nearest-Neighbor

- For given time *t*, go to nearest time *t**, and sample from all orders in *t** in a uniform random manner
- Linear Regression / Support Vector Regression
 - For *n* products, train *n* linear or support vector models

Backup - Poisson Consumer Model



Backup - Original from D. Bertsekas



• Discrete-time system

$$x_{k+1} = f_k(x_k, u_k, w_k) = x_k + u_k - w_k$$

• Cost function that is additive over time

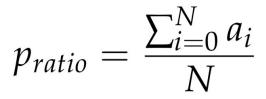
$$E\left\{g_{N}(x_{N}) + \sum_{k=0}^{N-1} g_{k}(x_{k}, u_{k}, w_{k})\right\}$$
$$= E\left\{\sum_{k=0}^{N-1} (cu_{k} + r(x_{k} + u_{k} - w_{k}))\right\}$$

$$J_{\pi}(x_0) = E\left\{R(x_N) + \sum_{k=0}^{N-1} (r(x_k) + c\mu_k(x_k))\right\}$$

- Original example from D. Bertsekas
- $\mu_k(x_k) =$ amount that should be ordered at time k if the stock is x_k

Backup - Metric

$$s_{ratio} = \frac{o_f}{o_f + o_u}$$



 o_f = number of fulfilled orders, o_u = number of unfulfilled orders a_i = age of all products at time-step i in the inventory, N = number of time-steps.