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Inventory Control
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Inventory Control
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Main goal: 

• Maximize product sales

Sub-goals:

• Minimize waste
• Maximize freshness 
• Minimize waiting time for 

customer

orderproduce

deliver sell
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Inventory Control with Reinforcement Learning

Images:  freepik.com

Create an agent that

• Satisfies problem 
constraints

• Safely operates in real 
world after training on 
simulation (domain 
transfer)

order

selldeliver

produce

Observation
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Reinforcement Learning (RL) 

On each episode, agent must take 
actions that maximize expected reward 

for each state
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Example - RL
Task: Balance pole on cart
• State

• Cart position, velocity
• Pole angle

• Actions
• Move left or right

• Reward
• +1 for each time step
• 0 when pole falls

Cartpole - OpenAI Gym 
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RL with Dynamics Randomization

Idea: To generalize to new environments, 
sample a different environment on each 

episode

Practice: Environment is defined by 
certain parameters, sample different 
values of these parameters on each 

episode
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Dynamics Randomization - Example

Per episode, sample

○ Pole Length:[0.3, 0.6]

○ Pole Mass: [0.5, 1.5]

Cartpole - OpenAI Gym 
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Environment

• Producer Model

• Time-shift 

• Quantity limit

• Inventory

• Storage limit

• Freshness

• Consumer Model

• Stochastic
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Environment

• Environment State

• Production queue

• Order queue

• Inventory

• Number of the 
items

• Age of the items
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Environment
• Agent

• Decides on what to 
produce

• Reward

• Agent-specific 
evaluation of the state

• Metric

• Common evaluation 
of the agents’ 
performances
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Environment - Our Task
• Main task:

• Create a robust agent 
that can perform well 
in varying demand 
trends

• Requires:

• An expressive 
consumer model

13Images:  freepik.com
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Consumer Model

• Simulate behavior of giving orders

• Requirements for the model

• Expressibility

• Flexibility

• Problem

• No real world data available

14
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Consumer Model

• Simulate behavior of giving orders

• Requirements for the model

• Expressibility

• Flexibility

• Problem

• No real world data available

Solution approaches

1. Learn a model from a public 
dataset

2. Use a generative model to 
generate data

15
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Generative Consumer Model
A generative model that is based on Poisson Distribution

● Example   
expected demand

16
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● Example     
expected demand

Generative Consumer Model

● Create bins with 
means 

● Generate demand

A generative model that is based on Poisson Distribution
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● Example   
expected demand

Generative Consumer Model

● Create bins with 
mean

● Generate demand

● Vary means for 
dynamics 
randomization

A generative model that is based on Poisson Distribution
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Environment

• Agent has to choose

• Product type

• Product quantity
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Agents Overview

Episode stepsk

Environment observation 
of next step

k+1

Transition to next 
timestep

Environment observation 
for current step
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Agents
Baseline

• Benchmark for 
comparison

• Simulates a real 
bakery decision 
process

• Fill inventory if 
below threshold

Deep Deterministic 
Policy Gradient (DDPG)

• Model-free

• High-performing RL 
algorithm

• Using Deep RL to 
estimate best action

• Reward engineering

Dynamic Programming (DP) 
with Demand Prediction

• Model-based

• Adapted from D. 
Bertsekas

• Interpretable and follows 
the principle of optimality  

• Cost function

21
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Agents
Baseline
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DDPG

• Environment has a state and returns a 
reward

• Critic estimates the value of state

• Actor generates actions 

• Challenges:

- Several hyper-parameters to tune

- Reward engineering

Environment

Critic

Actor

State + 
Reward

Value

State + 
Reward

Action
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DP Agent overview

Episode stepsk

Environment observation 
for current step

24
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DP Agent overview

Episode stepsk

Demand prediction 
for remaining episode

Planning actions 
for remaining episode

Environment observation 
for current step

a) b)
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Demand Model

• Predicts future consumer orders

• DP agent acts based on it

• DP agent’s performance, highly 
dependent on demand model

➢ Tried different approaches

26
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Demand Model

• Predicts future consumer orders

• DP agent acts based on it

• DP agent’s performance, highly 
dependent on demand model

➢ Tried different approaches

Final model: Autoregressive Model (AR) 

• predicts based on real consumer 
orders

• self-adjusts
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Demand Model - AR
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DP Agent 

Episode stepsk

Demand prediction 
for remaining episode

Planning actions 
for remaining episode

Environment observation 
for current step
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Dynamic Programming
• Discrete-time equation

• Inventory

• Delivery

• Demand

• Incorporated

• Production time-shift

• Multi-products
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Dynamic Programming Algorithm
• Inventory Control 

• Fixed demand to the prediction:

• Solve deterministic problem: 

• Uses Principle of Optimality (Bellmann)

• Sequentially calculate optimal costs of tail 
subproblems

• Going from shorter to longer problems

• Discrete-time equation

• Inventory

• Delivery

• Demand

• cost-to-go
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DP Agent 

Episode stepsk

Demand prediction 
for remaining episode

Planning actions 
for remaining episode

Environment observation 
for current step

Take optimal action
for current step
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DP Agent 

Episode stepsk

Environment observation 
of next step

k+1

Transition to next stage
and re-run process
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Results - Test cases

○ In-distribution

➢ Similar consumer demand (distribution) as training

○ Out-of-distribution (domain transfer to new day / location)

➢ +50% consumer demand “Busy” 

➢ -50% consumer demand “Idle” 

➢ [-50%,+50%] consumer demand “Chaotic”
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Metrics

Product sales:

sales out of total orders

Freshness:
(reciprocal)

average age of the products

35Images:  freepik.com



Data Innovation Lab - WS 2019/20
Department of Mathematics
Technical University of Munich

Murat Can Karacabey, Ahmad Bin Qasim, Abdul Moeed, Sebastian Oehme | Data Innovation Lab | 17. February 2020

Results

Similar 
demand

Higher mean 
demand 
(+50%)

Lower mean 
demand 
(-50%)

Random 
mean 

([-50%,+50%])

Similar 
demand

Higher mean 
demand 
(+50%)

Lower mean 
demand 
(-50%)

Random 
mean 

([-50%,+50%])

Baseline 0.5503 0.4121 0.8188 0.5867 5.3800 4.0300 10.1690 6.4300

DDPG 0.4412 0.3316 0.7343 0.4222 2.5700 1.5399 6.5000 2.1500

DDPG w/ DR 0.2512 0.1902 0.4055 0.2597 1.6750 0.9650 1.9200 1.2600

DP w/ AR 0.5649 0.4013 0.8934 0.5736 3.2736 1.6421 13.0000 3.6578

DP w/ Oracle 0.6716 0.488 0.9521 0.6347 3.5250 2.7700 2.4500 3.6650

Color scale for sales ratio
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Color scale for freshness (reciprocal) ratio
0.000 1.625 3.250 4.875 6.500 8.125 9.750 11.375 13.000

Sales Freshness
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Color scale for sales ratio
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Color scale for freshness (reciprocal) ratio
0.000 1.625 3.250 4.875 6.500 8.125 9.750 11.375 13.000

Baseline - Produces more than required, products less fresh

Sales Freshness
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DP with Oracle - Upper bound

Sales Freshness
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DDPG, DDPG with Dynamics Randomization - Produces less than required

Sales Freshness
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DP with Autoregressive (AR) Prediction - Balances well between both metrics

Sales Freshness
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Sales Freshness

Overall - good performance, improvements possible
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Summary

● Brief Overview

○ Explore the available methods for domain transfer

○ Create a consumer model suitable for the task

○ Create a demand model that predicts the demands 

○ Implement Model-free (DDPG) and Model-based (DP) agents

○ Compare agents with the baseline

● Future Work

○ Improvement in consumer model with learning-based methods (e.g. LSTM)

○ Approximate Dynamic Programming in case the state space is high
42
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Thank you for your attention! Questions?
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Backup - VAE

Training

Take away Data

Generated
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Backup - Support Vector Regression

45

• Kernel Function maps data to higher 
dimensions

• At higher dimensions linear separation is 
possible

• A hyperplane between the data points

• A soft margin of tolerance for the hyperplane

• Minimizes the MSE (mean squared error)
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Backup - Autoregressive Model

46

Here, Φ are the parameters, X are the observations, ε is white noise and c is the 
constant

● The output depends on the previous observations X
● The parameters Φ are adjusted
● Goal is to minimize MSE (mean squared error)
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Backup - Consumer models

● Average

○ For given time t, take average of all orders at this time

● Random Nearest-Neighbor

○ For given time t, go to nearest time t*, and sample from all orders in t* in a 
uniform random manner

● Linear Regression / Support Vector Regression

○ For n products, train n linear or support vector models
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Backup - Poisson Consumer Model

48
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Backup - Original from D. Bertsekas

• Original example from D. Bertsekas
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Backup - Metric
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