
DATA INNOVATION LAB
TECHNISCHE UNIVERSITÄT MÜNCHEN

Project Report

Domain Transfer for Reinforcement
Learning Agents

Authors: Murat Karacabey, Ahmad Qasim, Abdul Moeed, Sebastian Oehme
Mentors: M.Sc. M. Sundholm, M.Sc. H. Belhassan
Co-Mentor: M.Sc. Michael Rauchensteiner
Project Lead: Dr. Ricardo Acevedo Cabra
Supervisor: Prof. Dr. Massimo Fornasier
Submission Date: 07.02.2020

Contents

1 Introduction 1

2 Theory 2
2.1 Sequential Decision Making . 2
2.2 Domain Transfer . 5

3 Reinforcement Learning Environment 8
3.1 OpenAI Gym . 8
3.2 Precibake Environment . 9

4 Consumer Model 11
4.1 Public Data . 11
4.2 Synthetic Data . 12

5 Agents 14
5.1 Baseline . 14
5.2 Deep Deterministic Policy Gradient (DDPG) 14
5.3 Constraint Optimization with Demand Prediction 16

6 Results & Discussion 21
6.1 Training . 21
6.2 Metric Benchmark . 24

7 Conclusion 26

Bibliography 28

ii

1 Introduction

Often it is taken for granted, but managing inventory to meet demand is quite complex.
Many consumers might have already experienced it when standing in front of empty
shelves in a supermarket or having seen piles of fresh bread rolls in a bakery just before
closing time. Besides the obvious interest for a business in the food industry to meet the
consumer demand and maximize sales for profits, it has to balance between a product’s
freshness and potential waiting time for consumers, while becoming more sustainable
through minimizing waste.

To address this inventory management problem, Reinforcement learning (RL) agents
seem a feasible approach, as they have recently shown impressive performance in learn-
ing complex tasks such as controlling robots [KBP13] and playing video games [ER98;
Mni+13]. However, training such agents for real systems is complicated in practice.
Since, in order to learn, the agent needs to act within the environment. Further, most
RL agents are quite data hungry and might require a lot of training episodes before
performing on par with humans on a given task. Training an agent in the real physical
environment is therefore most often neither safe or feasible. That is why, most RL
agents are trained and tested in simulated environments before they get deployed in the
real world. Nonetheless, there is no guarantee that an agent trained in the simulation
will perform well in the real physical domain. Since the dynamics of the simulation
deviate from the dynamics of the physical world, agents will most likely under-perform
or fail completely once deployed in the new domain. An active area of research is to
generalize RL agents trained in randomized, simulated environments [LK01; Tob+17]
to also perform well when deployed into a new environment.

The goal of this project is to develop a method to train RL agents that can perform
in a real food inventory control problem even if they were only trained on simulated
data. We analyze the related work and theoretical background in Chapter 2. In Chapter
3, we introduce an environment to model inventory control for the food industry. In
Chapter 4 and 5, we explain our approach for modeling consumer demand and our
agents respectively. Subsequently, we evaluated the results discuss them in Chapter 6.
Finally, we draw our conclusions and point out future work in Chapter 7.

1

2 Theory

In this chapter we first provide an overview of the well-developed and approved aspects
of reinforcement learning by the research community. Afterwards, we augment our
analysis with references to ongoing research in domain transfer and how it can be
utilized towards creating RL agents that can be applied in the real world.

2.1 Sequential Decision Making

Inventory control is one of many examples where decisions are made in stages. These
kinds of situations are referred to as Sequential Decision Making (SDM) [BSW89]. Here
an agent aims to achieve a predefined goal and identify the decision rule by interacting
with its environment, shown in Figure 2.1. As a consequence of its interactions, the
agent receives observations or feedback from the environment, then adapts to make
appropriate next actions to it.

Observation / Feedback

Cost / Reward

Decision / Action

Environment Agent

Figure 2.1: Sequential interactions between agent and its environment.

At each decision epoch, a decision is to be made, according to an appropriate
evaluation of the sequence of states and actions generated by the agent (called trajectory).
This is done by evaluating trajectories only locally in time with the current state xk,
action uk and following state xk+1. Such a local evaluation is known as the cost-to-go
function gk or the reward function rk in the RL literature [S+98]. Commonly, the reward
function is assumed to be bounded, i.e., |gk| < 1.

The agent’s objective is to minimize a certain cost (or to maximize a reward) in
accompanying situations. A key idea here is that the agent’s actions must balance the

2

2 Theory

present costs with future expected costs. RL and Dynamic Programming (DP) [Bel66]
techniques capture this trade off.

When there is no noise or disturbance in the system, the problem is simply determin-
istic. However, most systems of interest are almost always uncertain. A successive state
is then statistically dependent on the current state and a chosen action. We can either
describe SDM as a discrete-time dynamic system

xk+1 = fk(xk, uk, wk) with k = 0, 1, ..., N − 1, (2.1)

where

k indexes discrete time

xk is the state of the system at time k

uk is the control to be selected at time k

wk denotes the uncertainty

N is the finite horizon

fk is function that fully describes the systems

or with a probabilistic transition model as a Markov Decision Process (MDP) {S, A, p, g, T},
where

S is a finite set of states

A is a finite set of actions

p(xk+1|xk, uk) is the transition probability

g(xk, uk, xk+1) is the cost function defined on state transition (xk, uk, xk+1)

N is the finite horizon.

For a discrete-time dynamic system the problem is an optimization of the expected cost

Ewk

[
gN(xN) +

N−1

∑
k=0

gk(xk, uk, wk)

]
. (2.2)

The goal of MDP is to find an optimal decision rule or policy π∗ for arbitrary initial
state s that minimizes the so called Value function V. V is defined as the expectation of
evaluations of trajectories following sequence of actions µ := {u0, ..., uN−1} given s:

V(s, µ) := Eph(s,µ)

[
gN(xN) +

N−1

∑
k=0

gk(xk, uk, xk+1)

∣∣∣∣∣x0 = s

]
(2.3)

3

2 Theory

where a trajectory starting with s becomes a random variable with its probability
density function:

ph(s, µ) =
T

∏
k=0

p (xk+1|xk, uk)

∣∣∣∣∣
x0=s

(2.4)

Putting this in terms of a policy which maps the state-dependent feature space to its
admissible action space the Value function can be reformulated1 to

Vπ(s) := E p(wk)
πk(uk |xk)

[
gN(xN) +

N−1

∑
k=0

gk(xk, uk, wk)

∣∣∣∣∣x0 = s

]
(2.5)

Therefore, the optimal Value function is

V∗(s) = min
µk

Eph(s,µ)

[
gN(xN) +

N−1

∑
k=0

gk(xk, uk, xk+1)

∣∣∣∣∣x0 = s

]
= min

π
Vπ(s).

(2.6)

Although RL and DP both share the same working principles they have different
naming conventions. Furthermore, the key difference between classic DP and classic
RL is that the first assumes full knowledge of the MDP but is of limited utility because
of great computational expense when the problem faces many states and actions (Curse
of Dimensionality [Bel66]).

The fundamental concept for DP that deals with solving SDM problems is known
as the "Principle of Optimality" [Bel66]. The main idea behind it is that, for solving
SDM problems an optimal action that minimizes the value function at the current state
Vk(xk) will simultaneously minimize the Value function that involve all subsequent
states Vk+1(xk+1). In practice the DP algorithm is used to compute an optimal policy
by backward recursion. An optimal policy can be constructed in step-wise, first
constructing an optimal policy for the "tail sub-problem" involving the last state and
then continuously extending the "tail sub-problem" until an optimal policy

π∗k (xk) ∈ argmin
uk

Ep(wk)

[
gk(xk, uk, wk) + Vπ∗k+1

(xk+1)
]

(2.7)

is constructed for the entire problem. Hence, leads to the optimal value function

V∗k (xk) = min
µk

Ep(wk)

[
gN(xN) +

N−1

∑
t=k

gt(xt, ut, wt)

]
= min

uk
Ep(wk)

[
gk(xk, uk, wk) + V∗k+1(xk+1)

]
.

(2.8)

1For further details we refer to the lecture notes of Approximate Dynamic Programming and Reinforce-
ment Learning from Dr. Hao Shen, TUM Department of Electrical and Computer Engineering.

4

2 Theory

So far we have described SDM for finite horizon problems. It it also possible to extend
this to infinite horizon problems, e.g., a case without a terminal state. However, this is
outside of the scope of this project.

As mentioned earlier a key difference in RL is the lack of a model. This causes a
fundamental trade-off. The agent seeks to find the right balance between experimenting
within the environment to gain more knowledge on the dynamics (exploration) and
exploiting actions that are already known to have a high chance of reward in certain
situations. Many RL agents makes use of incremental updates to the Value function
with Temporal-difference (TD) learning [SB87]. TD methods can update (←) the Value
function at every step, e.g., in the simple method TD(0):

V(xk)← V(xk) + α[g(xk, uk, xk+1) + γV(xk+1 −V(xk)] (2.9)

where

α is the learning rate,

g(xk, uk, xk+1) is the observed cost and

γ is a discount factor.

The learning rate and discount factor influence how much the new observations are
accounted for and how much information from future states are propagate to the
current state respectively. Through sampling TD-methods are able to find a optimal
policy, too. This is convenient as it is possible for a agent to learn a certain task even if
the underlying model is unknown. As one can imagine sampling might be a tedious,
time-consuming task. Therefore, it’s mostly done in with the help of a simulator. In the
simulator we can design the environment and set up constrains for the agent to start
learning for mastering a given task. Afterwards, we are able transfer the learnings to
the real world, e.g. a robot performing some task inside a warehouse.

2.2 Domain Transfer

As the title of the project suggests, the core problem to be solved is domain transfer
– the ability of a reinforcement agent to generalize to unseen environments. Domain
transfer in RL is a special case of the more general problem of "transfer learning" in
machine learning. Transfer learning is defined as the "improvement of learning in a
new task through the transfer of knowledge from a related task that has already been
learned" [TS10].

In the RL setting, a number of approaches have been proposed to achieve domain
transfer. For example, for image-based tasks such as game playing using pixels, an

5

2 Theory

image-to-image translation scheme using generative adversarial networks (GANs) has
been employed [GG18]. A more sophisticated approach uses hierarchical reinforcement
learning to learn sub-goals that are common in the source and target tasks [SOL18].

For this project, we want to generalize the RL agent’s learning from simulations to
the real world. A technique that deals specifically with this problem is "Sim2Real".
The key idea is to train the RL agent in different configurations/parameters of the
environment on each episode, in order to make it robust to unforeseen environments.
This is known as "dynamics randomization" – randomly sampling parameters that
define the dynamics of the environment. Formally, the objective is to maximize the
expected reward over a distribution of environment dynamics:

Eµ∼ρµ

[
Eτ∼p(τ|π,µ)[

N−1

∑
k=0

g(xt, ut)]

]
(2.10)

where µ is the set of parameters that can parameterize the dynamics of the environment,
ρµ is the distribution of dynamics and p(τ|π, µ) is the likelihood of a trajectory τ =

(x0, u0, x1, ..., uN−1, xN) given a certain policy π and parameters µ.

(a) Cartpole environment with default
parameters.

(b) Cartpole with randomized/al-
tered parameters i.e. pole height

Figure 2.2: Example of modified environment dynamics in OpenAI’s Gym Cartpole.

A simple example of dynamics randomization is given in Figures 2.2a & 2.2b. ’Cart-
pole’, an environment implemented in the OpenAI Gym package (more details in
chapter 3), is often used as a benchmark for RL algorithms. Here, the task is to balance
the pole by moving the cart to the left or right. Let us suppose that we want to train an
agent that can balance the pole, not just with the given height, but on different pole
heights. RL algorithms such as Q-learning can be used to learn pole balancing on the
standard environment (Figure 2.2a), but they fail to generalize when the pole height is
changed (Figure 2.2b). This is where dynamics randomization is useful – we can use
the same algorithm (Q-learning), only this time, on each episode we must sample a

6

2 Theory

different pole height to learn on. Given that the agent has seen a wide variety of pole
heights during training, it should be able to generalize to a pole which it has not seen
during training.

The next Chapter provides an overview of our environment, and how it relates to
dynamics randomization.

7

3 Reinforcement Learning Environment

As previously mentioned, RL agents are generally not employed right away in the real
world. Rather, they are first trained in a virtual environment that models the real world.
This means that the fidelity of the environment can have a major impact on the agent’s
performance in the real world. As such, various RL software frameworks e.g. OpenAI
Gym 1, Google’s Dopamine 2, Keras-RL 3 etc. have been introduced, which help the
developers by providing out-of-the-box environments and tools for core RL algorithms.
For this project, we use OpenAI’s Gym package to build our RL environment.

3.1 OpenAI Gym

Gym is a toolkit provided by OpenAI, and made available to the developers as a Python
library. The gym package is a collection of test problems called environments. gym
environments share a common interface which makes it easier to write algorithms
which do not have to be modified for different environments. The common interface is
modeled after the classic "agent-environment loop" depicted in Figure 2.1. The main
components of the common interface are:

• step() takes the action as input and marks a single time-step in the environment.

• The output object of the step function, which includes:

observation – environment specific object which represents the state,

reward – is received as a result of the action,

done – a Boolean representing whether the agent has reached the terminal
state of the environment or not, and

info – a debugging object used for diagnostics.

• Action – which is carried out by the RL agent given the output object.

• Observation and action space: Environment dependent objects which represent
the valid values for environment state and actions respectively.

1https://gym.openai.com/
2https://opensource.google/projects/dopamine
3https://keras-rl.readthedocs.io/en/latest/

8

3 Reinforcement Learning Environment

3.2 Precibake Environment

gym also provides an interface to create custom environments – PreciBake used this to
create the inventory control environment for this project. As explained in Section 3.1,
given the environment state i.e. observation and reward of the last time-step, the agent
generates the action which should be carried out during a particular time-step. As an
example for inventory control we are considering a bakery environment in this project.
Here, the action is comprised of the information about which type of product has to
be baked and also its quantity. In the real-world, ovens are commonly used to bake
one type of product in batches. Therefore, the agent’s action is limited to only produce
one type of product and its amount at a given time-step. As shown in Figure 3.1, the
PreciBake environment state is composed of the following components:

Environment State

Agent

Producer Model Inventory Consumer Model

Metric

Pr
od
uc
e(
)

Add() Sell()

Observe()
Reward Function

Figure 3.1: The PreciBake environment represented as a graph.

• Producer model This component simulates the bakery oven. The input to the
producer model is the action which is to be performed during the current time-
step. Each product has a production time. After receiving the action, the producer
model adds the amount of the respective product specified by the agent to the
inventory, after the production time of the specified product has elapsed. While,
the production model waits for the production time to elapse, it does not process
any actions from the agent.

• Inventory represents the bakery’s product display. The Producer model adds
produced items to the inventory. They stay in the inventory until they are sold to
a consumer.

• Consumer model models the consumer behavior. In the real world, this can be
influenced by multiple factors e.g. freshness of the items in the inventory, time of

9

3 Reinforcement Learning Environment

the day, the day being a holiday/weekend etc. The consumer model has to be a
realistic representation, which takes at least some of these factors into account.
When an order is made by the consumer model, the order is either satisfied by
the inventory at the moment or the delivery, or it is removed from the queue in
the next time-step. However, it is noteworthy that such missed orders affect the
metrics negatively (we describe this in detail below).

The reward function can be used as a representation of how well the agent is doing
within the environment. However, the reward function can be agent specific i.e. different
agents can have different reward functions. Hence, we use two consistent metrics in
order to able to compare them with each other. As shown in Figure 3.1, these metrics
can be derived from the last state of the environment. The metrics used in the PreciBake
environment are given hereby. The sales ratio sratio, which measures that how good the
agent is at serving incoming orders from the consumers. A higher sales ratio means
that higher number of orders were fulfilled. An agent with a sales ratio of one would
have completed all the orders that it received from the consumers.

sratio =
o f

o f + ou
(3.1)

where,
o f = number of fulfilled orders
ou = number of unfulfilled orders
The products ratio pratio, which measures the average age of all products, within the
inventory. A higher products ratio means that, the products within the inventory were
more old or less fresh, when they were sold to the consumer.

pratio =
∑N

i=0 ai

N
(3.2)

where,
ai = age of all products at time-step i in the inventory
N = number of time-steps
Hence, the goal of an agent is to maximize the sratio while minimizing the pratio.
As mentioned earlier in this section, all orders are generated by the consumer model
and it is one of the more critical parts of the PreciBake environment. The next section
provides more details about the consumer model.

10

4 Consumer Model

As stated in the previous chapter, a major part of the project pertains to successfully
modeling consumer behavior. An ideal consumer model would have enough stochas-
ticity to mirror demand of the real world, while also showcase enough predictability
for our algorithms to detect certain patterns. Initially, public data was used to model
consumer behavior. However, as the project progressed the limitations of such a model
became apparent. We thus proceeded to develop a parameterized consumer model that
would better reflect the demands of the project. A parametrized model would enable
generation of whatever synthetic demand we would like to have, making testing much
easier.

Mathematically, the goal is to generate a demand vector given a certain time step:

demandt = f (t) (4.1)

where demandt =< d̃a
t , d̃b

t ..., d̃n
t > for products P = {a, b, ..., n}.

4.1 Public Data

A good place to start looking into consumer behavior is actual food order data. Fortu-
nately, there are a number of online data sources aggregating consumer orders. One
such data source is Kaggle – a popular data science competitive platform. It hosts a
multitude of data sets as part of its numerous contests. Takeaway Food Orders [Kag] is a
publicly available data set on the platform, with food order data for more than 30,000
orders. It contains information such as ordered items, time-stamp and quantity for
each order. A number of models were created to fit the data set, given as follows.

Average Consumer The most basic of all consumer models. Here, we simply take an
average of the quantities ordered at the current time step for each product.

d̃p
t = mean(dp

t) ∀p ∈ P (4.2)

The most apparent shortcoming of this model is its lack of randomness. The same
demand would be generated at a given time step each time.

11

4 Consumer Model

Nearest Neighbor Consumer A slightly more realistic model compared to the previ-
ous attempt, the nearest neighbor consumer looks at the closest time-stamp in the data
set to the current time step:

t∗(t) =

{
t when ∃ demandt

t′ when @ demandt ∧ argmint′(t− t′)
(4.3)

This gives us a list of orders that were made at this time on different days. It then
selects an order from this list in a uniform random manner.

d̃p
t = uni f orm_random(dp

t∗) ∀p ∈ P (4.4)

While this model is an improvement over the average consumer as it is stochastic, it has
the limitation that it can only generate orders that were already made in the data set.

Variational Auto Encoder (VAE) Consumer Another approach used was to train a
generative model (in our case a VAE) that might have the capability of learning the
dependencies between the orders in a given amount of time e.g. day, since it has
proven its ability to learn the underlying structures in a given image [Doe16] with some
mild assumptions in the latent space. After some experiments, we realized that our
public data is highly sparse in terms of providing usable information for our problem.
Therefore, we decided to use a different approach, which we explain in the next section.

4.2 Synthetic Data

Poisson Consumer Considering the desired characteristics of a consumer model for
this project, the Poisson distribution is a valuable tool in our arsenal. We developed a
simple-yet-effective generative model, based on sampling from a Poisson distribution.
It is also simple to interpret and adaptable to our learning algorithms. Furthermore,
we consider it to be useful for domain randomization as it is easily parameterizable.

P(k orders in a bin) =
λke−λ

k!
(4.5)

Our Poisson consumer model takes a list of means (λs in Equation 4.5) and generates
a Poisson distribution with each of them. After assigning those Poisson distributions to
the created bins of a certain time interval, it can be used to sample a demand given the
current time-step.

The parameterization of the means in such a way makes the model applicable for
domain randomization purposes. The Poisson distribution provides stochasticity and
can be used for randomization, even when the weights are not changed.

12

4 Consumer Model

By giving a range of mean demand for each bin, as in depicted in Figure 4.1c, we are
able to generate a variety of customer demands trends for training. We want to use this
to generalize our models and make them robust against unseen demand distributions;
even extreme values outside the training ranges, as depicted in Figure 4.1d.

6.00 12.00 20.00

Demand

Time

Product A Product B

(a) Example demand distribution

Demand

Time0 N

Product A Product B

(b) Binned demand distribution
Demand

Time0 N

Product A Product B

(c) Varying the weights of bins

Demand

Time0 N

Product A Product B

(d) Demand distribution at test time that is not
within the ranges of the bin weights.

Figure 4.1: Bars indicate the means (λs in the Equation 4.5) for the Poisson distribution
of the related bin. a) Shows an example demand distribution of 2 products
throughout the day. b) An example of creating the bins out of the given
demands to use as parameters for the Poisson model. c) A visualization
of variating the weights of the Poisson distributions of each time interval
to have randomized samples. d) Plots of the test demand data and its
divergence from the Poisson models average values.

One other use-case for our binned Poisson distribution approach (one might consider
it as a time-wise mixture of Poissons), is the ability to plug-in demand data at hand.
This allows us to generate similar but random samples using the resulting bin weights,
as shown Figure 4.1a and Figure 4.1b. This versatile approach can also be utilized
for other demand problems where data is at hand. After providing an overview on
our approaches for modeling consumer demand in this chapter, we focus on our
implementations for the agent in the next chapter.

13

5 Agents

In our literature review, we saw how DP and RL can be used to engage SDM problems.
In this chapter, we will describe adapted version of different agents for solving the
real-world problem of inventory management for the food industry.

5.1 Baseline

To assess the performance of our proposed solutions, we must first determine a
benchmark or baseline. As the project deals with the real-world problem of inventory
management in a baking environment, we implemented a baseline that best reflects
how a real bakery replenishes its inventory. The most common approach is to monitor
the amount of each product in the inventory, and restock when it falls below a certain
threshold. The choice of the threshold is arbitrary; we choose a threshold equaling
to difference between the maximum amount the inventory can hold and maximum
amount the oven can produce. For instance, if the inventory can only hold a maximum
of 10 pieces and the oven can produce 5 pieces at most, the threshold (point at which
the product must be restocked) is set to 5. This approach makes baseline agent a
competitive benchmark in terms of sratio which will be introduced later. The algorithm
for the baseline agent is given as follows:

for p ∈ products do
if invp ≤ invmax − prodmax then

action← prodmax

end if
end for

As can be observed, the chosen action also depends on the maximum capacity of the
inventory. In case of multiple products falling below invmax − prodmax at the same time
step, the agent simply picks the first product that satisfies the condition.

5.2 Deep Deterministic Policy Gradient (DDPG)

According to Equation 2.5, the policy state-value function Vπ(s) can be found given
the state s ∈ S. However, the policy state-value function can also be re-written as a

14

5 Agents

function of a state s ∈ S and an action a ∈ A. Equation 2.5 can be restated as, the policy
action-value function Q:

Qπ(s, a) := E p(wk)
πk(uk |xk)

[
gN(xN , uN) +

N−1

∑
k=0

gk(xk, uk, wk)

∣∣∣∣∣x0 = s, u0 = a

]
(5.1)

where g(xk, uk, xk+1) is the observed cost. Let us denote this as c. Hence, the optimal
action-value function in conjunction to optimal state-value function is:

Q∗(s, a) = min
π

Qπ(s, a) (5.2)

For a infinite horizon, the optimal value function Q∗(s, a) satisfies the following equality
for each pair of state s ∈ S and an action a ∈ A:

Q∗(s, a) = Exk+1∈S [g(xk, uk, xk+1) + minuk+1∈AQ∗(xk+1, uk+1)] (5.3)

In equation 5.2, if the action set is infinite e.g. a continuous action space, then it is not
possible to find the value of minuk+1∈AQ∗(xk+1, uk+1). We can approximate the value
function by using an efficient, gradient based learning rule for policy π(s).
Suppose that, the approximator is a neural network Qφ(x, a) with parameters φ. We
can state the mean-squared error (MSE) equation which tells us how close Qφ(xk, ak)

comes to satisfying the equation , as:

L(φ) = E(xk ,uk ,xk+1,c)

[
(Qφ(xk, ak)− (c + (1− d)min

uk+1
Q∗φ(xk+1, uk+1)))

2
]

(5.4)

where

φ are the approximation parameters

d is a Boolean variable which specifies whether µk+1 is the terminal state

Deep Deterministic Policy Gradient (DDPG) [Lil+15] is based on minimizing this MSE.
In equation 5.4, it is known that the approximator is trying to make the Q-function
closer to the target, i.e. (1− d)minφ Q∗k+1(xk+1, uk+1), but this is a problem because the
target is dependent on the same parameters φ which we are trying to train. The solution
to this problem is to calculate the target (1− d)minφ Q∗k+1(xk+1, uk+1), using a second
network which is called the target network. This network is a time-delayed version of
the main network which is being trained. The parameters of the target network will be
referred to as φtarg. After each epoch, the parameters of the main network are copied
over to the target network.

15

5 Agents

While training the neural network, in order to make the training process more stable,
an experience replay buffer is used, which is a set of (xk, uk, xk+1, c) transitions. The
size of this set is a parameter which has to be tuned because if the size of experience
replay buffer is too small then the neural network will start to overfit itself on more
recent experiences while if the size is too large then, that will impact the training speed
of the neural network. The neural network is trained on batches of transitions which
are sampled from the experience replay buffer.

To put it all together, DDPG uses the target network to tune the parameters of the
approximator and minimize the mean squared error equation:

L(φ) = E(xk ,uk ,xk+1,c)

[
(Qφ(xk, ak)− (c + (1− d)min

uk+1
Q∗φtarg

(xk+1, uk+1)))
2
]

(5.5)

Our project specifications require both discrete actions (which product to bake) and
continuous actions (quantity to bake). While DDPG is the state-of-the-art RL algorithm
for continuous learning tasks, it is not designed to solve tasks for discrete actions spaces.
The performance of the algorithm was thus not excellent. We subsequently decided to
develop our own agent using the classic dynamic programming approach combined
with a consumer demand prediction component.

5.3 Constraint Optimization with Demand Prediction

After the previous approach to solving the inventory management problem with model-
free RL, we now describe an agent that combines a predictive model for the stochastic
consumer demand with closed-loop optimization through dynamic programming.
However, we replace the stochastic problem with a deterministic problem. Which is
known as Certainty Equivalent Control (CEC) [Ber95]. At each stage k, the future uncer-
tain demands are fixed to the predicted value. This allows for a on-line implementation,
where the agent uses the first element in the optimal control sequence as the action for
the current stage.

Demand prediction w/ Autoregressive Model Autoregressive models are widely
used for time-series prediction, for instance in temperature and economic forecasting.
The model assumes that the value of a variable X at time t is a linear combination of its
previous p values and a stochastic term modeled as noise:

Xt = c +
p

∑
i=1

ϕiXt−i + εt (5.6)

16

5 Agents

where p is the length of the window looking into the past, ϕ is the set of parameters,
εt is white noise and c is a constant. We use Python’s statsmodels package imple-
mentation of the autoregressive model, which uses conditional maximum likelihood to
learn the parameters. Our method is to train an AR model on a few episodes (days). To
predict demand at test time, we first gather data for the next n steps, and calculate the
average difference of this data with our prediction of the next n steps. This difference is
then added to our prediction of whole trajectory. This process is repeated for each step,
so that the model keeps improving its predictions given more data for each episode.

The advantage of an autoregressive model is its ability to adjust the demand predic-
tion on-the-fly without requiring re-training. This is extremely important for robust
demand prediction; we want to be able to adjust our predictions if a particular day is
more or less busy than average.

Dynamic Programming and Certainty Equivalent Control After receiving a predic-
tion of the demand for the remaining horizon, the production schedule needs to be
optimized accordingly to minimize the cost. For this we extend the basic formulation
from Bertsekas of a model of optimal control of a discrete-time dynamic system over
a finite number of stages to account for our complex environment [Ber95]. Bertsekas
describes the inventory control problem of ordering a quantity a single item (and
getting it immediately delivered) at each stage to meet the stochastic demand (modeled
as independent random variables), while minimizing the accompanying expected cost.
For our real-world problem we need to account for multiple products with a time-shift
in between production and delivery, constraining the production capacity. Therefore,
we model the change in stock with an augmented state
x̃i

k = (xi
k, dk−p, ..., dk−1) according to the discrete-time equation

x̃i
k+1 = x̃i

k + di
k − wi

k, (5.7)

where

k indexes discrete step

i denotes the product type

p is the maximal production time of all products.

x̃i
k is the stock per product type available at the beginning of the k th stage in

combination with the information about previous deliveries, indicating the agent’s
ability to produce products.

di
k quantity delivered per product type at the beginning of the k th stage,

17

5 Agents

wi
k demand per product type during the k th stage with given probability distri-

bution, where w1
0, w2

0, ..., wi
N−1 are independent random variables.

The cost incurred in stage k consists of the following components:

1. A cost r(x̃i
k) representing a penalty for positive stock x̃i

k (holding cost for excess
inventory).

2. The cost o(x̃i
k) penalizing negative stock x̃i

k (shortage cost for unfilled demand).

3. The production cost cidk, where c is product specific cost per delivered unit. The
agent is limited to produce only one type of product per stage and can’t produce
anything else when the production is ongoing.

4. Terminal cost R(xi
N) for being left with inventory xi

n at the end of N stages.

Thus, the cost for a initial stock xi
0 over N periods which we want to minimize with

policy π, mapping stock xk into delivery uk is

Vπ(xi
0) = Ep(wi

k)

[
R(x̃i

N) +
N−1

∑
k=p

∑
i
(o(x̃i

k) + r(x̃i
k) + ciuk))

]
(5.8)

In our algorithm we account for the total cost from holding and shortage costs through
the sum over all product types ∑

i

[
r(x̃i

k) + o(max(0, wi
k − di

k − x̃i
k))
]
. Therefore, algo-

rithm takes the form

Vk(x̃i
k) = min

0<dk<m−xk
dk=0,...,q

Ep(wi
k)

[
cdk + ∑

i

[
r(x̃i

k) + o(max(0, wi
k − di

k − x̃i
k))
]
+

+ Vk+1(max(0, x̃i
k + di

k − wi
k))

]
.

(5.9)

For the on-line implementation with CEC we fix the wi, i ≤ k, at the predicted demand
w̄i. Therefore, we solve the deterministic problem:

min
0<dk<m−xk

dk=0,...,q

[
cdk + ∑

i

[
r(x̃i

k) + o(max(0, w̄i
k − di

k − x̃i
k))
]
+

+Vk+1(max(0, x̃i
k + di

k − w̄i
k))

] (5.10)

where the stock x̃i
k is known, and x̃i

k+1 = x̃i
k + di

k − w̄i
k. For each k our model predicts

the consumer demand for the rest of the episode. The agents calculates the optimal

18

5 Agents

delivery sequence µ̄∗k (xk) through backward recursion. It then chooses the optimal
the first production decision for the current state by following µ̄∗k (xk). This process is
repeated for the entire horizon1.

Example To visualize the combination of demand prediction with CEC we created a
simple example in Figure 5.1. We consider two products over four stages. Further, the
inventory capacity is limited to two items, the production is limited to a maximum of
two items and has a production time of two stages. In order to minimize the inventory
it begins in the last stage (depicted in blue). Here, the agent needs to meet the predicted
demand for that stage. With the CEC the agent calculates that it would be optimal to
deliver two productsA (still in blue). It is then extended to the whole example. For the
given initial inventory of one item per product type, the agent identified an optimal
policy by backwards recursion: deliver one productA in stage two and two productsA
in the last stage.

After describing all relevant components for our project. We will continue with the
evaluation and discussion of our results in the next chapter.

1Note, that we limited the maximal inventory capacity m=10 and the maximal production capacity q=5,
to reduce computational complexity.

19

5 Agents

Demand

1

2

Time

Inventory

1

2 max inventory

Time
Action

1

2

Time

busybusy

max action

Delivery

1

2

Time

Product A Product B

Figure 5.1: Example for serving the predicted demand with optimizing the production
schedule that minimizes cost. We have extended the canonical inventory
management example from Bertsekas [Ber95], by including more than 1
products and also introducing the producing time that can occupy the
system for more than 1 intervals. In the top-right, we see the delivery that
is optimal in case of the demand on the bottom-left and the underlying
actions to take at the bottom right. Taking into account the agent’s choice
of starting inventory on top-left, it achieves a complete satisfaction of the
demands. The optimality can be verified by checking if the delivery and the
inventory together is able to satisfy the orders in each time-steps.

20

6 Results & Discussion

In this chapter we will evaluate the aforementioned agents. We want to identify how
they perform on a set of unseen test cases, after having been trained in simulation on
randomized demand data. However, we will first discuss the training procedure for
the agents.

6.1 Training

DDPG The DDPG agent does not use the metrics described in Section 3.2 as reward
signals, due to the metrics being available only at the end of an episode (rather than at
each time step, making the signal sparse). Instead, we use:

reward = −cm, (6.1)

where cm is the number of missed customers (number of orders not fulfilled). The
agent is trained with dynamics randomization, which means sampling from a different
Poisson consumer demand model on each episode. The results for training convergence
are shown in Figures 6.1a and 6.1b.

Autoregressive demand prediction For the agent described in Section 5.3, the train-
ing is required only on the demand prediction problem. To train the autoregressive
model for demand prediction, data for 10 days was generated. The data was sampled
from the same Poisson distribution; simulating a normal day of consumer demand.
To validate that the autoregressive model adjusts its predictions to the demand on a
day different from the training distribution, we sample data from a different Poisson
distribution. Figure 6.2a shows the mean of demand of a product on a given time-step
for both distributions. Note that the test data is a scaled-up version of the training
data – this can be interpreted as the bakery having a busier day than usual. Figure 6.2b
illustrates how the autoregressive model adjusts its predictions when the demand
becomes greater than it expects. The dotted curve is the demand it predicts on a normal
day, as it has been trained on only this distribution.

21

6 Results & Discussion

0 50 100 150 200 250 300
Episodes

1200

1100

1000

900

800

700

600

500

400
Re

wa
rd

DDPG Training

Episode Reward
Mean Reward

(a) Standard DDPG agent training

0 50 100 150 200 250 300
Episodes

1200

1000

800

600

400

Re
wa

rd

DDPG Training w/ DR

Episode Reward
Mean Reward

(b) DDPG with dynamics randomization

Figure 6.1: DDPG agent training with and without dynamics randomization (different
consumer demand distribution per episode). Plots show per episode reward
(dotted line) and rolling mean reward.

22

6 Results & Discussion

0 20 40 60 80 100
Steps

0

10

20

30

40

50

60

70

80
Pr

od
uc

t A
m

ou
nt

Average Demand
Training Data (Normal Day)
Test Data (Shifted Demand)

(a) Poisson distributions for training and testing. The test distribution is a
scaled-up version of the training distribution.

0 20 40 60 80 100
Steps

0

10

20

30

40

50

60

70

80

Pr
od

uc
t A

m
ou

nt

Autoregressive Demand Prediction
Test Day
Test Day Prediction
Normal Day Prediction

(b) Trained AR model adjusts its normal prediction (dotted line) when the
given (test) day shows higher demand.

Figure 6.2: Training the autoregressive model for demand prediction

23

6 Results & Discussion

6.2 Metric Benchmark

To test our agents against the baseline, four scenarios are considered, each correspond-
ing to a different environment:

Din – Consumer demand within trained distribution

Dout1 – 50% increase in consumer demand

Dout2 – 50% decrease in consumer demand

Dout3 – Consumer demand sampled from [-50%,+50%] of trained dist.

As the subscripts suggest, the first environment uses the same Poisson distribution
for demand as the agents saw in training. The rest of the three environments are
out-of-distribution: Dout1 can be interpreted as a busier day or location compared to a
normal bakery, Dout2 as a less busier or remote location with less demand and Dout3 as
a more chaotic bakery where the demand is uncertain and thus has a variance. The
metrics used for testing correspond to the same as described in Section 3.2. A higher
score for sratio means better performance, as it corresponds to more sales. Conversely, a
higher score for pratio means a worse performance due to it is corresponding average
waiting times(inverse of the freshness in the baking settings) of the products.

Agents sratio pratio
Din Dout1 Dout2 Dout3 Din Dout1 Dout2 Dout3

Baseline 0.5503 0.4121 0.8188 0.5867 5.3800 4.0300 10.169 6.4300
DDPG 0.4412 0.3316 0.7343 0.4222 2.5700 1.5399 6.5000 2.1500
DDPG w/ DR 0.2512 0.1902 0.4055 0.2597 1.6750 0.9650 1.9200 1.2600
DP w/ AR 0.5649 0.4013 0.8934 0.5736 3.2736 1.6421 13.000 3.6578
DP w/ Oracle 0.6716 0.4880 0.9521 0.6347 3.5250 2.7700 2.4500 3.6650

Table 6.1: Results for agents tested on various environment dynamics. Agents include
DDPG with and without dynamics randomization (DR), DP agent with oracle
(upper bound) and with autoregressive predictor.

The results are summarized in Table 6.1. Besides our agent combining DP with the
the autoregressive model, we also evaluate the DP with an oracle demand model where
we already know the exact consumer demand. Therefore, its prediction represents a
upper-bound for our metric. It should be noted that each result is an average of 10
experiments.

It can be observed that the standard DDPG agent struggles with satisfying both
metrics simultaneously. DDPG with dynamics randomization has lower scores on sratio

24

6 Results & Discussion

but better scores on pratio. DP with AR is the better than both DDPG variants when
it comes to balancing both metrics in all but one out-of-distribution environments –
it doesn’t fall too much behind the best scores of others on sratio, even occasionally
surpassing every other agent apart from the upper bound, all the while maintaining
a lower pratio. DP with oracle is expectedly better than DP with AR – it shows us the
best achievable performance and how much improvement we can expect with a better
demand prediction model.

25

7 Conclusion

In this project, we have presented a successful approach for training RL agents that can
perform in a new, realistic inventory control domain even if they were only trained on
simulated demand data. We started by applying the theory of Dynamic Programming
and Reinforcement Learning to our problem. We then got familiar with the PreciBake
environment behaviour and tested dynamics randomization on other environments.
Furthermore, we implemented different agents with respect to our inventory control
environment. Parallel to that we focused on creating a realistic consumer model. For
this we tried to find a suitable public data set that we could augment with new synthetic
data. However, we did not further pursue this direction due to lack of a suitable data
set. After having tried out multiple approaches, we finally achieved our goal by

- creating a parametric consumer demand model that generates intervals of syn-
thetic data from Poission distributions with certain mean values and

- then training our adjusted agents, i.e. a DDPG agent and DP with demand
prediction by an autoregressive model, on the synthetic demand data.

Our results show that the DP algorithm combined with an autoregressive (AR)
demand prediction provides satisfactory solutions compared to the baseline and DDPG
agents.

Furthermore, we observe that there is room for improvement on the demand pre-
diction side; the DP agent with oracle demand offers a performance increase over
its AR counterpart. Other methods exist that could perform competitively such as
Long-Short-Term-Memory (LSTM) [HS97]. Such learning-based methods have been
used more recently for time-series prediction [Kar+17] [Mal+15] to a successful de-
gree. A potentially interesting future extension of the project would be to compare
autoregressive prediction with an LSTM-based approach. Moreover, recent work has
demonstrated that combining LSTM and autogressive models can yield state-of-the-art
results in time-series prediction tasks [Lai+17], which could be another possible future
direction.

Another interesting direction would be to extend the DP agent with function approx-
imation to embrace the cases where computational cost might be too expensive for
the exact DP approach presented in this work. Since we have simplified our problem

26

7 Conclusion

by constraining the inventory and the delivery sizes, we didn’t need to delegate such
approximation functions within this project. However, one might require to have an
approximation for, e.g., the Value function, when the state space gets too large e.g. too
many products and/or high inventory and delivery spaces.

Last but not least, it would be of interest to test the whole system with real data. On
the one hand we could test how well parametric consumer model can be applied to
existing data. On the other hand, we could retrain and test our agents to fulfill real
demand by controlling an actual bakery.

27

Bibliography

[Bel66] R. Bellman. “Dynamic programming.” In: Science 153.3731 (1966), pp. 34–37.

[Ber95] D. P. Bertsekas. Dynamic programming and optimal control. Vol. 1. 2. Athena
scientific Belmont, MA, 1995.

[BSW89] A. G. Barto, R. S. Sutton, and C. Watkins. Learning and sequential decision
making. University of Massachusetts Amherst, MA, 1989.

[Doe16] C. Doersch. “Tutorial on variational autoencoders.” In: arXiv preprint arXiv:
1606.05908 (2016).

[ER98] I. Erev and A. E. Roth. “Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria.” In:
American economic review (1998), pp. 848–881.

[GG18] S. Gamrian and Y. Goldberg. “Transfer Learning for Related Reinforcement
Learning Tasks via Image-to-Image Translation.” In: CoRR abs/1806.07377
(2018). arXiv: 1806.07377.

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.
1997.9.8.1735.

[Kag] Kaggle. Takeaway Food Orders. kaggle.com. Accessed: 2020-02-03.

[Kar+17] F. Karim, S. Majumdar, H. Darabi, and S. Chen. “LSTM fully convolutional
networks for time series classification.” In: IEEE access 6 (2017), pp. 1662–
1669.

[KBP13] J. Kober, J. A. Bagnell, and J. Peters. “Reinforcement learning in robotics:
A survey.” In: The International Journal of Robotics Research 32.11 (2013),
pp. 1238–1274.

[Lai+17] G. Lai, W. Chang, Y. Yang, and H. Liu. “Modeling Long- and Short-Term
Temporal Patterns with Deep Neural Networks.” In: CoRR abs/1703.07015
(2017). arXiv: 1703.07015.

[Lil+15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. 2015. arXiv:
1509.02971 [cs.LG].

28

http://arxiv.org/abs/1806.07377
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1703.07015
http://arxiv.org/abs/1509.02971

Bibliography

[LK01] S. M. LaValle and J. J. Kuffner Jr. “Randomized kinodynamic planning.” In:
The international journal of robotics research 20.5 (2001), pp. 378–400.

[Mal+15] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. “Long short term memory
networks for anomaly detection in time series.” In: Proceedings. Vol. 89.
Presses universitaires de Louvain. 2015.

[Mni+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. “Playing atari with deep reinforcement learning.” In:
arXiv preprint arXiv:1312.5602 (2013).

[S+98] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning. Vol. 135.
MIT press Cambridge, 1998.

[SB87] R. S. Sutton and A. G. Barto. “A temporal-difference model of classical
conditioning.” In: Proceedings of the ninth annual conference of the cognitive
science society. Seattle, WA. 1987, pp. 355–378.

[SOL18] S. Sohn, J. Oh, and H. Lee. “Multitask Reinforcement Learning for Zero-
shot Generalization with Subtask Dependencies.” In: CoRR abs/1807.07665
(2018). arXiv: 1807.07665.

[Tob+17] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. “Domain
randomization for transferring deep neural networks from simulation to
the real world.” In: 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS). IEEE. 2017, pp. 23–30.

[TS10] L. Torrey and J. Shavlik. “Transfer learning.” In: Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques.
IGI Global, 2010, pp. 242–264.

29

http://arxiv.org/abs/1807.07665

	Contents
	Introduction
	Theory
	Sequential Decision Making
	Domain Transfer

	Reinforcement Learning Environment
	OpenAI Gym
	Precibake Environment

	Consumer Model
	Public Data
	Synthetic Data

	Agents
	Baseline
	Deep Deterministic Policy Gradient (DDPG)
	Constraint Optimization with Demand Prediction

	Results & Discussion
	Training
	Metric Benchmark

	Conclusion
	Bibliography

