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Abstract

Data migration is a multifaceted and labor-intensive endeavor undertaken by companies in
transitional periods whose operations require large amounts of data. The process involves
a number of steps including the extraction, transformation, and transfer of data from one
system to another. In recent years, the rise of artificial intelligence, particularly large
language models (LLM), has allowed for the potential of large-scale automation of these
processes, leading to increases in both efficiency and precision. In this project, the team
was tasked by msg-life central europe gmbh with automating the transformation process
with the use of transformer-based LLMs.

To this end, a large-scale literature review was conducted examining a variety of these
models to gauge their relative performance and to assess their applicability to the project,
both in terms of their design and their feasibility for implementation. The models were
divided into baseline models and state-of-the-art models. Parallel to this process, the data
provided by msg-life was examined and pre-processed in order to increase its usability by
eliminating irregularities and standardizing aspects including language and code. A final
selection of models was achieved by conducting a zero-shot comparison of the models
examined in the literature review using the pre-processed data.

After identifying the most suitable models, several rounds of fine-tuning were con-
ducted on the supplied GPU server. CodeT5, CodeGen, PolyCoder, and InCoder, all
pre-trained LLMs, were downloaded and trained in multiple rounds on a subset of the
pre-processed data. Their performances were assessed using a number of metrics, includ-
ing but not limited to CodeBERTScore, METEOR, and ChrF, allowing for a systematic
comparison between different rounds of training as well as relatively between models. Ad-
ditionally, the models were trained on various versions of the dataset, which was enhanced
in multiple rounds of processing.

Following the completion of the training and evaluation of the models, the results
were examined and a clear divergence in performance emerged. Both the baseline model,
CodeT5, and a subset of the SotA models, CodeGen and PolyCoder, delivered excellent
results deemed very promising for the task of automating data migration. On the other
hand, InCoder delivered subpar results, excluding it from consideration and prompting
a discussion of the underlying reasons. In the end, PolyCoder was selected as the most
suitable model for the task of C++ code generation in the context of data migration,
due to its superior performance as well as its feasibility for large-scale implementation.
A number of improvements to the fine-tuning process which would potentially lead to
enhanced results are discussed as suggestions for future work.
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1 Introduction

In the following sections, we give a formal statement of the problem and a brief overview
of the project objectives. Thereafter, we discuss existing potential solutions in the form
of current state of the art (SotA) code generation models, describing their basic features
and using available data for a basic comparison between them.

1.1 Problem Definition and Project Objectives

Data migration is a complex process conducted by bodies, often governments or private
companies, whose operations rely heavily on large amounts of data. Typically, the data
migration problem consists of an initial and final data configuration as the input and an
efficient method of transferring it between configurations as the output (Anderson 2010).
In particular, the process can be broken down into the selection, preparation, extraction,
transformation and permanent transfer of data from one repository to another (Morris
2012). This project focused on the transformation aspect of the data migration process
in the context of msg-life, a company focusing on software for life insurance enterprises.

Given the extensive scale of data required for insurance companies to manage individ-
ual profiles and create elaborate, complex models for insurance-related phenomena, the
migration of said data is labor-intensive and time consuming. As such, msg-life is often
tasked with automating the process to enhance both the efficiency and accuracy of the
procedure. The recent rise of artificial intelligence has provided software engineers with an
opportunity to fully automate this process in a way that is independent of the individual
task at hand, due to the ability of large language models (LLM) to learn transformation
rules and other details specific to particular cases. The goal of the project was thus to
implement such a process with the use of transformer-based LLMs with the potential of
significantly improving the efficiency of the data migration process as a whole.

The central objective of the project was to produce a LLM capable of producing C++

code from natural language (NL) text and pseudocode such that the transformation step
of the data migration process could be fully automated. This task was divided into two
secondary points. First and foremost, the team was tasked with identifying the most
promising models through a systematic comparison. To this end, one baseline model and
a variety of SotA models used for code generation were researched, before a subset of
them was implemented. To compare their performances, inference was conducted and
the results were evaluated using a set of diverse, yet appropriate metrics. Secondly, in
order to insure the viability of these models as solutions to the given problem, the best-
performing models were fine-tuned using data supplied by msg-life, drastically enhancing
the performance of some. The outcome of the project takes the form of a single, optimized
LLM capable of producing C++ code from NL prompts to greatly improve the efficiency
of the transformation step, as well as the data migration process as a whole.

1.2 Existing SotA Methods

While examples of transformer-based approaches to data migration appear to be entirely
nonexistent in the sphere of published work, a large number of models designed for the
task of code generation based on NL prompts or descriptions have emerged in the last five
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years. By treating code as a language sequence, neural sequential architectures, including
transformers, can be utilized for the task of program synthesis (Zheng et al. 2023). The
ability to scrape larger and larger amounts of data in the form of text-code pairs means
larger training sets along with the general, rapid development of the field of LLMs has led
to increasingly impressive results in the area of code generation. Earlier models include
CodeBERT (Z. Feng et al. 2020) and CodeT5 (Kusupati and Ailavarapu 2022), which have
since given way to superior models, in terms of relative performance, including CodeGen
(Nijkamp et al. 2023), CodeGeeX (Zheng et al. 2023), PolyCoder (Xu et al. 2022), and
InCoder (Fried et al. 2023). These models are currently considered SotA models in the
task of code generation and are characterized by fairly similar architectures. We give
a brief overview of these models, highlighting their similarities, before discussing their
relative performances including comparisons with older models.

CodeGen is set of autoregressive language models developed by Salesforce for the
task of code generation. These models vary in size from 350M to 16B parameters. The
greatest contribution of CodeGen, on which the success of the model relies, is a multi-
turn approach, which effectively breaks lengthy, complex specifications into subprograms,
allowing the model to generate higher quality results for smaller portion of the input
before joining them back together. The CodeGen architecture itself consists of standard
transformer decoder with left-to-right causal masking (Nijkamp et al. 2023). Of similar
scale, CodeGeeX is a 13B parameter code synthesis model, pre-trained on 23 programming
languages, including C++. Just as with the CodeGen models, CodeGeeX was designed
with a GPT-style architecture, namely as decoder-only autoregressive model (Zheng et al.
2023).

PolyCoder, another multilingual model with 2.7B parameters, is again designed with
a GPT-style architecture and trained on over 249GB of data on 12 different program-
ming languages. This model shows particular promise in the generation of C++ code,
outperforming the largest language models in this task at the time of publication in
2022. PolyCoder was able to achieve lower perplexity than the rest of the models and
seemed particularly great in C++ and C generation which makes it a good candidate for
our project. Finally, InCoder, released by Facebook in 2022, is a set of 1.3B- and 6.7B-
parameter code synthesis and infilling models. Unlike the previously discussed models,
InCoder’s architecture is based on the dense model architectures described in (Artetxe
et al. 2021), allowing it to perform both the code synthesis and infilling tasks with excep-
tional results. The table below summarizes the performance of each of these models (Xu
et al. 2022; Zheng et al. 2023).

While these models represent a subset of the current SotA models available for the
task of code generation, they are not necessarily the ones implemented in the project.
This is largely due to the massive amount of memory required to download and train
these models, which in most cases exceeded the limitations of the hardware available. As
such, versions of CodeGen, PolyCoder, and InCoder with fewer parameters were selected.
Additionally, it is important to note that the models discussed here are open-source, in
contrast to other high-performing SotA LLMs used exclusively in private-sector settings,
presenting another hurdle and selection criterion. Prior to fine-tuning the models that
did fulfill the selection criteria, the data received from msg-life was cleaned and enhanced
to ensure the best possible performance.
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Metric CodeGen (16.1B) CodeGeeX (13.6B) PolyCoder (2.7B) InCoder (6.7B)

pass @1 16.73 % 18.40 % 5.59 % 11.33 %
pass @10 32.09 % 33.29 % 9.84 % 20.25 %
pass @100 54.39 % 54.76 % 17.68 % 38.48 %

Table 1: A summary of the performances of a selection of the SotA models CodeGen,
CodeGeeX, PolyCoder, and InCoder as assessed by the pass @ k metric. The pass @ k
metric, where k P t1, 10, 100u is a measure of functional correctness in which test cases
are generated and models are evaluated based on how many of these test cases are solved.
More specifically, k pieces of code are generated per problem, and the total fraction of
solved cases becomes the output of the metric (M. Chen et al. 2021). In evaluating the
results of the models chosen for the project itself, a different set of metrics was used, as
the pass @k metric was not compatible with all of them.

2 Data

The structure and quality of the data is essential for the success of any deep learning
project. We encountered numerous challenges in training models due to the unique char-
acteristics of our data. Firstly, the amount of data was limited and often of low-quality
or duplicate. Furthermore, the data was bilingual, with variables in the implementations
often referencing tables or attributes from a database. Complicating matters further,
msg-life uses non-standard C++ coding conventions through custom variables and func-
tions. Before delving into how we overcame these challenges, we will start with a brief
overview of the data structure.

2.1 Data Description

The most important elements of our data are the description, transformation rule, stan-
dard code, and tree code. Table 2 showcases two representative examples of the data.
To better understand each element of the data, we provide detailed descriptions:

• Description: The description offers a broad overview of the data’s context but
abstains from going into specific implementation details.

• Transformation Rule: The transformation rule comprises pseudocode and/or a
natural language description of the implementation. The transformation rule is
a critical resource for our model, providing most of the necessary information for
generating the implementations.

• Standard Code: The standard code is a high-level implementation of the trans-
formation rule. We call it high-level because it often includes auxiliary variables
referring to specific locations in the database, where lower-level code resides.

• Tree Code: The tree code is a lower-level and typically more detailed implementa-
tion compared to the standard code. It is derived by resolving the auxiliary variables
present in the standard code and as such, it tends to be longer and more complex.
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Description
Transformation

Rule
Standard Code Tree Code

Type of
Indexation (e.g.
premium)

If POL ą 0
Then 2 Else 0

erg =

vtg.dynid;

if(vtg.qt1 pol.pol > 0) {
erg = 2;

}
else {

erg = 0;

}
The field lvId
identifies the
contract to
which this row
belongs.

lv.lvid strcpy(erg,

vtg.lvid);

long long lvid;

wurzel ptr -> lvidint++;

lvid =

wurzel ptr->lvidint;

sprintf(erg,"%lld",lvid);

Table 2: Two illustrative examples of the main data elements. The ’Description’ provides
an abstract overview of the data context. The ’Transformation Rule’ describes how to
implement the code via pseudocode or natural language. The ’Standard Code’ and ’Tree
Code’ offer high-level and low-level C++ implementations respectively.”

Both standard code and tree code are written in C++, but additionally feature special
variables we will cover in Section 2.3.2.

2.2 Data Preprocessing

We built a preprocessing pipeline to ensure the data’s quality and usability. This included
cleaning the data, dealing with bilinguality, and picking which of the two implementations
we wanted our models to generate.

2.2.1 Data Cleaning

The first stage of our data preprocessing involved cleaning the dataset. This included
discarding rows where either no implementation was available or no transformation rule
existed, since such rows do not provide adequate information to construct a high-quality
input-output pair of data. We also eliminated duplicate rows, i.e. rows with both identical
transformation rules and descriptions. Furthermore, we removed comments present in the
transformation rules and implementations, because the comments were almost exclusively
unnecessary clutter that could confound the code generation model. Also problematic
were data rows with transformation rules that had no connection at all to the implemen-
tations. To mitigate the worst cases of this, we chose to remove transformation rules with
lengths that vastly exceeded the lengths of both of the implementations.

2.2.2 Handling Bilingual Data

The bilingual nature of our dataset, encompassing both German and English data, posed
a unique challenge to us. All data rows consisted of a German description, an English
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description, and English transformation rules. The only exception were the German trans-
formation rules from one of the German datasets.
Given the overlapping information in the descriptions, we chose to use only one of them to
avoid redundancy. As a rule, we favored the German descriptions due to their tendency to
be more detailed and informative. We then translated these descriptions into English us-
ing a German-to-English translation model developed by Helsinki-NLP (Tiedemann and
Thottingal 2020). In cases where the German description was not available, we directly
used the English description.
The translation of the German transformation rules, however, necessitated a different ap-
proach. Due to the unusual formatting and pseudocode found in these rules, we encoun-
tered occasional difficulties with the translation model. To circumvent this, we leveraged
DeepL (DeepL 2023) for translating the German transformation rules, which proved more
robust and reliable.

2.2.3 Identifying Target Code

Our dataset contained two types of implementations: the standard code and the tree
code. Although they often matched, in cases where they did not, the transformation rule
clearly referred to only a single one of them (see Table 2). We needed to identify this
”correct” implementation so that we could use it as the target code, i.e. the output for
the code generation.
The time needed for manual annotation was too immense given the project’s time con-
straints, hence our first approach to solving this problem was to leverage the power of lan-
guage models for automation. The most promising model we tried is Falcon-7B-Instruct
(Penedo et al. 2023), a 7B parameters causal decoder-only model based on Falcon-7B
and fine-tuned on a mixture of chat/instruct datasets. We posed the choice between the
two implementations as a multiple-choice question and gave the model the instruction to
chose the implementation that matched the transformation rule best. While this approach
offered moderate success and enhanced the baseline of always selecting the tree code, it
was ultimately not reliable enough, resulting in frequent failures. We suspect the reasons
for failure to be a combination of the unusual task, unique code, and the limited ability
of current open-source language models. On the other hand, we suspect that models with
ability of InstructGPT (Ouyang et al. 2022) could have easily solved this problem.
We ended up deciding between the two implementations using a series of heuristics, which
were developed by identifying patterns and trends within the data. For a small percentage
of particularly challenging cases, we employed manual annotation. Throughout this pro-
cess, we also identified and removed some data where neither implementation accurately
fit the transformation rule, further refining our dataset.

2.3 Problem Tractability

To increase the performance of our code generation model, we employed various strate-
gies to improve the tractability of generating the target code from just the information
contained in the description and transformation rule. Notably, these included enriching
the input data and simplifying the target code.
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2.3.1 Augmenting Transformation Rules with Database Variables

The variables in the implementation often refer to specific tables or attributes in the
database, and a key factor affecting tractability is the fact that such variables are often
not specified in the transformation rule. For example, the tree code in the first row
of Table 2 contains the variable vtg.qt1 pol, which is integral to the implementation,
yet specified in neither description nor transformation rule. The lack of specification for
such variables is problematic, since such variables act as database keys that have to be
generated exactly, rather than variable identifiers that can be chosen freely.
To address this issue, we chose to extract variables that reference the database and add
them to the input data. In the case of our data, these variables coincide with the set of
variables that are used prior to their explicit definition (similar to environment variables),
which we identified using a series of regular expressions. We did not extract variables that
are defined in the code, since their identifiers are arbitrary, e.g. naming an index variable
i or j.
The extracted variables were then appended to the end of the transformation rule, labeled
with a marker. To illustrate, for the tree code in the first row of Table 2 we would add
"Env: vtg.qt1 pol, pol" to the end of the transformation rule. Note that vtg has a
special meaning, which is why we do not add it as a separate variable (more in Section
2.3.2). Our inspiration for this approach came from the input formatting used in CodeT5
during its fine-tuning for code synthesis (B. Chen et al. 2023), wherein environment
variables used in a function are appended to the end of the natural language description
input.
At this point, we want to note that even after adding missing variables to the input,
the information in the input was sometimes still insufficient for the generation of the
target code. However, addressing this underspecification is not straightforward and would
require a comprehensive overhaul of the transformation rules. We decided against such
an overhaul because of time constraints and the intent to maintain the structure of the
transformation rules, to minimize inconvenience for the msg-life employees creating them.

2.3.2 Code Simplification

The target code in our data is mostly written in standard C++. However, a distinctive
characteristic is the inclusion of special functions and variables, so-called MigSys vari-
ables, leading to something we will refer to as msg-flavored C++.
These added variables present a unique challenge as they are not part of the pre-training
data fed into our models. Consequently, our models would have to learn the meaning of
MigSys variables from scratch during the fine-tuning phase. To better harness the capa-
bilities of our pre-trained models, we adopted a different strategy. During the training
process, we transformed the msg-flavored code to follow common coding conventions, e.g.
by replacing variable names or the way a function is called. This adaptation increases
the utility of pre-training and allows the model to process and learn these functions more
efficiently. Crucially, the code simplifications are not permanent and can be reverted.
This ensures that after the code generation phase, we can convert the code back to its
original msg-flavored C++ format, thereby maintaining fidelity to the original code.
To offer a clearer understanding of the code simplifications, Table 3 presents a compre-
hensive overview of all the code simplifications we employed.



3 MODEL SELECTION AND PERFORMANCE METRICS 10

MigSys
Variable

Description/Meaning
Original
Code

Simplified Code

vtg German: Vertrag fl policy, pointer to the
current policy, the database root table

vtg.Var policy.Var

akt German: aktuell fl current, pointer to the
current table which the following variable
belongs to

akt.Var current.Var

anz German: Anzahl fl cardinality, returns
the cardinality, i.e. the number of in-
stances in the database, of the variable it
precedes

anz Var Var.size()

idx Returns the database index of the variable
it precedes

idx Var Var.index()

erg German: Ergebnis fl result, variable to
which the result is assigned

erg =

0

result = 0

Fehler German: Fehler fl Error Fehler() throw

std::runtime error()

Table 3: Simplifying the code for improved model training by transforming MigSys vari-
ables to standard C++ syntax. The column ’MigSys Variable’ lists the original variables
and functions in the msg-flavored C++ code. ’Description/Meaning’ provides translations
from German and describes the functionality of each variable or function. The ’Original
Code’ and ’Simplified Code’ columns show how the MigSys variables are simplified in the
code.

3 Model Selection and Performance Metrics

In the following sections, we discuss both the models selected for the project as well as
the metrics used to compare them. We begin with an extensive discussion of each of
the models, complete with argumentation for selection, before delving into the individual
evaluation metrics deemed appropriate for the project as well as a discussion of their
relative applicability.

3.1 Selected Models

In a preliminary literature review, a number of baseline models, including CodeBERT
(Z. Feng et al. 2020) and CodeT5 (Wang et al. 2021) along with graph-based transformer
models, such as TreeGen (Sun et al. 2020), and SoTA models, including CodeGen (Ni-
jkamp et al. 2023) and InCoder (Fried et al. 2023), were reviewed and evaluated based
on two criteria. Firstly, each of the models’ performances was taken into account as mea-
sured by a variety of metrics (see the next section for details), such as BLEU and ROUGE
scores, both in absolute and relative terms. While metrics were not consistent across lit-
erature, meaning different papers often chose differing sets of metrics and only compared
their models to a subset of the other ones under consideration, the team was able to draw
relatively systematic conclusions related to performance in the code-generation task based
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on available comparisons and evaluations. Secondly, the feasibility of implementation was
examined for each of the models at hand. While some models performed exceptionally
well, they were often either too large in size for the hardware available to the project or
not open source, such as CodeGeeX (Zheng et al. 2023). Such models had to be excluded
from consideration, leaving a handful for the team to choose from. Ultimately, CodeT5
was chosen as the baseline and CodeGen, PolyCoder (Xu et al. 2022), and InCoder were
chosen as code-generation models to be implemented fully. In the following paragraphs,
we give a brief overview of the specifics of each model as well as the rationale behind
choosing it.

3.1.1 CodeT5

The existing methods for NLP pre-training on source code typically treat the code as a
sequence of tokens, similar to natural language. However, this approach overlooks sig-
nificant structural information, which is essential for a comprehensive understanding of
its semantics. To address this issue, the authors propose CodeT5 (Wang et al. 2021), an
encoder-decoder model that incorporates the token type information in code. CodeT5
aims to capture more code-specific features by utilizing token type information, partic-
ularly identifiers such as function names and variables. Identifiers are considered one of
the most programming language-agnostic features and retain crucial code semantics. The
pre-training phase of CodeT5 (ibid.) involves using both programming language-only and
NL-programming-language input. The model is optimized using three loss functions with
an equal probability: masked span prediction, identifier tagging, and masked identifier
prediction. Although numerous recent works have built upon CodeT5, the performance
gap between them is often minimal compared to the more significant gap between Code-
BERT and CodeT5. As a result, CodeT5 is frequently employed as a benchmark model
to assess the effectiveness of various models and approaches. Consequently, we also utilize
CodeT5 as our baseline model to evaluate the efficacy of our proposed solutions.

3.1.2 InCoder

InCoder (Fried et al. 2023) is a generative model for code infilling and synthesis that is
trained on a large corpus of permissively licensed code. InCoder is the first large generative
code model that is able to infill arbitrary regions of code, making it capable of performing
program synthesis and editing tasks such as type inference, comment generation, and vari-
able renaming. The model is decoder-only and causally-masked, which enables it to infill
arbitrary spans of text. By conditioning on bidirectional context, InCoder significantly
improves performance on these tasks, while still performing comparably on standard pro-
gram synthesis benchmarks compared to left-to-right only models that were pre-trained
at a similar scale. InCoder can handle a variety of tasks including type inference, com-
ment generation, variable re-naming, program synthesis, and code infilling. The model
architecture is a decoder-only causally-masked language model, similar to GPT.

InCoder is trained on a large corpus of code, which allows it to learn patterns and
structures in code that are common across different programming languages and domains.
This makes it more robust and adaptable to different coding tasks. Furthermore, the abil-
ity of InCoder to condition on bidirectional context substantially improves its performance
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on these tasks by allowing it to take into account both left and right contexts when gener-
ating code. This makes the generated code more accurate and contextually appropriate.
As such, InCoder is considered a viable model for implementation for the task at hand.

3.1.3 CodeGen

CodeGen (Nijkamp et al. 2023) is a collection of large language models that have been
trained on both NL and programming language data. The researchers behind CodeGen
have investigated a multi-step paradigm for program synthesis, in which a program is
divided into multiple prompts for sub-problems. This approach leads to more accurate
program synthesis, reduces the search space, and allows for better specification of user
intent. To test their models, a Multi Turn Programming benchmark (MTPB) was con-
structed, consisting of 115 problem sets with multi-turn prompts. CodeGen was evaluated
on this benchmark using pass rate on expert-written test cases. The results showed that
CodeGen is competitive with the previous state-of-the-art models in zero-shot Python
code generation on HumanEval. The model architecture of CodeGen (ibid.) involves au-
toregressive transformers with the regular next-token prediction language modeling as the
learning objective. Models of different sizes (350M, 2.7B, 6.1B, and 16.1B parameters)
were created to compare with other models. Therefore, CodeGen is a promising model
due to its multi-step program synthesis paradigm and large parameter size of up to 16.1
billion, which results in superior performance in generating complex and sophisticated
code.

3.1.4 PolyCoder

PolyCoder (Xu et al. 2022) is a GPT-based code generation model that was produced
by Carnegie Mellon University (CMU), supporting code generation for over 12 program-
ming languages including C++. The data with which PolyCoder has been trained exhibits
greater focus on C++ and C, in which it had much lower perplexity compared to other
code generation models, making it more suitable for our particular project. The training
data was gathered from Github’s largest repositories initially covering over 600 GB of
data, before cleaning and deduplication. The data was fed into a GPT-2 tokenizer on a
randomized shuffle of all the different programming languages. For training, they chose
GPT-2 as the model architecture with a different bucket of model complexities from 160M
parameters model to a 0.4B parameters to a 2.7B parameters model. The 2.7B model is
a 32 layer, 2560-dimensional Transformer model with a maximal context window of 2048
tokens, trained with a batch size of 128 sequences (262K tokens). The 0.4B-parameter
model is a 24-layer, 1024-dimensional variant trained on a context window with between
1024 and 2048 tokens. PolyCoder is trained in a causal way to perform next-token predic-
tion based on concatenation of previous output and input pairs. Due to the large number
of hyperparameters and lack of time, they could not perform a hyperparameter search,
but adjusted the learning rate and the total number of steps up to 150k steps. As already
mentioned in the introduction section, despite having lower performance on the pass@k
metric compared with the other models, PolyCoder displayed superior performance as
compared to the rest of the SoTA models regarding C++ generation with much lower
perplexity. Additionally, the fact that it is open source allowed us to fine-tune PolyCoder
as a SoTA model for C++ generation.
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3.2 Metrics for Model Performance Comparison

In order to evaluate the performance of the selected models in the context of the code-
generation task, both in absolute and relative terms, the following metrics were reviewed
and chosen based on their applicability to our task. Our selection criteria correspond to
the general criteria for machine-translation-metric quality, namely consistency, reliability,
and generality, in particular how those criteria relate to text-to-code translation (Banerjee
and Lavie 2005). We conduct an analysis of each metric and draw conclusions about its
relevancy to the project based on demonstrated performance relative to other metrics,
assessed suitability for the code-generation task at hand, and feasibility of implementation.
In the following sections, the ROUGE, BLEU, METEOR, chrF, and CodeBERTScore
metrics are discussed in detail.

3.2.1 ROUGE Scores

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (C.-Y. Lin 2004) is a set
of metrics used to evaluate the quality of machine translation outputs. It provides a
quantitative measure of the overlap between the generated output and reference ground
truth. ROUGE scores are computed based on precision, recall, and F1 score, which are
standard metrics in information retrieval and natural language processing tasks. Precision
measures the proportion of generated outputs relevant to references, recall measures the
proportion of relevant information captured by the generated code, and F1 score is the
harmonic mean of precision and recall. ROUGE scores are commonly computed at various
levels, including ROUGE-1, ROUGE-2, and ROUGE-L.

3.2.2 BLEU Score

The BiLingual Evaluation Understudy, or BLEU score, was first introduced by (Papineni
et al. 2002) as a metric for evaluating machine translation performation. The BLEU score
focuses on time and computational efficiency, language independence, and high correla-
tion with human judgement. The metric relies on two elements, namely a ”translation
closeness” metric, which measures how close the given translation is to a human one, and
a corpus of existing high-quality translations. The BLEU score computes the geomet-
ric mean of a test corpus’ modified n´gram precision, calculated by comparing n´gram
matches between candidate and reference translations, and multiplies this with a sen-
tence brevity penalty penalizing translations which do not match reference translations in
length. It is important to note that this approach is position-independent and therefore
allows multiple translations of the same quality but differing word or code-snippet-orders
to achieve similar scores. While BLEU metric has performed well empirically for text-to-
text translation and has been used widely in the evaluation of code generation models, it
is unclear whether or not the metric is well-suited to the latter task. In fact it has been
shown that other metrics, such as METEOR or CHrF are more closely related to human
judgement when it comes to code generation quality than BLEU (Evtikhiev et al. 2023).
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3.2.3 METEOR

The Metric for Evaluation of Translation with Explicit ORdering, or METEOR, is a
metric initially proposed by Banerjee and Lavie (Banerjee and Lavie 2005) based on a
generalized version of unigram matching, similar to BLEU. The METEOR score itself is
computed based on a number of factors including unigram precision, unigram recall, and
fragmentation, the last of which measures the accuracy of the word order of the candidate
translation relative to the given reference. If multiple references are given for one input,
the translation is scored against each of these and the highest score is reported.

In the code generation task, word ordering is particularly useful in assessing the quality
of an output since code syntax, including ordering, is significantly more strict than NL
syntax. For example, the definition or initialization of a variable must appear earlier in
a piece of code than its use and the order in which parameters are passed to a method
is often highly relevant. For this reason, among others, METEOR appears better-suited
as a metric for measuring the quality of output in a text-to-code scenario than BLEU.
Furthermore, METEOR takes into account recall, unlike BLEU, making it a more suitable
candidate to assess machine translation in general.

3.2.4 ChrF

The character n´gram F-score, or ChrF, is a metric for the automatic evaluation of
machine translation output first proposed by Popovic (Popović 2015) in 2015. F-scores
based on character n´grams have been used widely as instrumental parts of more complex
metrics, but Popovic argues that they qualify as high-quality standalone metrics based on
their ability to outperform other scores, such as BLEU, while retaining a simplicity not
experienced by their counterparts. In a series of tests comparing chrF score accuracy with
other methods, including BLEU, TER, METEOR, it was shown that the chrF metrics
outperformed its counterparts in almost all scenarios. Due to both its simplicity as well
as its demonstrated superiority relative to other metrics, as discussed in (Evtikhiev et al.
2023), the chrF score is a front-runner for the project at hand.

3.2.5 CodeBERTScore

Building on BERTScore, CodeBERTScore is a code-evaluation metric which encodes both
the generated tokens, as BERTScore does, and the programmatic context of the gener-
ated code. Furthermore, it uses the contextual encodings of pre-trained LLMs to calculate
a soft similarity score between the tokens in the generated code and the corresponding
reference-code tokens. Given a candidate and reference pair, CodeBERTScore returns an
array of four distinct measures, namely precision, recall, F1 and F3. Experiments con-
ducted using CodeBERTScore for the code generation task across four different languages
found that CodeBERTScore reflected both human preference and functional correctness
more accurately than other metrics, including BLEU, ROUGE-1, ROUGE-2, ROUGE-L,
METEOR, and chrF, particularly in C++ tasks (Zhou et al. 2023).



4 METHODOLOGY 15

3.2.6 Assessment of Metrics

An evaluation of the above metrics reveals a number of advantages and drawbacks to each.
A study of six metrics (BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY)
conducted in the context of the task of code-generation based on two different Python
datasets, CoNaLa and Hearthstone, concluded that METEOR and chrF were best-suited
to the task (Evtikhiev et al. 2023). This leads us to conclude that of the non-BLEU,
NL-based metrics, METEOR and chrF are front-runners for implementation. Moreover,
it is important to examine the task for which the metrics were conceived. ROUGE scores
were designed for the evaluation of text summarization. BLEU, METEOR, and ChrF
exist for the purpose of quantifying the performance of machine translation in the context
of NL-NL conversion. As such, there are inherent characteristics of the NL-code task that
these metrics simply do not take into account, such as code syntax and executibility of the
code. As such, CodeBERTScore, which produces scores based on these aspects, among
others, is significantly better-suited to the task at hand, making it by far the best metric
for this project. While other code-generation-related scores exist, such as CodeBLEU
(Ren et al. 2020), many do not support the evaluation of C++ code and must therefore
be excluded. As such, the METEOR, ChrF, and CodeBLEU scores are considered in the
evaluation of the performance of our models, but ROUGE and BLEU scores are added
for completeness.

4 Methodology

In this section, we present the methodology employed in our research project. We begin
by providing a detailed account of the fine-tuning process, followed by the procedures
utilized for conducting inference on our models. Furthermore, we analyze the difficulty
levels of the target code and perform a comprehensive comparison across our dataset.

4.1 Fine-tuning Process

After selecting pre-trained models for the code generation task, fine-tuning them with the
given dataset is crucial to improving their performance. This process involves training the
models with task-specific data to adjust them to the given task. Pre-training uses large
datasets with diverse instances, teaching general language representations and patterns.
However, pre-trained models may not perform as well when used directly on our dataset,
especially if the dataset does not follow typical standards of code generation those models
were trained using. The fine-tuning process starts by initializing pre-trained models as the
underlying architecture. Subsequently, the dataset is prepared using the tokenizer, which
generates input IDs and attention masks. For the CodeT5 model specifically, supervised
labels are provided in order to calculate the loss. The output, i.e. target code, is then
passed to the tokenizer, which generates our labels. The dataset is then mapped with the
tokenization function, divided into batches, and loaded into a data loader. These steps
are essential for processing the data before commencing the iterative fine-tuning process.

The fine-tuning process requires careful adjustment of hyperparameters to achieve the
best performance. Hyperparameters are values that are set before training the model
and and tuning them successfully relies heavily on finding the correct balance and values.
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For example, the learning rate is a crucial hyperparameter that determines the step size
during parameter updates. Choosing an appropriate learning rate is essential to ensuring
that the model converges to an optimal solution without overshooting or getting stuck
in a sub-optimal state. A learning rate that is too high may result in unstable training
or missing the optimal solution, while a learning rate that is too low can lead to slow
convergence or getting trapped in a local minimum. Further, the batch size refers to
the number of training examples processed in each iteration. It affects the trade-off
between computational efficiency and gradient accuracy. A larger batch size can expedite
the training process, but may require more memory. Conversely, a smaller batch size
consumes less memory but may introduce more noise in the gradient estimation. The size
of the available GPU restricted the batch size to some degree, but we were still able to
use up to 16, which was suitable given our dataset’s small size. Another parameter worth
consideration is the number of training iterations, often referred to as epochs. A higher
number of iterations can allow the model to refine its parameters further, potentially
improving performance. However, training for too many epochs may risk over-fitting, a
phenomenon in which the model memorizes the training data instead of learning general
patterns. Striking the right balance requires monitoring the model’s performance on a
validation set and stopping training when further improvement plateaus. For this, it is
imperative to utilize early stopping method.

In order to choose optimal hyperparameters, we have referred back to the papers of
our selected models, namely (Z. Feng et al. 2020), (Fried et al. 2023), (Nijkamp et al.
2023), and (Xu et al. 2022) and followed the authors’ recommendations regarding which
hyperparameters can be used to fine-tune our models efficiently, including batch size,
learning rate, and number of epochs. After selecting those parameters we initialize a
trainer module, and we can use multiple options such as utilizing Hugging Face Trainer
framework or utilizing PyTorch modules. Then we provide this module with our training
dataset, as well as the validation dataset. Further, we specify the optimizers used in the
training, such as AdamW optimizer (Loshchilov and Hutter 2019) and other options such
as logging parameters and schedulers. After the fine-tuning process halts, we can then
proceed to evaluate our models using the inference step, which is detailed in the next
section.

4.2 Inference Process

Subsequent to fine-tuning a model, inference is conducted to facilitate an evaluation of its
performance. In order to achieve the best performance, we use the same prompt structure
that the model has been given as input during fine-tuning i.e. the same prompt generation
method. Next, the input is encoded using the tokenizer of the model to create the input
representation required by the fine-tuned model. This involves converting the tokens into
numerical representations, such as token IDs or embeddings. By doing this, the model can
process and interpret the input effectively, preparing it for code generation. Once the input
is encoded, it is fed into the fine-tuned model for code generation. The model processes the
input using its transformer layers, which capture the context and relationships between
the tokens. Based on its learned parameters and the encoded input, the model predicts the
most probable code generation output. After the model predicts the output, the generated
code is decoded back into natural language format. This decoding step involves converting
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the model’s numerical representation of the generated tokens back into the corresponding
textual form using the tokenizer. The decoded output represents the final generated
code based on the provided input prompt. We have created a standardized inference
notebook that carries all the steps mentioned above in a smooth, efficient manner. An
evaluation section was integrated in the notebook to evaluate the results of the inference
step, i.e. to evaluate how similar the code generated is to the target code. This evaluation
section contains several different metrics which each has been researched to form a suitable
comparison between the selected models and the task at hand. Furthermore, the inference
notebook was enhanced with the ability to evaluate each level of difficulty of target code
individually to form a more coherent understanding of the models’ performances. We
elaborate on this in the experiments section.

4.3 Evaluation Across Code Difficulties

One challenge made apparent from early experiments is that the trained models performed
well on easy examples, yet failed in accurately generating more complex code. Generating
easy implementations is not the central goal of the project, since it does not require an
AI solution. To better evaluate how the models perform on different difficulty levels, we
chose to classify the target code into three difficulty levels: easy, medium, and hard. The
difficulty classification is based on the number of lines in the implementation. While in
general this is an imperfect measure of complexity, for our specific dataset, it showed
strong alignment with the assessments given by our team members and supervisors.
The majority of the original dataset falls into the ’easy’ category, constituting 87.33%
(2018 samples), while ’medium’ and ’hard’ categories comprise 6.66% (154 samples) and
6.01% (139 samples) respectively. The high prevalence of ’easy’ samples suggests that our
code generation models may inherently develop a bias towards generating simpler code.
Their effectiveness in accurately generating more complex code could thereby be limited,
as the models might not be adequately trained on enough ’medium’ and ’hard’ examples.
To study this, we compute the evaluation metrics on each difficulty separately in many
of our experiments.

5 Experiments

Our experiments were conducted utilizing the GPU server prepared by msg-life. The
server hosts a Nvidia Quadro RTX 6000 GPU, offering 24GB of VRAM. In the following
sections, we detail the experimental processes and results for each of the selected models.

5.1 The Baseline Model: CodeT5

For our model experiments, we utilized CodeT5 as the baseline model, which means that
we measured the performance of all our other models against this well-established, ro-
bust architecture. This provides us with a reference point to evaluate the effectiveness
and efficiency of the more complex models we tested. Throughout the project, numerous
experiments were conducted with CodeT5, exploring various prompts and assessing the
impact of data improvements. All of the various fine-tuned versions of CodeT5 utilized
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the same training parameters and setup on the GPU. We trained with an early stopping
strategy based on the convergence of the validation loss, ensuring efficient training by halt-
ing the process once the model ceased to show significant improvement. For fine-tuning,
we utilized PyTorch Lightning (Falcon and The PyTorch Lightning team 2019). We have
also utilized the AdamW optimizer (Loshchilov and Hutter 2019) as recommended by the
authors, and specified the learning rate, number of epochs, and warm-up steps as per
the paper (Wang et al. 2021). After each of the models was been fine-tuned, we further
evaluated each of them with our selected metrics where each model took as input the
same prompt structure which it was fine-tuned on.

5.1.1 CodeT5: Experiments

To provide a comprehensive analysis, we begin by focusing on the first two fine-tuned
models. These models were trained using the same dataset, which consisted of initially
pre-processed data without the majority of data transformations mentioned earlier. Ad-
ditionally, this dataset did not include the supplementary dataset that became available
later in the project. The key distinction between these models lies in the input they were
fine-tuned with. The first model, henceforth referred to as Model 1, was fine-tuned us-
ing a model input that solely comprised the specification or transformation rule. On the
other hand, Model 2 was fine-tuned using a prompt derived from both the text description
column and the transformation rule. Model 1 has stopped training after 21 epochs, while
Model 2 has stopped training after only 11 epochs. Moreover, the third CodeT5 model
that was fine-tuned, i.e. Model 3, was fine-tuned using the transformed data. This data
also contains the additional dataset, providing access to more data points to help the
trainer. Model 3 completed fine-tuning in 11 epochs. We note that the data Model 3 was
fine-tuned on had a different ratio for data splits than that of the original pre-processed
data. In other words, the number of training examples were reduced for the transformed
data in order to accommodate a better split with the test and validation data. Hence,
we have further run Model 3 to reach 21 epochs, referencing this model as Model 3.2, to
compensate such a decrease and to allow it to be more comparable with other models.

5.1.2 CodeT5: Results

The first two rows of Table 4 display the evaluation scores obtained from both Model 1 and
Model 2 after their fine-tuning was finalized. The results clearly indicate a significant im-
provement across all metrics for Model 2. Therefore, it can be concluded that for CodeT5,
fine-tuning using a model input prompt constructed from both the text description and
the transformation rule is more optimal. This approach yields better performance and
should be prioritized in further experiments of this model. It is important to note that
during our evaluation of these models, we have indeed seen score improvement for all the
metrics, however, when inspecting the code generated from Model 2, we can see that for
easy target code, the results have been indeed improved. However, this is not the case
with medium or hard levels of difficulty of target code. This assessment will be further
defined as we look into evaluating the different levels of difficulty later in this section.

Furthermore, we can see from Table 4 the results of Model 3 and Model 3.2. These
models utilize the test split of the transformed data which were fine-tuned on. We notice
from the results that Model 3.2 has better results than Model 3. This is implied since



5 EXPERIMENTS 19

R1

(Prec)

R1

(Recall)

R1

(F1)

BLEU

(Prec)

BLEU

score
Meteor ChrF

CB

(Prec)

CB

(Recall)

CB

(F1)

CB

(F3)

Model 1 78.4 73.8 74.1 68.0 86.9 68.4 72.0 90.0 89.0 89.8 89.4

Model 2 81.0 78.0 77.8 75.0 88.0 76.8 79.2 92.0 91.0 92.2 91.0

Model 3 82.5 73.6 73.2 62.6 86.6 70.0 68.7 89.0 87.0 88.0 87.0

Model 3.2 83.8 75.0 74.3 63.8 87.5 71.0 69.8 90.4 87.8 88.7 87.9

Table 4: CodeT5 results, each Model is evaluated with the respective test file of the data
split that it was fine-tuned on. Model 1 is fine-tuned on the original pre-processed data
using the transformation rule only as a prompt, while Model 2 uses the text description as
well. Model 3 was fine-tuned on the most recently transformed and augmented dataset,
and Model 3.2 is the same but extended to more epochs.

Model 3.2 was allowed to fine-tune on a larger number of epochs, therefore capturing
more of the data features. We can also note that the results of Model 3.2 have been
improved across the ROUGE Score precision, however, they are not improved across the
other metrics. We will further attempt to explore this performance difference. However, it
is worthy to say that we have noticed an improvement in the code generated of Model 3.2,
where it is more coherent and consists of much more msg-life flavored variables. Model 3.2
was fine-tuned on a higher-quality data. However, the metric scores have not improved
compared to those of Model 2. Table 5 illustrates the distinction of the metrics scores
relative to the individual difficulty levels for both Models 2 and 3.2. We can deduce from
the results that Model 3.2 has better performance than Model 2 for the target code with
medium level of difficulty, whereas Model 2 seems to be performing better than Model 3.2
for easy difficulty target code. As previously mentioned, Model 2 was fine-tuned using the
original dataset, which consisted of more easier examples compared to the transformed
dataset used for fine-tuning Model 3.2. This accounts for the increased scores specifically
for the easy target code. Referring to Table 5, we observe that Model 3.2 outperforms
Model 2 in all metrics for medium scores, despite both models being trained on a similar
number of examples. This supports the hypothesis that Model 3.2 is capable of better
capturing the dataset’s features and generally performs better. Furthermore, it confirms
that the transformed dataset yields superior results compared to the original dataset.

Target Code
Difficulty

R1
(Prec)

R1
(Recall)

R1
(F1)

BLEU
(Score)

BLEU
(Prec)

Meteor ChrF
CB

(Prec)
CB

(Recall)
CB
(F1)

CB
(F3)

Model 2
Easy 82.9 84.0 82.4 81.6 89.8 83.2 85.4 94.1 93.8 93.8 93.8
Medium 61.6 42.5 45.5 31.8 70.5 40.0 41.2 83.2 80.5 81.8 80.8
Hard 71.3 21.8 29.4 10.4 79.5 14.5 22.6 82.7 71.7 76.65 72.6

Model 3.2
Easy 86.5 87.8 85.8 77.0 89.0 84.0 81.0 92.0 92.0 92.0 92.0
Medium 71.5 53.8 54.9 36.8 77.9 46.1 49.4 87.7 83.0 85.0 83.3
Hard 78.0 19.2 25.5 10.3 85.9 16.0 18.7 81.5 66.2 72.5 67.3

Table 5: CodeT5 Model 2 and Model 3.2 Level of target code difficulties percentage.
Model 2 has exhibited better performance with easy examples, and Model 3.2 has exhibit
better performance with Medium examples.
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Models
R1

(Prec)
R1

(Recall)
R1
(F1)

BLEU
(Score)

BLEU
(Prec)

Meteor ChrF
CB

(Prec)
CB

(Recall)
CB
(F1)

CB
(F3)

Original
Test data

Model 1 78.4 73.8 74.1 68.0 86.9 68.4 72.0 90.0 89.0 89.8 89.4
Model 2 81.0 78.0 77.8 75.0 88.0 76.8 79.2 92.0 91.0 92.2 91.0
Model 3.2 67.0 57.3 59.3 47.0 79.4 68.1 52.9 85.1 81.3 82.0 81.6

New
Test data

Model 1 70.8 57.9 58.5 39.6 77.9 61.3 49.8 81.8 78.0 79.2 78.1
Model 2 75.0 64.6 64.0 51.0 82.3 67.0 58.2 84.7 81.4 82.4 81.5
Model 3.2 83.8 75.0 74.3 63.8 87.5 71.0 69.8 90.4 87.8 88.7 87.9

Table 6: CodeT5, all 3 models tested with the same test split for more comparable
results. New data is the transformed dataset and it contains better data quality. Model
3.2 exhibits the best performance after evaluating on it.

To further understand the performance of Model 2 and Model 3.2, we have tested
all three models on the same test file, in other words, since Model 1 and 2 were using
the original pre-processed data test file and Model 3 was evaluated on new data test file
(transformed and augmented data), we then evaluated all three models on the same test
file. In Table 6 we can see that Model 3.2 exhibits the highest performance for the new
data test file, and Model 2 has the highest performance for the old data test split. This
further affirms our understanding that the newer dataset is indeed richer, cleaner, and
hence the Model fine-tuned on it exhibits the better performance. And puts metrics in a
more comparable context than that of Table 4

5.2 InCoder

A number of experiments were conducted using InCoder. First, inference was conducted
on the test dataset, supplying a baseline performance. Next, after a number of prompt
styles were explored, the model was trained extensively on the training portion of the
dataset and the performance evaluated once again in a subsequent inference step. Finally,
the model was evaluated once again with the data classified by difficulty. These steps and
their corresponding results are detailed in the following sections.

5.2.1 InCoder: Experiments

As mentioned in prior sections, inputs for inference and fine-tuning are identical for con-
sistency purposes. However, identifying an optimal structure for the combination of NL
description and transformation rule to serve as a prompt posed a challenge. A num-
ber of prompt structures were explored, and ultimately two prevailed. Supplying just
the rule performed best and a simple concatenation of rule and NL prompt performed
only slightly inferior. Since the dataset contained points in which the rule element was
blank, the former approach proved less applicable than the latter. Inference was con-
ducted by comparing the output of the pre-trained model, prior to fine-tuning, given the
NL-transformation-rule prompt with the target code using the metrics outlined in the
previous section.

Next, following the splitting of the data, the model was fine-tuned on the training
subset using the HuggingFace Trainer. A batch size of 16 was chosen and the Adam
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optimizer was specified, for which the β1 and β2 values were set to 0.9 and 0.98 as per
the original paper describing the pre-training of InCoder (Fried et al. 2023). The model
was fine-tuned a total of 25 epochs, with inference conducted along the way to monitor
its performance across training stages. The entire training process was conducted on the
GPU and required an excess of 24 hours to complete. Following the completion of the
training, inference was conducted once again in a manner identical to the one outlined
above so as to preserve the consistency of the process. Finally, this process was repeated
with the data which was split into easy, medium, and difficult subsets. The results can
be found in the following section.

5.2.2 InCoder: Results

The results of the inference conducted before, during, and after fine-tuning can be found
in Table 7. At first glance, it is clear that the pre-trained version of InCoder, while
not displaying overwhelmingly strong performance, particularly as compared to the base-
line, still demonstrated potential as a suitable model for the task at hand. However,
surprisingly, the performance of the model dropped noticeably across all metrics after
the first six epochs of fine-tuning and only recovered slightly after the last five epochs.
This counter-intuitive behavior, while not advantageous to the goals of the project, is a
well-documented, though narrowly understood phenomenon. (Kumar et al. 2022) argue
that fine-tuning can distort pre-trained features leading this method to under-perform
relative to other transfer-learning methods, a phenomenon which they argue cannot be
avoided with early stopping. As such, it appears that the pre-trained version of InCoder,
though not ideal, was better-suited for code-generation in the context of the project than
fine-tuned versions. While the results improved slightly after 20 epochs, they did still did
not surpass those of the pre-trained model, leading the team to conclude that the model
did not display enough promise for further training or implementation in the framework
of the project.

R1

(Prec)

R1

(Recall)

R1

(F1)

BLEU

(Prec)

BLEU

score
Meteor ChrF

CB

(Prec)

CB

(Recall)

CB

(F1)

CB

(F3)

Pre-trained 2.89 23.39 2.85 3.79 0.05 3.87 3.95 53.72 64.32 58.08 62.84

2 Epochs 1.76 22.05 2.37 1.84 0.03 3.19 2.55 47.27 61.13 52.61 58.99

6 Epochs 1.76 22.05 2.37 1.84 0.03 3.01 2.55 47.25 61.13 52.60 58.98

20 Epochs 2.18 23.25 2.66 2.22 0.04 3.02 2.88 47.90 61.38 53.07 59.28

25 Epochs 2.16 23.25 2.68 2.32 0.03 3.01 2.89 47.84 61.41 53.05 59.30

Table 7: The results of inference conducted throughout the fine-tuning process of InCoder
shows a clear decrease in performance across all metrics following the first few epochs,
before displaying a slight increase after epoch 20. Even so, the results remain poor relative
to the baseline model, CodeT5.

To further understand the shortcomings of InCoder, inference was conducted on the
segmented data, where data points were classified as easy, medium, or hard cases and the
performance of the model was evaluated within these categories. The results can be found
in Table 8. Interestingly, both the pre-trained and the fully-trained versions of the model
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displayed a clear and staggering increase in performance in harder categories, with the
hard category scoring well above the others in almost every single case. The most reliable
metric, CodeBERTScore, displayed a clear, yet less drastic increase in performance, rela-
tivizing this jump. Even so, the difference in performance is remarkable and can perhaps
be attributed to the increased amount of context available in longer prompts and pieces
of code.

Target Code
Difficulty

R1
(Prec)

R1
(Recall)

R1
(F1)

BLEU
(Score)

BLEU
(Prec)

Meteor ChrF
CB

(Prec)
CB

(Recall)
CB
(F1)

CB
(F3)

Pre-trained
Easy 0.63 23.16 1.21 0.0 1.08 2.34 2.32 46.28 61.57 52.68 59.52

Medium 5.96 29.36 9.30 0.01 6.72 7.12 7.80 59.67 66.96 62.98 66.09
Hard 17.27 28.70 19.90 0.43 21.23 10.41 13.51 65.39 68.89 67.05 68.50

25 Epochs
Easy 0.39 23.20 7.12 0.0 0.62 1.30 1.53 41.12 59.95 48.50 57.16

Medium 3.18 25.53 4.30 0.0 3.11 4.88 4.29 51.03 65.06 56.89 63.17
Hard 19.10 23.90 17.09 1.87 16.62 7.89 9.75 62.17 67.36 64.46 66.72

Table 8: The results of inference conducted on the pre-trained and fine-tuned versions
of InCoder with data separated into easy, medium, and hard data points. Interestingly,
both models exhibit far superior performance in the hard category according to almost
all metrics.

5.3 CodeGen

Due to our hardware constraints, we were only able to train the 350M parameter CodeGen,
but not the 2B parameter version. According to (Nijkamp et al. 2023), a DeepSpeed (DS)
(Li et al. 2022) configuration is needed to fine-tune CodeGen efficiently, but this was not
supported on Windows. We were able to overcome this limitation by taking several
parameters of the DS configuration file and integrating them into our fine-tuning script.

5.3.1 CodeGen: Experiments

A series of experiments were conducted on the CodeGen 350M model. The initial ex-
periment aimed to observe the convergence of the model loss using standard parameters,
including default optimizers and learning rate. The fine-tuning process was carried out for
20 epochs. However, it was observed that neither the training loss nor the validation loss
reached convergence. It is important to note that this was a preliminary test conducted
without the DS configuration, and the expected outcome was non-convergence. Further-
more, after specifying several parameters from the DS configuration file, the model loss
was converging as expected. Two subsequent experiments were conducted utilizing the
modified and enhanced dataset. In the first experiment, both the text description and the
transformation rule were included as components of the prompt provided to the model
fine-tuned, i.e. Model 1. Following the evaluation of this experiment, we noticed that us-
ing the text description as part of the model input generated noisy results with CodeGen,
to the extent that 46.2% of the test samples do not have generated code. Therefore, in
the second experiment, the focus was solely on incorporating the transformation rule as
pseudo code input enclosed within triple quotes, similar to a docstring, which has allowed
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us to reduce that percentage of non-generated code to 14.6% after fine-tuning Model 2.
The first experiment was concluded at 46 epochs with early stopping configuration, while
the second was concluded at 48 epochs.

5.3.2 CodeGen: Results

In Table 9, we present the performance metrics of the two models, including their evalua-
tion against the pre-trained model. The results clearly indicate a significant performance
enhancement when fine-tuning the pre-trained model with our dataset. Moreover, Model
2 outperformed Model 1, leading us to infer that, for language models geared towards
code generation, utilizing pseudo code tends to yield superior performance compared to
employing textual descriptions that lack explicit clarification regarding the nature of the
target code. In Table 10, we present a comparative evaluation of Models 1 and 2, con-
sidering the varying levels of difficulty of the target code. It is evident that Model 2
demonstrates higher performance over Model 1, exhibiting notable improvements across
the majority of our evaluation metrics. Moreover, in the context of the CodeGen model,
we can deduce that while fine-tuning has led to improvements compared to the pre-trained
model, it has not yet attained a performance level comparable to the baseline model.

R1

(Prec)

R1

(Recall)

R1

(F1)

BLEU

(Prec)

BLEU

score
Meteor ChrF

CB

(Prec)

CB

(Recall)

CB

(F1)

CB

(F3)

Pre-trained 6.1 28.7 6.1 6.7 0.4 04.8 04.7 50.6 65.6 56.3 63.3

Model 1 34.3 29.4 27.5 69.0 30.6 54.1 40.5 76.9 72.6 73.6 72.7

Model 2 47.3 50.1 43.6 63.1 32.7 59.9 44.2 73.2 77.7 74.4 76.8

Table 9: CodeGen results: In this table, we present a comparison between the evaluation
of the pre-trained model and our experimental findings. Fine-tuning Model 1 involves in-
corporating both the text description and transformation rule as part of its input, whereas
fine-tuning Model 2 solely utilizes the latter. Our observations lead us to the conclusion
that employing only the specification rule as the model input results in improved perfor-
mance, primarily due to its resemblance to Pseudo Code.

Target Code
Difficulty

R1
(Prec)

R1
(Recall)

R1
(F1)

BLEU
(Prec)

BLEU
(Score)

Meteor ChrF
CB

(Prec)
CB

(Recall)
CB
(F1)

CB
(F3)

Model 1
Easy 33.2 34.7 31.5 68.5 39.5 68.5 50.1 77.1 76.2 75.5 75.9
Medium 38.8 17.9 20.8 65.9 10.6 19.4 21.9 77.6 68.6 72.2 69.2
Hard 37.6 11.2 13.5 71.2 6.7 15.8 14.2 76.1 62.3 67.7 63.2

Model 2
Easy 48.8 60.0 50.8 60.9 37.5 68.7 49.6 71.7 79.7 74.5 78.4
Medium 39.4 21.8 23.2 78.8 20.6 33.6 33.3 84.0 75.9 79.1 76.4
Hard 43.1 17.9 19.6 71.4 12.4 22.7 20.5 78.7 68.7 72.9 69.4

Table 10: CodeGen levels of difficulty comparison between Model 1 and Model 2. There
is a noticeable improvement across the majority of metrics in Model 2 compared to Model
1; further affirming our earlier observation that Model 2 displays enhanced performance.
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5.4 PolyCoder

Multiple rounds of fine-tuning were performed on the 0.4B-parameter PolyCoder model
with varying sets of hyperparameters, including the number of epochs, learning rate and
batch size. Additionally, we utilized two different types of training targets. The first had
labels from the target code and the second one used causal next-token prediction. We
used model checkpointing to store the models that did not overfit, similar in essence to
early stopping. We also used the PyTorch Huggingface trainer with tokenization on our
dataset for training and testing. After each model was fine-tuned, we conducted inference
on it using the trainer prediction module to evaluate the performance and calculate the
metrics.

5.4.1 PolyCoder: Experiments

We conducted multiple experiments for both fine-tuning and determining a proper prompt
structure. PolyCoder was fine-tuned in 2 different ways, one using defined target code as
labels and the other using next-token prediction in a causal way. As previously mentioned,
identical prompt structures were used during inference and training to preserve consis-
tency. To identify the best prompt-structure for PolyCoder, we experimented with multi-
ple prompting structures both for input data and inference data. One type of prompting
consisted solely of transformation rule, while another used only the description. A third
structure used a combination of both. We concluded that inputting the rule only yielded
the best results. Some lines in the dataset did not include a rule, but included a descrip-
tion and vice versa, so we had to make sure to remove these when creating a combination
of both. Additionally, as previously mentioned, we used certain code transformations to
alter the variables specific to msg-life which the generalized LM simply could not un-
derstand. Furthermore, a hyperparameter search was conducted to optimize the context
window length, which was 256 and different learning rates were employed during the train-
ing, ranging from 4e-5 to 1.667e-6. We have also experimented with different batch sizes
between 8 and 64. We have trained the model for 50 epochs on the GPU for a total period
of 2 hours. Some models were trained on the CPU for up to 15 hours and others were
trained on the GPU for much smaller amounts of time. The training loss reached 0.00589
and validation loss reached 0.00724 in the best case. Following the training, inference was
conducted using the test dataset in a similar manner by passing the input data to the
model to preserve the consistency using the Huggingface Trainer test module.

5.4.2 PolyCoder: Results

The following table contains the results for each experiment, displaying the improvement
from one experiment to the next. The first type of experiment was performed on the
data prior to its transformation, using a batch size of 64 and having target labels for
the code and trained only for 3 epochs. This particular model was trained on CPU with
the poorest performance amongst the other models. From this model, we focused our
attention on altering some training variables to improve performance, including the batch
size and the number of epochs. Since we trained the second experiment on the CPU,
it could not continue training for more than 15 epochs and took 12 hours with a batch
size of 16. We used the same settings from the previous experiment, but only altered
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those two variables. We refer to this model with those settings as Experiment 2. The
results significantly improved as compared to the previous experiment. However, the
performance remained poor with regards to code generation in medium and hard cases.
We continued in this direction for the third experiment and did not change the training
settings except for increasing the number of epochs to 30 and changing the split sizes for
the test and validation dataset to be 0.15 each instead of 0.1. Several rounds of training
were conducted as we were using the CPU and we used check-pointing to load the model
from prior checkpoints. In other words, the 30 epochs did not happen in a continuous
fashion, but rather with loading from the latest checkpoints. Training time in total took
17 hours. We can call this experiment with these settings Experiment 3. Following this
experiment, the performance improved both on the metric-level and in terms of the quality
of the code generation examples, where the model performed very well on the difficulty
levels easy and medium, but was hallucinating in the hard level. After this experiment,
we changed the training pattern to use causal training with next-token prediction without
feeding labels. In addition, we used a batch size of 8 and a context window of 256. We also
used code transformations to remove the duplicates and improve the names of variables.
We completed 50 epochs continuously using the GPU, which took 2 hours to complete.
These altered settings improved the results significantly both on the metric-level and in
the code generation samples especially on the hard level which is superior to all other
alternatives. We denote this version with the new settings Experiment 4.

R1

(Prec)

R1

(Recall)

R1

(F1)

BLEU

(Prec)

BLEU

score
Meteor ChrF

CB

(Prec)

CB

(Recall)

CB

(F1)

CB

(F3)

Experiment 1 3.71 26.01 5.18 7.89 2.45 5.41 4.34 45.61 48.36 44.69 44.86

Experiment 2 38.53 34.48 36.83 37.42 38.86 29.82 31.58 61.57 62.39 61.74 61.93

Experiment 3 72.15 70.45 70.78 55.89 76.16 61.71 69.03 79.43 80.52 78.49 79.31

Experiment 4 88.23 87.51 87.83 81.75 90.79 83.96 86.32 95.19 96.02 95.60 95.93

Table 11: PolyCoder Results: clearly the change of the training manner and data alter-
ations have largely increased the performance of the model.

In Table 12 below we show the difficulty assessment for code chunks in the test dataset.
We have done a calculation over all the metrics for all the difficulty levels to demonstrate
the differences in performance. Since the model was superior and good performing, the
differences between the difficulty levels were minute. We have done this comparison on
only the latest model because it was superior to the others.

Target Code
Difficulty

R1
(Prec)

R1
(Recall)

R1
(F1)

BLEU
(Prec)

BLEU
(Score)

Meteor ChrF
CB

(Prec)
CB

(Recall)
CB
(F1)

CB
(F3)

Model 4
Easy 91.21 90.86 91.00 86.82 95.58 88.64 90.27 96.89 96.28 95.44 94.81
Medium 90.31 90.54 90.17 85.34 94.21 87.62 89.27 96.72 97.11 96.86 96.61
Hard 88.01 86.98 87.12 81.23 89.73 82.68 85.43 95.12 95.97 95.26 94.8

Table 12: PolyCoder levels of difficulty comparison. There is a noticeable minute differ-
ence in performance between the different difficulty levels.
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5.5 Comparative Analysis and Findings

We summarize the final performance of our models in Table 13. Our experiments uncov-
ered distinct patterns in performance across the models. CodeT5 demonstrated a strong
initial performance, with an upward trend traced back to prompt style variations and
data quality enhancements. On the other hand, InCoder faltered at the onset, with its
performance further deteriorating - a trend we hypothesize is attributed to the distortion
of its pre-trained features during fine-tuning. CodeGen managed to score above InCoder
but fell short of surpassing CodeT5. Interestingly, PolyCoder, despite an unpromising
start with scores below the baseline, exhibited a consistent rise in performance through-
out the experimentation process. This growth trajectory was primarily attributed to the
increasing number of epochs and strategic modifications in the training pattern. Con-
sequently, PolyCoder outperformed all other models in our analysis, making it the clear
choice as the most suitable model for the task of code-generation in the context of the
data-migration challenge presented by msg-life.

R1

(Prec)

R1

(Recall)

R1

(F1)

BLEU

(Prec)

BLEU

score
Meteor ChrF

CB

(Prec)

CB

(Recall)

CB

(F1)

CB

(F3)

CodeT5 83.80 75.00 74.30 63.80 87.50 71.00 69.80 90.40 87.80 88.70 87.90

InCoder 2.89 23.39 2.85 3.79 0.05 3.87 3.95 53.72 64.32 58.08 62.84

CodeGen 47.30 50.10 43.60 63.10 32.70 59.90 44.20 73.20 77.70 74.40 76.80

PolyCoder 88.23 87.51 87.83 81.75 90.79 83.96 86.32 95.19 96.02 95.60 95.93

Table 13: The best results, according, in particular, to the CodeBERTScore metric, of
each model are displayed. PolyCoder exhibits superior performance across all metrics.

6 Conclusion and Future Work

This project undertook a comprehensive comparison of various models for code-generation
tasks within a data-migration context. Our extensive set of experiments led us to the clear
conclusion that PolyCoder is the best-suited model for this task. It consistently scored
significantly higher across all considered metrics compared to the other models, demon-
strating its effectiveness and reliability. While CodeT5 showed promise initially, it was
ultimately surpassed by PolyCoder. InCoder and CodeGen struggled to match the base-
line performance, revealing their limitations in the context of this study. As we move
forward, we recommend employing PolyCoder for tasks related to code-generation in the
context of data-migration challenges. However, this recommendation is not a conclusion,
but should serve as the beginning of the next phase of research.
As for future work, back-translation (Ahmad et al. 2022) has shown promise in improving
the performance of sequence-to-sequence models in code generation tasks. These models
map source-code sequences to a shared multilingual space using unlabeled data, such as
source code from platforms like Github. The primary objective of these models is to
reconstruct original code snippets or predict missing code tokens from corrupted code
snippets. However, when parallel data for a specific programming language is limited or
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unavailable, back-translation can be an effective technique to augment training data. This
involves training a source-to-target model alongside a target-to-source model, both trained
in parallel. Bi-modal data, which includes both code snippets and docstring descriptions,
has been explored in papers, but our data lacks explicit docstrings or comments. Despite
this, bi-modal data may still be a worthwhile avenue for future experimentation, although
it presents challenges due to the nature of our available data.
Another area of research that deserves attention is the management of large-scale models.
The current state-of-the-art models for code generation tasks are typically language mod-
els with over 1 billion parameters. However, working with such models presents challenges
due to hardware limitations in terms of loading and fine-tuning. To address this issue, it is
recommended to explore various options in future studies. One such option is LoRA: Low-
rank adapters, a technique proposed in the paper (Hu et al. 2022). LoRA aims to reduce
the computational requirements of large models by introducing low-rank adapters. Addi-
tionally, quantization approaches such as 8-bit quantization can be explored, which reduce
the precision of model parameters to achieve more efficient computation and memory us-
age. It is also worthwhile to investigate approaches that combine different techniques to
manage the computational demands of large models effectively.
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