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Abstract

In this study, we address the challenge of catastrophic forgetting in domain-incremental
semantic segmentation, particularly within the context of medical image analysis. Our
focus is on developing methods that enable continual learning, allowing models to adapt
to new data without losing previously acquired knowledge. We evaluate and compare
various approaches, including regularization-based methods, replay strategies, knowledge
distillation techniques, and propose a method based on contrastive learning.
We conduct extensive experiments on two cataract surgery datasets, CaDIS and Cataract-
1K, simulating domain shifts typically encountered in medical imaging scenarios. Our
findings highlight that contrastive learning, especially when combined with effective sam-
ple replay strategies and augmentations like color jittering, significantly mitigates catas-
trophic forgetting and enhances domain generalization. However, we also observe a trade-
off between reducing forgetting and maintaining high performance on new tasks, under-
scoring the need for balanced strategies.
Our contributions include a comprehensive evaluation of existing and novel methods for
continual learning in semantic segmentation, providing insights into their strengths and
limitations. Future work will focus on refining these methods, exploring prototype-based
contrastive learning, and validating our approaches on standard benchmarks to ensure
broader applicability.
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1 Introduction

Semantic segmentation is one of the core tasks in computer vision, which entails the clas-
sification of each pixel in an image into predefined categories. This process is essential for
various applications, including medical imaging, autonomous driving, and environmental
monitoring. For models to be truly effective in real-world scenarios, they must generalize
well across different domains. This means that a model trained on data from one domain
should perform accurately when applied to data from a different domain, such as images
captured in varying weather conditions or different geographic locations.

1.1 Continual Learning

Continual learning (CLG) is a paradigm in deep learning that addresses the challenge
of sequentially learning new information while retaining previously acquired knowledge.
This capability is essential for creating models that can adapt to new data over time
without requiring complete retraining on the combined old and new datasets. The core
idea of CLG is to ensure that models maintain performance on previously learned tasks
even as they are trained with new information. This approach is particularly valuable
when access to the original training data is restricted or infeasible.
A major challenge in CLG is catastrophic forgetting, where models lose previously learned
knowledge when updated with new data [29, 15]. This phenomenon significantly hinders
the effective implementation of continual learning strategies. Mitigating catastrophic
forgetting is crucial for developing robust CLG systems that can operate effectively in
dynamic environments.
Various strategies have been proposed to address this challenge, typically categorized into
three main approaches: regularization-based, generation-based, and replay-based methods
[48]. Regularization-based methods aim to retain previous knowledge by modifying the
neural network architecture or its training process, such as applying weight constraints
[21], regularization techniques [24, 49, 32], knowledge distillation [44, 40, 4, 22], and
transfer learning. Generation-based methods involve using generative models to produce
synthetic data that approximates the original training dataset, thus providing a reference
for the model to retain old knowledge [42, 39]. Replay-based methods, on the other hand,
maintain a subset of the actual old data and combine it with new data during training to
preserve previous knowledge directly [18].
Continual learning can be further divided into domain-incremental and class-incremental
learning [48]. Domain-incremental learning involves adapting to new domains with the
same set of classes, while class-incremental learning requires the model to learn new classes
over time while retaining knowledge of previously learned classes. For more information
on these concepts, refer to [48].

1.2 Project Objectives

In this project, we focus on continual learning within the domain-incremental setting
of semantic segmentation, particularly in the context of medical image analysis. Med-
ical image segmentation is critical for various clinical applications, such as identifying
anatomical structures and surgical instruments during procedures. However, changes in
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imaging equipment, such as different cameras, can lead to significant variations in data
distribution. Additionally, variations in lighting conditions across different surgery videos
can further complicate the segmentation task. These domain shifts require models to
adapt effectively without losing performance on previously learned data.
We explore regularization-based, replay-based, and knowledge distillation approaches to
address catastrophic forgetting in domain-incremental semantic segmentation. Further-
more, we propose a novel method based on contrastive learning (CL) to enhance the
model’s ability to distinguish between different features across domains [7].
Our objective is to develop and evaluate methods that enable models to adapt to new
domains while preserving their performance on previously learned tasks, ensuring effec-
tive and efficient continual learning. By tackling these challenges, we aim to contribute
to the advancement of continual learning techniques, ultimately enhancing the robust-
ness and adaptability of semantic segmentation models in dynamic and evolving medical
environments.

2 Background

This section presents a foundational overview of the concepts and methodologies underpin-
ning our research. We first discuss semantic segmentation, explaining its importance and
the evolution of related techniques. Subsequently, we delve into the Mask2Former model,
a state-of-the-art framework adopted as the baseline for our experiments. The concept of
universal image segmentation is then explored, encompassing relevant advancements and
loss functions for addressing class imbalance. Finally, we examine strategies to mitigate
catastrophic forgetting in the context of continual learning, including raw data replay,
knowledge distillation, and contrastive learning.

2.1 Semantic Segmentation

Semantic segmentation is a crucial task in the field of computer vision that involves clas-
sifying each pixel in an image into a predefined category. Unlike traditional image classi-
fication, which assigns a single label to an entire image, semantic segmentation provides a
detailed, pixel-level understanding of the scene, enabling more granular and context-aware
analysis. This process is fundamental for various applications, from autonomous driving
and medical imaging to robotics and agriculture.
In the broader landscape of segmentation tasks, there are several related types. Instance
segmentation, for example, not only categorizes each pixel but also differentiates between
individual instances of objects within the same category. Panoptic segmentation goes a
step further by combining both semantic and instance segmentation to provide a compre-
hensive framework for detecting and segmenting all objects in a scene. Figure 12 displays
the difference of these different types of segmentation methods.
The evolution of semantic segmentation has seen significant milestones. Early methods
relies on handcrafted features and traditional machine learning algorithms, which are
limited by manual feature extraction and difficulty handling complex scenes. The advent
of deep learning, particularly convolutional neural networks (CNNs), revolutionized the
field with more accurate and efficient models.
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A key development was the Fully Convolutional Network (FCN) [28], which replaced fully
connected layers with convolutional layers for pixel-wise classification, enabling end-to-end
training and prediction.
Following FCNs, U-Net [37], in 2015, became popular for medical image segmentation due
to its encoder-decoder architecture with skip connections, enhancing feature retention and
localization accuracy. DeepLab by Chen et al. introduced atrous (or dilated) convolutions
and spatial pyramid pooling [5] for better multi-scale context capture. Mask R-CNN [36]
extended Faster R-CNN [36] with a branch for segmentation masks, excelling in instance
and semantic segmentation.
Our project uses Mask2Former [10], an improved version of MaskFormer [8], as the base
model which integrates advanced techniques for handling complex scenes and improving
segmentation accuracy. This state-of-the-art model represents the latest advancements in
semantic segmentation.

2.2 Mask2Former

Over the past few years, researchers have developed various architectures tailored specif-
ically for instance, semantic, or panoptic segmentation. Instance and panoptic segmen-
tation typically involve generating a set of binary masks with corresponding labels for
each object instance, akin to object detection but with binary masks instead of bound-
ing boxes. This approach is known as binary mask classification. In contrast, semantic
segmentation was treated as a per-pixel classification problem, where models output a sin-
gle segmentation map with one label per pixel. Notable models following this paradigm
include SegFormer [46] and UPerNet [45].

2.2.1 Universal Image Segmentation

Since around 2020, the field has shifted towards models capable of handling all three
tasks - instance, semantic, and panoptic segmentation - using a unified architecture. This
shift began with DETR [2], the first model to address panoptic segmentation using a
“binary mask classification” paradigm, treating “thing” and “stuff” classes in a unified
manner. DETR’s key innovation was employing a Transformer [41] decoder to generate
a set of binary masks and classes in parallel. This approach was further refined in the
MaskFormer paper, demonstrating that the binary mask classification paradigm is also
highly effective for semantic segmentation.
Masked-attention Mask Transformer (Mask2Former) builds on this foundation, extending
the approach to instance segmentation by enhancing the neural network architecture. This
evolution has led to the concept of “universal image segmentation” architectures, capable
of solving any image segmentation task. These universal models adopt the “mask classifi-
cation” paradigm, moving away from the traditional “per-pixel classification” paradigm.

2.2.2 Architecture

The architecture of Mask2Former involves several stages (see Figure 1):

1. Backbone Processing: An input image is processed through a backbone network,
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Figure 1: MaskFormer (left): A backbone extracts image features F , which are upsam-
pled by a pixel decoder to produce per-pixel embeddings Epixel. A transformer decoder at-
tends to these features, generating N per-segment embeddingsQ, N class predictions, and
N mask embeddings Emask. The model predicts N binary masks via a dot product between
Epixel and Emask, followed by sigmoid activation. Final predictions are obtained by combin-
ing N binary masks with class predictions through matrix multiplication. Mask2Former
(right): Mask2Former shares the meta architecture of MaskFormer, consisting of a back-
bone, pixel decoder, and Transformer decoder. A new Transformer decoder with masked
attention is proposed instead of standard cross-attention. For handling small objects,
high-resolution features from the pixel decoder are efficiently utilized by feeding one scale
of multi-scale features to one Transformer decoder layer at a time. Additionally, the order
of self and cross-attention is switched, query features are made learnable, and dropout is
removed to enhance computational efficiency

which could be either ResNet [16] or Swin Transformer [27], to generate a set of low-
resolution feature maps.

2. Pixel Decoder Module: These low-resolution feature maps are then enhanced
using a pixel decoder module to obtain high-resolution features.

3. Transformer Decoder: Queries, initially abstract feature vectors, are processed
by the Transformer decoder through multiple attention layers. Masked attention
ensures that each query focuses only on relevant image regions. These refined queries
are then used to generate binary masks, identifying specific objects or segments in
the image, each with an associated category label. Ultimately, we obtain detailed,
labeled segments corresponding to actual objects in the image from the abstract,
learnable queries we initially began with.

The pivotal aspect to consider is what sets Mask2Former apart, enabling it to achieve
superior performance over MaskFormer (Figure 1, left). Mask2former employs an ar-
chitecture identical to that of MaskFormer, marked by two primary distinctions: using
mask attention instead of cross attention, and the multi-scale high-resolution features
with which the model works.
Mask Attention: Mask2Former uses mask attention instead of cross attention to im-
prove instance segmentation. Cross attention, which attends to all pixels including back-
ground pixels, can distract the decoder. Mask attention, however, restricts the decoder’s
focus to the foreground regions, enhancing its ability to concentrate on relevant features
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Figure 2: (a) The proposed Content-enhanced Mask Attention (CMA) consists of
three key steps, namely, exploiting high-resolution properties (in green), exploiting low-
resolution properties (in brown), and content enhanced fusion (in gray). (b) Framework
overview (in yellow) of the proposed Content-enhanced Mask TransFormer (CMFormer)
for domain generalized semantic segmentation. The image decoder is directly inherited
from the Mask2Former.

and reducing background noise. This also increases efficiency, resulting in shorter training
and inference times.
Multi-scale High-resolution Features: To tackle small objects, Mask2Former employs
a multi-scale feature representation, capturing details at various resolutions. Each scale is
processed by a specific Transformer decoder layer (e.g., 1/32, 1/16, 1/8). This systematic
approach enhances the model’s capability to manage objects of different sizes effectively.

2.3 Focal Loss

Focal loss [25] is implemented to address the class imbalance in trainings. In our project,
both of our datasets have class imbalance therefore, the usage of focal loss could mitigate
this issue in our trainings. Focal loss is an improved version of the cross-entropy loss and
was originally implemented to mitigate the imbalance between the background and the
foreground objects in object detection. This loss function is used in MaskFormer [8] as
well. In the below equation [25], pt is the predicted probability for the instance t, (1−pt)

γ

down-weights easy-positive examples in the loss function so that the focus is more on
hard-negatives, γ is a hyperparameter that increases the weighting effect when it gets
larger and αt is also a hyperparameter and can be set differently for each class to address
the imbalance.

Lfocal(pt) = −αt(1− pt)
γ log(pt) (1)

2.4 CMFormer

Content-enhanced Mask Transformer [1] aims to learn generalized semantic prediction
across diverse urban-scene styles in domain-generalized urban-scene semantic segmenta-
tion (USSS) setting and we test the performance of this method in our medical semantic
segmentation scenario. CMFormer proposes a Content-enhaced Mask Transformer for
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domain generalized USSS. The main idea is to enhance the focus of the fundamental
component, the mask attention mechanism, in Transformer segmentation models on con-
tent information. Their empirical analysis shows that a mask representation effectively
captures pixel segments, albeit with reduced robustness to style variations. Conversely,
its lower-resolution counterpart exhibits greater ability to accommodate style variations,
while being less proficient in representing pixel segments.
Figure 2 depicts the overall architecture of CMFormer. The proposed Content-enhanced
Mask Attention (CMA) consists of three key steps, namely, exploiting high-resolution
properties (in green), exploiting low-resolution properties (in brown), and content
enhanced fusion (in gray).
The fusion of both representations X̃l (high-resolution properties) and X̃d

l (low-resolution
properties) is done in a rather simple and straight-forward way. The fused feature Xfinal

l

serves as the final output of the lth Transformer decoder, and it is computed as

Xfinal
l = hl([X̃l, X̃

d
l ]), (2)

where [·, ·] represents the concatenation operation, and hl(·) refers to a linear layer.

2.5 Knowledge Distillation

In contrast to CMFormer, which mitigates catastrophic forgetting by designing a domain-
robust model, knowledge distillation transfers previously learned knowledge to a model
provided with new information. This process involves transferring knowledge from a
well-trained teacher model to a student model, aligning the student’s outputs with the
teacher’s soft labels to maintain consistency across tasks. Studies have shown that this
method effectively stabilizes the learning process and retains critical information from
previous tasks, thereby reducing the negative impact of sequential learning on model
performance [40, 4, 22, 11].
The Continual Image Segmentation method with incremental Dynamic Query (CiSDQ)
[44] is a model-specific knowledge distillation approach tailored towards semantic seg-
mentation using Mask2Former [10]. This method employs dynamic query strategies to
adaptively select informative samples from previous tasks, enhancing the retention of
important information and mitigating catastrophic forgetting (see Figure 3). By lever-
aging a dynamic querying mechanism, the model can focus on critical regions of the
image that are more likely to be affected by changes in the data distribution across tasks.
This technique is especially effective for class-incremental scenarios. Since our focus is on
domain-incremental learning, we will concentrate on the knowledge distillation techniques
applicable to our setting.
To preserve previously learned representations, the method distills knowledge from either
a frozen or slowly updated teacher to the student by applying the following losses:

• Local POD [11, 12] Lpod loss for the backbone and pixel-decoder features.

L(Θt) =
1

L

L∑
l=1

∥∥Φ(xt
l)− Φ(xt−1

l )
∥∥2

, (3)

where t is the current task (student), t − 1 is the previous task (teacher), xl is the
activation from the l–th layer, and Φ is a mapping function.
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Figure 3: Query Guided Knowledge Distillation proposed in CiSDQ [44]. It consists
of three parts: 1) Local POD loss [11, 12] Lpod for features from the backbone and the
pixel-decoder. 2) L2 loss for the learned queries Lq. 3) Loss for the network prediction
Lc and Lm.

• L2 loss for the queries Lq after each transformer-decoder layer.

Lq(Θ
t) =

1

M

1

L

M∑
j=0

L∑
l=1

∥∥qt
j,l − qt−1

j,l

∥∥2
, (4)

where M is the number of all query embeddings and L is the number of transformer-
decoder layers.

• Kullback-Leibler (KL) divergence for the class predictions Lc.

Lc(Θ
t) =

t−1∑
i=0

ct−1
i log

ct−1
i

cti
, (5)

where ci is the i-th class distribution prediction associated with the query set Q ∈
{Q0, Q1, . . . , QM} and M is the number of learnable queries.

• Dice [31] and cross-entropy loss [9] for the masks Lm.

Lm(Θ
t) = λc

1

M

M∑
j=0

Lce(m
t
j,m

t−1
j ) + λd

1

M

M∑
j=0

Ldice(m
t
j,m

t−1
j ), (6)

where m is the predicted mask. λc and λd are two weight parameters, which are
similar to Mask2Former [10].

2.6 Raw Data Replay Methods

Most benchmarks for continual semantic segmentation typically consist of sequential tasks
where all classes are present. Consequently, knowledge distillation is widely adopted in
this context. However, this method tends to underperform on benchmarks where the sets



2 BACKGROUND 8

of classes between sequential tasks are disjoint, i.e., each task involves learning to segment
new classes. A straightforward solution to address this issue is to replay classes from
previous tasks. This approach has proven effective in both class-incremental and domain-
incremental scenarios [19]. Nonetheless, due to the constraints of a limited memory buffer,
selecting the “right” samples for replay is crucial for the efficacy of this method. The study
by [18] explores various approaches to sample instances from previous tasks to minimize
forgetting. Furthermore, the findings of [18] demonstrate that replay methods outperform
knowledge distillation in domain-incremental scenarios, which aligns with the focus of our
research project. Therefore, we will introduce only those methods that perform well in
this setting.

2.6.1 Loss-Based Selection

This method selects samples based on their loss values – either maximum, minimum,
or mean. The underlying idea for selecting samples with the minimum loss is that the
neural network adapts well to frequent scenarios in the dataset, resulting in minimum loss
values for these samples. Conversely, selecting samples with the maximum loss, although
less representative, may still be valuable for replay due to their high information content.
Additionally, mean loss selection can be used to avoid selecting both trivial minimum-loss
samples and maximum-loss outliers, providing a balanced approach.

2.6.2 Representation-Based Sample Selection

Representation-based sample selection (RSS) [18] aims to select buffer samples that ap-
proximate the learned representations of classes from previous tasks. This method utilizes
the latent space representations produced by the image encoder for each sample, project-
ing them into a lower-dimensional space using UMAP [30]. The projected activations
are then grouped into M clusters using k-means clustering, where the number of clusters
corresponds to the number of classes. The samples closest to these cluster centers are
subsequently selected for replay.
Since we use Mask2Former [10] as our base model, we perform RSS using the backbone
features, which are extracted by a Swin Transformer [27] (see Figure 1).

2.7 Latent Replay

The “Latent Replay for Real-Time Continual Learning” [33] proposes replaying latent
representations rather than raw data, as described in the previous section. The paper
suggests storing latent vectors instead of raw inputs for the replay trainings in continual
learning. For the same memory space, more latent vectors can be stored due to their
smaller sizes compared to the raw inputs. Testing this theory in our project can be
interesting since the model could benefit from the increased number of replayed samples.
Additionally, this method emphasizes that the low-level layers, which are closer to the raw
input, are significant for the generic feature extraction and they remain stable after being
trained on a large dataset. However, high-level layers should be extensively fine-tuned for
each new task. The training of the low-level layers must be slowed down to prevent the
vectors from becoming irrelevant to the trained model (aging effect). During the replay
training, the replayed latent vectors are merged with the new latent vectors in the current
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Figure 4: Example image frame (left) and semantic segmentation labels (right) from the
Cataract dataset for Image Segmentation presented in CaDIS [13]. (Colormap: Pupil,

Iris, Cornea, Skin, Surgical tape, Eye retractors, Hand, Bonn Forceps,
Secondary Knife and Secondary Knife Handle)

batch at the replay layer, where the latent vectors were previously saved, e.g. bottleneck
layer.

2.8 Contrastive Learning

Contrastive learning aims to learn good representations of the anchor instances in the
latent space by pulling positive instances closer to the anchor while pushing negative
instances away. It is used in various deep learning applications as it significantly enhances
the performance of the model in distinguishing different classes [6, 20, 43]. Therefore, in
our project we experiment with contrastive loss in semantic segmentation setting where
the classification occurs pixel-wise. There have been self-supervised [6] and supervised
[20] implementations of contrastive learning. For this project, a supervised contrastive
loss (CL) is required. The pixel-wise supervised contrastive loss from the “Exploring
Cross-Image Pixel Contrast for Semantic Segmentation” [43] is used:

LNCE
ı̇ =

1

|Pi|
∑
ı̇+∈Pi

− log
exp(ı̇ · ı̇+/τ)

exp(ı̇ · ı̇+/τ) +
∑

ı̇−∈Nı̇
exp(ı̇ · ı̇−/τ)

(7)

where ı̇ is the feature vector for the anchor pixel, Pi is the set of positive samples, Ni is
the set of negative samples for the anchor pixel ı̇ and τ is the temperature variable that
scales the similarities between the pairs. An additional 1x1 convolutional projection head
is appended at the end of the encoder network to project the high-dimensional features
into 256-dimensional vectors. These vectors are then l2-normalized before being used in
the loss calculation. The anchor pixels in the loss are sampled from the same image,
the other images in the batch, and the per-class region memory bank, where the average
pixel embeddings from the latest batch are stored. Furthermore, hard-anchor sampling is
employed to select positive and negative pixels. Each unique class in an image from the
batch becomes an anchor class. Instead of using all the pixels in the images, hard-negative
and easy-positive pixels are collected and then randomly sampled for each anchor class.
Hard-negative pixels have different ground truth labels than the anchor class, but the
model incorrectly predicts their labels as the anchor class. The easy-positive pixels have
the same ground truth classes as the anchor class, and the model also correctly predicts
them. It is aimed to sample an approximately equal number of easy-positive pixels and
hard-negative pixels when there are enough pixels for each of category.
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Figure 5: Example image frame (left) and semantic segmentation labels (right) from the
Cataract–1K dataset [Cataract-1K]. (Colormap: Katena Forceps, Iris, Pupil

2.9 Prototypes

In the “Decoupled Semantic Prototypes Enable Learning from Diverse Annotation Types
for Semi-weakly Segmentation in Expert-Driven Domains” [35], trainable vectors that
are known as prototypes are used as anchors in the decoupled contrastive loss (DCL)
[47]. Prototypes are 256-dimensional class-specific representations. For each class, more
than one prototype is created to capture the variations within the class. They repre-
sent intra-class information and inter-class dissimilarities effectively and hence, they have
the potential to improve the performance of a standard contrastive loss even further.
Therefore, we experiment with prototypes by using them as pre-trained anchors in our
Cataract-1K trainings with CL.

3 Datasets

In this section, we introduce the datasets used in our experiments – Cataract dataset
for Image Segmentation (CaDIS) [13] and Cataract–1K [14]. We describe the domain-
incremental scenario with class mappings and provide exploratory data analysis (EDA)
on class distribution and errors.

3.1 CaDIS

The CaDIS dataset is a comprehensive dataset designed for semantic segmentation tasks
in the context of cataract surgery. It consists of 4,670 high-resolution surgical images,
providing pixel-level annotations for various anatomical structures and surgical instru-
ments. An example image with its corresponding semantic map is illustrated in Figure
4.

3.2 Cataract–1K

The Cataract–1K dataset is a large-scale collection of annotated images specifically cu-
rated for the task of cataract surgery analysis. This dataset includes 2,256 annotated im-
ages captured during cataract surgeries, with detailed labels for different surgical phases,
instruments, and anatomical structures. An example image with its corresponding se-
mantic map is illustrated in Figure 5.
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(a) CaDIS Train Distribution (b) CaDIS Validation Distribution

(c) CaDIS Test Distribution

Figure 6: Class Distributions for CaDIS Dataset

3.3 Domain-Incremental Scenario with Class Mappings

In this work, we explore catastrophic forgetting within a domain-incremental scenario,
where class consistency is maintained while the data domain shifts. Directly using the
datasets without preprocessing is not feasible. Consequently, we initially define a set of
common classes across the two domains, termed Common Classes.
The Common Classes include two categories: anatomical structures and surgical instru-
ments. The anatomical category comprises Iris and Pupil. The instruments category
includes Knife, Bonn Forceps, Cannula, Capsulorhexis Cystotome, Capsulorhexis Forceps,
Phacoemulsification Handpiece, Micromanipulator, Lens Injector, and I/A Handpiece.
We map the classes from both datasets to Common Classes. Any classes that are not
mapped to the Common Classes are considered as background. The detailed mappings
from CaDIS and Cataract–1K classes to Common Classes are presented in Table 1.

3.4 Explorative Data Analysis

In this section, we analyze the class distributions and annotation errors in the CaDIS and
Cataract–1K datasets.

3.4.1 Class Distribution

From the distributions illustrated in Figures 6 and 7, the following observations can be
made for both datasets:

• The Background class overwhelmingly dominates the distribution across all splits,
accounting for approximately 70% in CaDIS and 84% in Cataract-1K.
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Common Class CaDIS Classes Cataract–1K Classes

Knife Primary Knife Incision Knife
Secondary Knife Slit Knife

Bonn forceps Bonn Forceps Katena Forceps
Cannula Hydrodissection Cannula Gauge

Viscoelastic Cannula
Rycroft Cannula
Charleux Cannula

Capsulorhexis Cystotome Capsulorhexis Cystotome Capsulorhexis Cystotome
Capsulorhexis Forceps Capsulorhexis Forceps Capsulorhexis Forceps
Phacoemulsification Handpiece Phacoemulsifier Handpiece Phacoemulsification Tip
Micromanipulator Micromanipulator Spatula
I/A handpiece I/A Handpiece I/A Device
Lens injector Lens Injector Lens Injector
Pupil Pupil Pupil
Iris Iris Iris
Background Rest Rest

Table 1: Mappings from CaDIS and Cataract–1K classes to Common Classes. The rest
of the classes that are not mentioned in the mappings are cosidered as background.

• The Pupil class is the second most frequent, constituting about 16% of the data in
CaDIS and 7% in Cataract-1K.

• The Iris class follows, representing around 11% of the data in CaDIS and 6% in
Cataract-1K.

• The remaining classes collectively make up approximately 3% of the distribution.

These observations indicate a significant class imbalance in both datasets, which must be
carefully addressed during model training.

3.4.2 Error Analysis

Annotation accuracy is critical for model training in image segmentation. However, sev-
eral sources of error have been identified in the annotations. According to the authors of
the CaDIS dataset [13], blurriness from instrument or patient motion can lead to unclear
boundaries, and specular reflections can obscure precise delineation, particularly at instru-
ment tips within anatomical structures. Despite efforts to maintain accurate boundaries,
these issues persist.
We conducted a qualitative inspection of a subset of images and confirmed the presence
of annotation errors. For example, Figure 8 illustrates an example of such an error due
to blurriness.
Despite the presence of annotation errors, it is common practice to train models on these
datasets without excluding the erroneous samples [34]. Therefore, we have also chosen
not to remove samples with errors in our training process.
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(a) Cataract Train Distribution (b) Cataract Validation Distribution

(c) Cataract Test Distribution

Figure 7: Class Distributions for Cataract-1K Dataset

4 Methods

This section outlines the methodologies and experimental setups employed in our study.
We detail the training configurations, augmentation techniques, raw data replay strate-
gies, knowledge distillation approaches, latent replay methods, focal loss application, and
contrastive learning procedures.

4.1 Training Setup

The training setup for our project involves a carefully selected combination of model,
environment, and preprocessing steps to ensure optimal performance and efficiency. Here
are the key components of our training setup:

• Model: We use Mask2Former as the baseline model, leveraging the Huggingface
implementation for its robust features and ease of use.

• Backbone: The model employs a tiny Swin Transformer pretrained on ImageNet,
which enhances feature extraction and overall model performance.

• Preprocessing: Input images are resized to 270x480 pixels to maintain consistency,
masks with nearest-neighbor interpolation and images with bilinear interpolation.
Normalization is performed according to the training set specifications at each step,
ensuring the data is in a suitable format for training.

• Training Parameters: The model is trained for 200 epochs. Early stopping is
implemented with a patience of 15 epochs to prevent overfitting.
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(a) Image (b) Ground Truth Segmentation Map

Figure 8: An example image that contains an annotation error from the CaDIS dataset
[13]. The instrument Capsulorhexis Cystotome is annotated slightly to the right of its
actual position.

This setup ensures a structured and efficient training process, leveraging advanced tools
and techniques to achieve the best possible performance with Mask2Former.

4.2 Augmentations

In our project, we focus on various augmentations to improve model generalization and
reduce the domain generalization gap. We explore several augmentation techniques and
evaluate their effectiveness in enhancing the model’s performance across different domains.
Here are the key augmentations we employed:

• Random Cropping: This technique involves randomly cropping a quarter-sized
portion from the resized input.

• Color Jittering: This augmentation randomly changes the brightness, contrast,
saturation, and hue of the input image. It simulates different lighting conditions
and color variations, aiding the model in learning color-invariant features.

• ColorAugSSDTransform: This augmentation, inspired by the “SSD: Single Shot
MultiBox Detector paper” [26], includes a series of color transformations applied to
the image. It involves:

– Brightness Adjustment: Randomly altering the image brightness within a spec-
ified range.

– Contrast Adjustment: Modifying the image contrast by randomly scaling the
intensity.

– Saturation Adjustment: Changing the image saturation by converting it to
HSV color space and adjusting the saturation channel.

– Hue Adjustment: Altering the hue of the image by converting it to HSV color
space and shifting the hue channel.

This sequence of transformations is applied in random order, making the model
robust to various color variations.
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Figure 9: Replay Training Pipeline

• Combination of Augmentations: We also experiment with applying combina-
tions of the aforementioned augmentations. Each combination was applied with
probabilities p = 1.0 or p = 0.5, allowing us to assess the impact of consistent
versus occasional augmentation.

4.3 Raw Data Replay

One of the methods we employ is raw data replay, as previously introduced in Section 4.3.
Based on prior research demonstrating their effectiveness in domain-incremental scenarios
[18], we selected methods utilizing minimum, mean, and maximum loss selection, as well
as representation-based sample selection. The training pipeline is depicted in Figure 9.

4.3.1 Replay Strategies

The initial step involves training a base model on the CaDIS dataset. Subsequently, we
apply one of the replay strategies to select samples from CaDIS to be replayed during the
training on the Cataract-1K dataset. Two primary replay strategies are employed:

1. Merged Replay: Selected samples are merged with the new dataset. This method
has the advantage of faster training times, as the increase in training samples is
minimal. However, the limitation is that the replayed samples may not appear
frequently enough to effectively mitigate forgetting.

2. Balanced Batch Replay: Each training batch is composed of 50% new dataset
samples and 50% memory buffer samples. This approach ensures more frequent
replay of previous samples, addressing the limitations of the merged replay strategy.
However, it doubles the training data size, resulting in longer training times and
creates a potential risk of overfitting on the limited replayed samples.

4.3.2 Memory Buffer

Previous studies have experimented with various memory buffer sizes, typically 32, 64, or
128 MB [18]. Larger memory buffers allow for the storage of more samples. In this study,
we assume a constrained memory environment and utilize a 32 MB memory buffer, which
accommodates only 21 images from the CaDIS dataset.

4.4 Knowledge Distillation

We employ knowledge distillation to mitigate forgetting, following a similar approach as
described in Section 2.5. The method proposed by CiSDQ [44] is specifically tailored
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for the Mask2Former architecture [10] and is designed for class-incremental learning. To
address the challenge of learning new classes while retaining previously learned ones,
their method involves freezing the learnable queries trained in the previous task during
the training on the current task (see Figure 3).
Since our pipeline does not introduce new classes, we do not adopt this freezing mecha-
nism. Instead, we utilize the losses defined in Equations 3, 4, 5, and 6 to distill knowledge
from the model trained on CaDIS to the model being trained on Cataract-1K. We define
two different approaches for this training:

1. Frozen Teacher: In this approach, the teacher model is frozen during distillation
and is not updated.

2. Updated Teacher: In a manner similar to self-distillation with no labels (DINO)
[3], we update the teacher model using an exponentially moving average of the
student parameters:

θt ← λθt + (1− λ)θs, (8)

where θt and θs represent the parameters of the teacher and student models, respec-
tively, and λ is a decay hyperparameter set to 0.999.

4.5 Latent Replay

As in the 32MB raw data replays in Figure 9, we replay latent vectors of 21 CaDIS
samples at the bottleneck layer. The number of latent vectors that fit into 32MB is not
calculated using the bottleneck vector size because, in Mask2Former, the pixel decoder
also uses some additional intermediate encoder features along with the bottleneck vector.
As a result, unfortunately, latent replay with Mask2Former requires more storage than
raw data replays. To compare the performance of the latent replay training against other
replay methods, at the end of the CaDIS training, 21 images are randomly sampled
again, and their latent vectors are saved. In each batch iteration in replay training, 8
latent vectors from the CaDIS replay set are randomly sampled and merged with 8 new
Cataract-1K latent vectors in the current batch at the bottleneck layer of the model. The
batch size becomes 16 after the bottleneck layer. Lastly, the encoder of the model is
completely frozen during the replay training.

4.6 Focal Loss

The effect of focal loss on class imbalance is tested by adding it to the CaDIS training.
The focal loss is multiplied by one and added to the default losses of the Mask2Former.
All pixel predictions are used in the focal loss.

4.7 Contrastive Learning

The pixel-level supervised contrastive loss and the hard-anchor sampling [43] are adapted
for the purpose of this project. After that, the effect of the weighted contrastive loss and
prototypes as anchors are abserved.
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Figure 10: Pixel sampling pipeline in contrastive learning without replayed samples in
the batch.

4.7.1 Contrastive Learning with Mask2Former

Contrastive loss requires pixel-level features, which is the reason why we utilize the pixel
decoder features from the Mask2Former architecture (see Figure 1). The queries in the
transformer are trained to ask class-specific questions to understand the class semantics,
but they do not retain image-specific information. The rationale is that through con-
trastive learning, the transformer block queries should generalize the class semantics and
remain relatively stable, even with domain changes. In contrast, the pixel decoder features
contain image-level information that varies with each image or domain. Thus, the pixel
decoder features answer class-specific questions posed by the queries in the transformer
block (see Figure 1). The four pixel decoder features are upscaled to the size of the input
image, and their pixel-wise average provides a single per-pixel feature matrix.

4.7.2 Sampling Method for Contrastive Learning

In the original implementation of pixel-wise contrastive loss [43], each unique class in each
image serves as an anchor class. In our approach, the definition of “anchor class” varies
depending on the type of training.
During standard training sessions without continual learning methods (e.g., CaDIS train-
ing), all images in the batch contribute to the calculation of anchor classes, as illustrated
in Figure 10. Conversely, in the subsequent continual learning tasks with replay strategies
which are proven to be very effective at mitigating forgetting (e.g., Cataract-1K training
with replay), only the images from the current task are used to determine the anchor
classes, as shown in Figure 11.
Moreover, in standard training sessions, for each unique class in an image, easy-positive
and hard-negative pixels are sampled equally from within the image and from the com-
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Figure 11: Pixel sampling pipeline in contrastive learning with replayed samples in the
batch.

bined pool of all other images in the batch. In contrast, during continual learning tasks,
for each unique class in a given image from the current task, pixels are sampled equally
from within that image and from the pool of all images from previous tasks included in
the batch. The total number of easy-positive and hard-negative pixels is kept equal, as is
the distribution of sampled pixels from the current image and the relevant other images
in the batch. If there are insufficient pixels in any category, additional pixels are sampled
from the complementary set to compensate for the shortfall.

4.7.3 Weighted Contrastive Loss

In order to address the class imbalance in the datasets, the weighted contrastive loss is
implemented (see Figures 6 and 7). Class distributions, pi, are calculated for the training
dataset of the current task prior to training. We denote the Common Classes shown in
Table 1 as C and calculate the weight wc assigned to each class c ∈ C as:

wc =
1− pi∑

j∈C(1− pj)
, (9)

The calculated weights are used in our pixel-wise contrastive loss.

4.7.4 Contrastive Learning with Prototypes

In the original pixel-wise contrastive loss implementation [43], all sampled pixels act as
anchors. To enhance our CL loss, we experiment with using prototype vectors as anchors.
Following the approach described in [35], we use five 256-dimensional prototypes per class.
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At the start of the first task training with CL, prototype vectors are randomly initialized
and trained alongside the model with the same learning rate, 10−4. By the end of this
training, these prototypes have effectively learned class semantics and can be utilized
as pre-trained anchors in the subsequent second task training. During the following
task trainings, the prototypes are fine-tuned with the same learning rate as the Swin
transformer backbone, 10−5. The training of prototypes is deliberately slowed down using
a lower learning rate to prevent them from changing significantly. Therefore, the class
semantics learned from the first dataset can be preserved more. The usage of prototypes
as transferred anchors offers a significant potential in learning and transferring domain-
invariant class information in a more effective way than standard CL approaches.

5 Evaluation

In this section, we evaluate our proposed methods. We compare various replay strategies,
knowledge distillation techniques, and the use of contrastive learning with and without
augmentation. The evaluation is conducted using standard metrics and tools to ensure
the reliability and reproducibility of our results.

5.1 Tools

For the project development, the following tools are used: Hugging Face for transformer
models, Weights and Biases to log the results and save the best performing models,
Paperspace to run the experiments. NVIDIA RTX A6000 is used for our contrastive
learning experiments and NVIDIA Quadro P6000 for other experiments.

5.2 Evaluation Metrics

After training, we evaluate the model on the test set of the current dataset task using
the mean intersection-over-union (mIoU). Following established practices in the study of
catastrophic forgetting [17], we denote the mIoU of the model trained on all tasks up to
p and evaluated on task q as mIoUp,q.
We utilize the average learning accuracy metric to assess the model’s performance across
the two domains (CaDIS and Cataract-1K):

average learning acc. =
mIoU0,0 +mIoU1,1

2
(10)

Additionally, we employ the forgetting score to quantify the decrease in performance on
the first task after training on the second task:

forgetting = mIoU0,0 −mIoU1,0 (11)

It is important to note that during the training on different tasks, we use the mIoU on the
validation sets to evaluate the model’s performance on the current task. The forgetting
metric is not considered when selecting the best model from the current training loop.
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5.2.1 Notations

We introduce the following notations used in this study. The training is conducted first on
the CaDIS dataset, referred to as the 0-th task, followed by training on the Cataract-1K
dataset, referred to as the 1-st task. We define the following mIoU scores of interest:

• mIoU0,0: The mIoU score of a model trained on CaDIS and evaluated on CaDIS.

• mIoU0,1: The mIoU score of a model trained on CaDIS and evaluated on Cataract-
1K.

• mIoU1,0: The mIoU score of a model trained on both CaDIS and Cataract-1K, and
evaluated on CaDIS.

• mIoU1,1: The mIoU score of a model trained on both CaDIS and Cataract-1K, and
evaluated on Cataract-1K.

5.3 Experiments

In this section, we present a comprehensive evaluation of our proposed methods. We begin
by establishing baseline performance metrics to assess the impact of catastrophic forget-
ting during training transitions. Next, we explore the effectiveness of various augmen-
tation strategies in enhancing domain generalization. We then evaluate the CMFormer
method and several replay strategies to mitigate forgetting. Additionally, we compare
different knowledge distillation techniques and examine the role of contrastive learning
both in isolation and combined with other methods. Finally, we investigate the use of
prototype vectors as anchors in contrastive learning.

5.3.1 Baseline Trainings

Table 2 summarizes the evaluation of two baseline methods for assessing forgetting during
training transitions:

• Naive Forgetting: Training initially on CaDIS followed by training on Cataract-
1K dataset resulted in a forgetting score of 14.47.

• Replay All: Replaying the entire CaDIS dataset during training on Cataract-1K
leads forgetting score of 6.79.

We can think of these numbers as upper and lower bounds for the forgetting score. Ad-
ditionally, when trained solely on the Cataract-1K dataset, the model achieved a mIoU
score of 77.84. In the following sections we try to improve the baseline results by applying
various methods.

Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Naive Forgetting 75 79.60 60.17 14.47 77.12
Replay All 75 75.24 67.52 6.79 74.78

Table 2: Performance results of baseline methods.
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5.3.2 Augmentation Trainings

Based on the experiments summarized in Table 3, we evaluate various augmentation
strategies to enhance domain generalization. Among these, color jittering augmentation
yields the highest mIoU score of 28.24. Consequently, we adopt color jittering augmen-
tation for subsequent augmentation trainings due to its superior domain generalization
performance. Lastly, it can be seen that focal loss does not give any improvements so we
didn’t continue using this loss.

Method mIoU0,0 mIoU0,1

No Augmentation 74.64 27.17
No Augmentation + Focal Loss 73.64 22.95
Color Jitter (p = 0.5) 72.23 28.24
Random Cropping 69.20 22.82
Color Jitter + Random Cropping 71.78 22.43
ColorAugSSDTransform (p = 0.5) 70.38 28.05
ColorAugSSDTransform (p = 1.0) 75.15 25.21

Table 3: Performance results of domain generalization experiments.

5.3.3 CMFormer Trainings

We evaluate the effectiveness of the CMFormer method in reducing domain gaps and
present the results in Table 4, where “All” refers to the following augmentations: Re-
sizeShortestEdge, RandomCrop, ColorAugSSD, and RandomFlip all together. These re-
sults do not surpass the best augmentation method, ColorJitter, that was simply aplied
on top of Mask2Former model as described in the previous section.

Method mIoU0,0 mIoU0,1

No Augmentation 72.33 23.35
Random Crop 71.25 18.13
ColorAugSSDTransform 73.85 27.69
ColorAugSSDTransform + Random Crop 68.72 25.55
All 71.70 16.94

Table 4: Performance results of CMFormer experiments.

We also conduct a forgetting experiment with the best-performing augmentation, Col-
orAugSSD, and obtain a forgetting score of 15.62, which again does not compare well
with other experiments and eventually decide to continue the subsequent experiments
without CMFormer.

5.3.4 Replay Methods

We conduct multiple experiments using all the replay strategies introduced in Sections
4.3 and 4.5, and present the results in Table 5. The backbone parameters were initialized
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using a pre-trained model on ImageNet [38], which is why we also include experiments
with a frozen backbone.
Our findings suggest that balanced batch replay generally outperforms merged batch
replay, as observed in the results for random replay. Additionally, using a small learning
rate for the backbone yields better results than freezing it. Furthermore, mean loss replay
appears to be the most promising approach to mitigate forgetting while simultaneously
learning new knowledge.

Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Naive Forgetting 75 79.6 60.17 14.47 77.12

Random Replay
(Merged)

75 79.73 60.16 13.4 76.64

Random Replay†

(Merged)
75 80.58 58.89 15.75 77.61

Random Replay
(Balanced Batch)

75 79.89 63.68 10.96 77.27

Random Replay†

(Balanced Batch)
75 78.65 63.5 11.15 76.65

Min. Loss Replay
(Balanced Batch)

75 77.36 59.64 15 76

Max. Loss Replay
(Balanced Batch)

75 79.27 57.48 17.16 76.95

RSS Replay
(Balanced Batch)

75 80.05 59.33 15.31 77.34

Latent Replay†

(Balanced Batch)
75 80.15 64.48 10.16 77.34

Mean Loss Replay
(Balanced Batch)

75 82.59 64.63 10.01 78.61

Table 5: Performance results of replay-based methods. Methods marked with † are trained
with a frozen backbone. The results for random replay methods are averaged over 3
experiments.

We hypothesize that minimum loss selection chooses samples that are relatively trivial,
leading to model overfitting. On the other hand, maximum loss selection picks samples
that are outliers and likely contain annotation errors, as discussed in Section 3.4.2. This
results in higher forgetting compared to naive sequential training. Consequently, we
decide to utilize mean loss replay with the balanced batch strategy for the remainder of
our experiments in this study.

5.3.5 Knowledge distillation

We compare the knowledge distillation techniques described in Section 4.4 with naive for-
getting and mean loss replay in Table 6. Additionally, we enhance the standard distillation
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approach by incorporating mean loss replay. The results indicate that the integration of
mean loss replay with knowledge distillation does not reduce forgetting compared to mean
loss replay alone. In one of the experiments, this approach even results in higher forgetting
compared to naive sequential training, which we consider the baseline for the worst-case
scenario.

Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Naive Forgetting 75 79.6 60.17 14.47 77.12
Mean Loss Replay
(Balanced Batch)

75 82.59 64.63 10.01 78.61

Knowledge Distil.
(Frozen Teacher)

75 75.92 63.77 10.87 75.28

Knowledge Distil.
(Updated Teacher)
(Mean Loss Replay)
(Balanced Batch)

75 81.51 63.53 11.11 78.07

Knowledge Distil.*

(Updated Teacher)
(Mean Loss Replay)
(Balanced Batch)

75 76.95 53.8 20.84 75.79

Knowledge Distil.
(Updated Teacher)

75 77.57 63.85 10.79 76.11

Table 6: Performance results of knowledge distillation methods. Methods marked with *
include hyperparameter optimization.

These findings suggest that the current knowledge distillation methods, even when com-
bined with mean loss replay, are insufficient for mitigating catastrophic forgetting. There-
fore, we focus on exploring alternative strategies to improve the model’s retention of
previously learned knowledge while learning new tasks.

5.3.6 Contrastive Learning only on Cataract-1K

Initially, the performance of the contrastive loss (CL) is tested on mean loss training,
which performs the best among the replay methods (see Table 5), using the standard
CaDIS training weights (without CL or any other modifications).
This approach is beneficial as it does not require additional training on CaDIS with CL.
A pre-trained model on the first dataset is sufficient to enhance metrics on new dataset
trainings with improvements like CL. The results in Table 7 support this hypothesis. A low
forgetting score of 9.38% is obtained without compromising too much on the Cataract-1K
test set predictions. On the other hand, the weighted-CL training increases the mIoU1,1

as expected; however, the forgetting score also increases. This shows that whenever
the model becomes too confident about the new dataset, forgetting of the old dataset
increases. This suggests that there is a trade-off between the old and new information.
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Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Naive Forgetting 75 79.6 60.17 14.47 77.12
Replay All 75 75.24 67.52 6.79 74.48

Mean Loss Replay
with CL

75 78.65 65.26 9.38 76.65

Mean Loss Replay
with CL-W

75 80.33 64.53 10.11 77.48

Table 7: Performance comparison of mean loss replay with contrastive learning (CL) and
mean loss replay with weighted contrastive learning (CL-W) against naive forgetting and
replay all.

5.3.7 Contrastive Learning on Both Datasets

Method mIoU0,0 mIoU0,1

CL 71.72 25.18
CL with Augmentation 75.05 26.72

Table 8: Performance of Mask2Former on CaDIS dataset using contrastive learning with
and without color jitter augmentation.

After the successful results in Section 5.3.6, the performance of the model is also tested
when CL is incorporated into the CaDIS training. Having identified color jitter as the most
effective augmentation method in the augmentation experiments, color jitter is employed
in the subsequent CL experiments.

Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Replay All 75 75.24 67.52 6.79 74.48

Naive Forgetting
with CL

75 77.00 60.31 14.75 76.03

Mean Loss Replay
with CL

75 77.8 64.04 11.02 76.42

Random Replay
with CL

75 78.28 64.33 10.72 76.66

Table 9: Performance of the Cataract-1K trainings with CL and augmentation using the
weights of the CaDIS training with CL and augmentation

The augmented version of the model outperforms the non-augmented one on both CaDIS
and Cataract-1K datasets, as shown in Table 8. As shown in Table 9, simply adding
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CL in the second training step does not, by itself, improve the forgetting score. Sample
replaying remains essential to mitigate catastrophic forgetting. Additionally, mean loss
replay did not outperform random replay in this experiment. We hypothesize that the
inclusion of CL in CaDIS training alters the effectiveness of replay methods, indicating
that mean loss may not be universally optimal as it is model-dependent. Furthermore, one
of the three random replay trainings yielded a forgetting score as low as 8%, suggesting
that there is a “better” subset of samples that can be replayed to reduce the forgetting
score.

5.3.8 Contrastive Learning with Prototypes

Method mIoU0,0 mIoU0,1

CL with Augmentation 75.05 26.72
CL-Prototypes with Augmentation 74.27 26.67

Table 10: Performance comparison of Mask2Former trained on CaDIS using standard CL
with augmentation and CL-Prototypes with augmentation.

In order to test if the prototypes are able to improve CL trainings even further, both of the
CaDIS and Cataract-1K CL trainings are done with prototypes. Prototypes are initially
trained on CaDIS and the results can be seen in Table 10. The pre-trained anchors are
transferred to the the Cataract-1K training where the mean loss replay strategy is used.
The mean loss replay trainings in Table 11 indicate that, prototypes, with their usage
as robust anchors, have more potential to mitigate the forgetting than the standard CL
training. It is worth noting that adjusting the prototypes’ learning rate in CaDIS and
Cataract-1K trainings could potentially further decrease the forgetting score.

Method mIoU0,0 mIoU1,1 mIoU1,0 Forgetting
Avg. Learning

Accuracy

Replay All (No CL) 75 75.24 67.52 6.79 74.48
Mean Loss Replay
with CL

75 77.8 64.04 11.02 76.42

Mean Loss Replay
with CL-Prototypes

74.27 80.87 63.71 10.56 77.57

Table 11: Performance of Mean Loss Replay with CL-Prototypes and augmentation, com-
pared to Replay All (No CL) and Mean Loss Replay with standard CL and augmentation.
In the Mean Loss CL-Prototypes training, weights of the CaDIS CL-Prototypes with aug-
mentation are used.
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6 Conclusions

In this study, we investigated various strategies to mitigate catastrophic forgetting in
domain-incremental semantic segmentation. Our evaluation encompassed different replay
strategies, knowledge distillation techniques, and the use of contrastive learning with and
without augmentation. The findings are summarized as follows:

• Contrastive Learning Effectiveness: Contrastive learning proved to be highly
effective in improving domain generalization and reducing catastrophic forgetting.
Specifically, the integration of contrastive learning with replay strategies signifi-
cantly enhanced performance metrics.

• Trade-Off Between Forgetting and Performance: Our experiments indicated
a trade-off between minimizing forgetting and maintaining high performance on
new tasks. When measures to reduce forgetting were implemented, there was often
a slight decrease in performance on the new task’s test set. This highlights the need
to balance retention of old knowledge with the acquisition of new information.

• Importance of Sample Replaying: Sample replaying is a crucial component in
overcoming catastrophic forgetting. Methods such as mean loss replay and random
replay showed substantial improvements in retaining previously learned knowledge
while learning new tasks. However, the effectiveness of replay strategies varied, indi-
cating the need for careful selection based on specific model and task requirements.

• Augmentation Strategies: Among the augmentation methods tested, color jit-
tering provided the best results in terms of domain generalization. Incorporating
effective augmentation strategies during contrastive learning further improved model
robustness and performance across different domains.

• Knowledge Distillation Limitations: The knowledge distillation techniques
evaluated did not significantly mitigate catastrophic forgetting compared to replay
methods. Even when combined with mean loss replay, these methods were insuf-
ficient to maintain high retention of previously learned knowledge, suggesting the
need for alternative or improved distillation strategies.

• Contrastive Learning with Prototypes: Our prototypes trainings showed that,
prototypes are powerful class representations and as pre-trained anchor vectors,
they can improve the performance of the contrastve learning. However, prototype
trainings require a hyperparameter search on their learning rate to slow down their
shifts in the new domain.

In conclusion, our study demonstrates that contrastive learning, particularly when com-
bined with effective sample replay strategies and augmentations, offers a robust solution
to mitigate catastrophic forgetting in domain-incremental semantic segmentation. How-
ever, a careful balance between retaining old knowledge and acquiring new information is
essential for optimal performance.
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7 Future Research

Given the time constraints of this study, we were unable to explore all potential approaches
for mitigating forgetting in continual learning. Our future research will focus on several
promising directions:
Firstly, we plan to investigate the use of prototypes with contrastive learning, experiment-
ing with both frozen and slowly updated prototypes for the classes.
Secondly, we observed that replay methods based on loss selection yield varying results
depending on the model checkpoints used. To address this, we intend to explore data-
dependent selection mechanisms, such as class-based sample selection, which may provide
more consistent results.
Lastly, we aim to evaluate our methods and validate our findings on standard bench-
marks for domain-incremental learning. This will help ensure the generalizability of our
approaches. We also intend to pursue publication of our research results in peer-reviewed
journals to contribute to the broader scientific community.



7 FUTURE RESEARCH 28

Bibliography

[1] Qi Bi, Shaodi You, and Theo Gevers. Learning Content-enhanced Mask Trans-
former for Domain Generalized Urban-Scene Segmentation. 2023. arXiv: 2307 .

00371 [cs.CV]. url: https://arxiv.org/abs/2307.00371.

[2] Nicolas Carion et al. End-to-End Object Detection with Transformers. 2020. arXiv:
2005.12872 [cs.CV]. url: https://arxiv.org/abs/2005.12872.

[3] Mathilde Caron et al. “Emerging Properties in Self-Supervised Vision Transform-
ers”. In: CoRR abs/2104.14294 (2021). arXiv: 2104.14294. url: https://arxiv.
org/abs/2104.14294.

[4] Fabio Cermelli et al. “Modeling the Background for Incremental Learning in Se-
mantic Segmentation”. In: CoRR abs/2002.00718 (2020). arXiv: 2002.00718. url:
https://arxiv.org/abs/2002.00718.

[5] Liang-Chieh Chen et al. DeepLab: Semantic Image Segmentation with Deep Convo-
lutional Nets, Atrous Convolution, and Fully Connected CRFs. 2017. arXiv: 1606.
00915 [cs.CV]. url: https://arxiv.org/abs/1606.00915.

[6] Ting Chen et al. A Simple Framework for Contrastive Learning of Visual Represen-
tations. 2020. arXiv: 2002.05709 [cs.LG]. url: https://arxiv.org/abs/2002.
05709.

[7] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Rep-
resentations”. In: CoRR abs/2002.05709 (2020). arXiv: 2002.05709. url: https:
//arxiv.org/abs/2002.05709.

[8] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-Pixel Classifi-
cation is Not All You Need for Semantic Segmentation. 2021. arXiv: 2107.06278
[cs.CV]. url: https://arxiv.org/abs/2107.06278.

[9] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. “Per-Pixel Classifi-
cation is Not All You Need for Semantic Segmentation”. In: CoRR abs/2107.06278
(2021). arXiv: 2107.06278. url: https://arxiv.org/abs/2107.06278.

[10] Bowen Cheng et al. “Masked-attention Mask Transformer for Universal Image Seg-
mentation”. In: CoRR abs/2112.01527 (2021). arXiv: 2112.01527. url: https:
//arxiv.org/abs/2112.01527.

[11] Arthur Douillard et al. “PLOP: Learning without Forgetting for Continual Semantic
Segmentation”. In: CoRR abs/2011.11390 (2020). arXiv: 2011.11390. url: https:
//arxiv.org/abs/2011.11390.

[12] Arthur Douillard et al. “Small-Task Incremental Learning”. In: CoRR abs/2004.13513
(2020). arXiv: 2004.13513. url: https://arxiv.org/abs/2004.13513.

[13] Evangello Flouty et al. “CaDIS: Cataract Dataset for Image Segmentation”. In:
CoRR abs/1906.11586 (2019). arXiv: 1906.11586. url: http://arxiv.org/abs/
1906.11586.

[14] Negin Ghamsarian et al. Cataract-1K: Cataract Surgery Dataset for Scene Seg-
mentation, Phase Recognition, and Irregularity Detection. 2023. arXiv: 2312.06295
[cs.CV]. url: https://arxiv.org/abs/2312.06295.

https://arxiv.org/abs/2307.00371
https://arxiv.org/abs/2307.00371
https://arxiv.org/abs/2307.00371
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2002.00718
https://arxiv.org/abs/2002.00718
https://arxiv.org/abs/1606.00915
https://arxiv.org/abs/1606.00915
https://arxiv.org/abs/1606.00915
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2011.11390
https://arxiv.org/abs/2011.11390
https://arxiv.org/abs/2011.11390
https://arxiv.org/abs/2004.13513
https://arxiv.org/abs/2004.13513
https://arxiv.org/abs/1906.11586
http://arxiv.org/abs/1906.11586
http://arxiv.org/abs/1906.11586
https://arxiv.org/abs/2312.06295
https://arxiv.org/abs/2312.06295
https://arxiv.org/abs/2312.06295


7 FUTURE RESEARCH 29

[15] Ian J. Goodfellow et al. An Empirical Investigation of Catastrophic Forgetting in
Gradient-Based Neural Networks. 2015. arXiv: 1312.6211 [stat.ML]. url: https:
//arxiv.org/abs/1312.6211.

[16] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV]. url: https://arxiv.org/abs/1512.03385.

[17] Tobias Kalb and JÃ¼rgen Beyerer. Principles of Forgetting in Domain-Incremental
Semantic Segmentation in Adverse Weather Conditions. 2023. arXiv: 2303.14115
[cs.CV]. url: https://arxiv.org/abs/2303.14115.

[18] Tobias Kalb, Björn Mauthe, and Jürgen Beyerer. Improving Replay-Based Contin-
ual Semantic Segmentation with Smart Data Selection. 2022. arXiv: 2209.09839
[cs.CV]. url: https://arxiv.org/abs/2209.09839.

[19] Tobias Kalb et al. “Continual Learning for Class- and Domain-Incremental Semantic
Segmentation”. In: 2021 IEEE Intelligent Vehicles Symposium (IV). 2021, pp. 1345–
1351. doi: 10.1109/IV48863.2021.9575493.

[20] Prannay Khosla et al. Supervised Contrastive Learning. 2021. arXiv: 2004.11362
[cs.LG]. url: https://arxiv.org/abs/2004.11362.

[21] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”.
In: CoRR abs/1612.00796 (2016). arXiv: 1612.00796. url: http://arxiv.org/
abs/1612.00796.

[22] Marvin Klingner et al. “Class-Incremental Learning for Semantic Segmentation Re-
Using Neither Old Data Nor Old Labels”. In: CoRR abs/2005.06050 (2020). arXiv:
2005.06050. url: https://arxiv.org/abs/2005.06050.

[23] V7 Labs. The Complete Guide to Panoptic Segmentation. Accessed: 2024-07-19.
2023. url: https://www.v7labs.com/blog/panoptic-segmentation-guide.

[24] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: CoRR abs/1606.09282
(2016). arXiv: 1606.09282. url: http://arxiv.org/abs/1606.09282.

[25] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002
[cs.CV]. url: https://arxiv.org/abs/1708.02002.

[26] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in Computer
Science. Springer International Publishing, 2016, 21â€“37. isbn: 9783319464480.
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Appendix

A Segmentation Tasks

Figure 12: Difference between different types of image segmentations [23].

B Additional Notes on Contrastive Learning

The experiments where CL is used in both CaDIS and Cataract-1K, trainings are done
under 30 epochs. The reasons are; the trainings took longer with the addition of CL, a
budget constraint on GPU usage and the best performing models are usually obtained
before the 30th epoch.
Secondly, we would like to elaborate on the pixel features taken from the pixel decoder.
Together with the last hidden state and the intermediate features of the pixel decoder, the
pixel decoder provides 4 image features with different sizes; [256,9,15], [256,17,30], [256,
34,60], [256,68,120]. These different sizes capture various levels of detail in the image. We
upscale these matrices using bilinear interpolation to the the input image size; 270x480.
Then, we compute the pixel level average of these 4 matrices to produce the final feature
matrix. Each pixel is represented with a 256-dimensional vector hence, our pipeline
doesn’t require an additional projection head that is used in the original implementation
[43]. We perform l2-normalization on the pixel features before the contrastive loss.
Furthermore, it is worth mentioning that the total number of easy-positive and hard-
negative pixels, in other words “n views” for the given batch, is dynamically calculated
for each batch. The formula can be found below:

n views = min((max samples / total classes),max views) (12)

where max samples is 1024, max views is 100 and total classes changes according to the
training type. “total classes” also changes with the training scheme. If there are not
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replayed samples in the batch, the “total classes” is the sum of the unique classes (anchor
classes) across all images in the batch. However, if it is a replay training, “total classes”
is the sum of the unique classes only from the new dataset images in the batch.
Finally, it’s important to mention that the pixel sampling methods explained in the
pixel-wise contrastive loss paper [43] are not implemented in their original project reposi-
tory. Therefore, our adaptation of the pixel-wise contrastive loss and the hard-anchor
sampling are based on their GitHub implementation: https://github.com/tfzhou/

ContrastiveSeg/tree/main.

https://github.com/tfzhou/ContrastiveSeg/tree/main
https://github.com/tfzhou/ContrastiveSeg/tree/main
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