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Abstract

Optical coherence tomography (OCT) is an imaging technique that captures micrometer
resolution of 3D images from within biological tissue. Tracking the OCT volumes of three
fluid types including Intraretinal Fluid (IRF), Subretinal Fluid (SRF), and Pigment Ep-
ithelial Detachment (PED) has proved to be helpful in medical treatment decision-making.
Recently, learning-based method for semantic segmentation has indicated superior per-
formance for medical image understanding and analysis, which benefit OCT volumes
component tracking as well. However, such a method requires a large amount of manual
annotations to supervise the training procedure. Domain adaptation technique is sug-
gested to be one possible technique to tackle such issue. The idea behind it is to leverage
a small amount of annotated dataset for training, and further utilize such model for the
unseen domain to generate plausible predictions with less requirement for annotations.
In this project, we first build a baseline UNet model to perform semantic segmentation
tasks and then investigate two methods for domain adaptation, namely the CycleGAN
and the FCAN method. We further evaluate all variants of our method on the RETOUCH
dataset with respect to both style consistency and semantic segmentation performance
in the target domain. The experimental results show that our methods can successfully
achieve adaptation on unseen domains and further effectively benefit semantic segmenta-
tion tasks requiring less effort for manual annotations.
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1 Introduction

Optical coherence tomography (OCT) is an imaging technique that capture micrometer
resolution of 3D images from within biological tissue. It can provide high-quality images
of the retinal structure and visualize the accumulated fluid within the intracellular space
of the retina to monitor diseases such as age-related macular degeneration (AMD). As
AMD is the major cause of blindness in developed countries, the developed treatment
regimens are deeply depend on the retinal bleeding or fluid accumulation. Therefore,
tools for quantitative assessment of retinal health are urgently needed.

1.1 Medical Image Semantic Segmentation

Tracking the volume of three fluid types including Intraretinal Fluid (IRF), Subretinal
Fluid (SRF), and Pigment Epithelial Detachment (PED) has proved to be helpful in
treatment decision-making[22][21][13]. Although 3D OCT images can visualize the re-
gion of the fluids, it acquires large amounts of information that is difficult to manually
interpret the changes of fluids. Thus, the quantitative measurements of the region size re-
quire automated computational algorithms. A fully convolutional neural network (FCN)
is typically used for such semantic segmentation tasks[12], in particular, the U-net[16]
structure is superior to other methods in segmenting medical images. In the RETOUCH
challenge launched in 2017, 8 teams are competing to create a representative benchmark
to evaluate algorithms for detecting and segmenting all three types of fluids[2]. Five of
the eight teams, including the first prize, built their models based on U-net. Therefore,
the network we used for segmentation is based on the U-net structure as well, which will
be illustrated in Section 2.3.

1.2 Domain Adaptation

Although the fully convolutional neural network has led to great advances in medical image
segmentation, the performance highly depends on the amounts of labeled samples and the
variation in the training and testing domain. In practice, marking medical images requires
expertise and the labeled data are often expansive or infeasible to obtain. In addition, the
domain on which the segmentation network is trained might have different appearance
distribution with the collected images. The variation often happens when the different
scanners are used, different imaging sequences, or the bias in patient cohorts[20]. One
way to close the performance gap is to apply domain adaptation, which is usually used to
solve the domain disparity problem and can be categorized into three types: supervised,
semi-supervised and unsupervised. Our work mainly focuses on unsupervised adaptation
which adapts domains without using labeled data from the target domain. We tackle
the adaptation task from two different directions: pixel-level adaptation and feature-level
adaptation. The CycleGAN model[27] provides an image to image translation, while the
FCAN[26] combines both pixel adaptation and latent space calibration. The detail of the
two methods will be illustrated in Section 3.
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1.3 Project Objectives

The objective of this work is to conduct a label-efficient unsupervised domain adaptation
for semantic segmentation. We realize domain mapping approaches that can generalize
to new domains with a minimal amount of annotations. In the article, we show the
reliable segmentation performance on two domain adaptation techniques. We also provide
a comprehensive comparison of each method on the appearance and the segmentation
results in both quantitative and qualitative ways.

2 Medical Image Segmentation

In this chapter, we will mainly focus on how we design and implement the segmentation
model that will be later used for evaluation on domain adaptation performance in Chapter
3. We first introduce the OCT dataset we experimented with, then formulate our problem,
introduce the implementation details and evaluation metrics. Finally, we carried out
several ablative experiments to study the effect of different loss settings and illustrate the
final segmentation performance of the trained models on Cirrus dataset and Spectralis
dataset.

2.1 RETOUCH dataset

OCT scans from the RETOUCH dataset are utilized in our experiments. The dataset
consists of 70 volumes in total collected from three different devices, with 24 volumes from
Cirrus (Zeiss Meditec), 24 volumes from Spectralis (Heidelberg Engineering) and the rest
22 volumes from T-1000 and T-2000 (Topcon). There are 128 B-scans for each volume
from Cirrus and Topcon, and 49 B-scans from Spectralis. In our experiments, we mainly
utilize volumes acquired from Cirrus and Spectralis, which give out 3072 2D B-scans and
1176 2D B-scans in total, respectively.
Three different classes of fluid manually labeled with ground truth in pixel-level for each
OCT B-scan: Intraretinal Fluid (IRF), Subretinal Fluid (SRF) and Pigment Epithelial
Detachment (PED).
In order to establish baseline evaluation for domain adaptation performance, we train
two independent segmentation baseline network for B-scans from Cirrus and Spectralis,
respectively. For these two different baseline models, We always select 18 volumes for
training, 2 volumes for validation, and 2 volumes for testing.

2.2 Problem Formulation

Before diving into the implementation details of the segmentation model, we would like
to formulate the semantic segmentation problem at first.
Given an input image I ∈ Rh×w (B-scan in our scenario), a segmentation model fθ
parameterized with θ is utilized to predict a label Ŷ (i) ∈ {1, ..., K} for each queried pixel
x with k being the number of classes and h× w being the resolution of the image. In our
scenario, K equals 4 since there are three different fluids and a background class in total,
and we resize the input B-scan to a resolution of 512× 512 for all of the experiments.
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Generally, fθ is modeled as a convolutional neural networks (CNN). In that case, the pa-
rameters θ are learned in a fully supervised manner from a training set S = {I(i), Y (i)}, 1 ≤
i ≤ N , with N training pairs of images I i together with the corresponding annotated
pixel-level labels Y (i). To supervise such model, a pixel-wise loss function L(fθ(I

(i)), Y (i))
that imposes penalization between discrepancy between predicted labels and annotated
ground-truth labels will be minimized to guide the model to learn a meaningful mapping
from color intensity to class label. We will introduce the pixel-wise loss in details in the
coming sections.
In practice, one-hot encoding is utilized to map the label Y (i) from R to RK to acquire
y(i) for training. As a result, fθ is also trained to provide a prediction on probabilistic
distribution of the class labels. To be more specific, given each pixel intensity of an input
image I

(i)
m,n ∈ R with (m,n) being the coordinate of the pixel, the model is formulated as

a mapping fθ : R→ RK to obtain scores on each class ŷ
(i)
m,n ∈ RK . During training phase,

we obtain the probability of the label k, 1 ≤ k ≤ K, through Softmax normalization
operator σ defined as following:

σ : RK → RK , σ(ŷ(i)
m,n)k =

exp(ŷ
(i)
m,n)k∑K

k′=1 exp(ŷ
(i)
m,n)k′

(1)

where z is the output scores of each class, and we normalize z to obtain class probability
distribution that summed to be 1.
While during inference phase, we simply take the class with highest score without Softmax
normalization as the final prediction Ŷ

(i)
m,n ∈ R:

Ŷ (i)
m,n = arg max

k′∈{1,...,K}
fθ(I

(i)
m,n)k′ (2)

2.3 Implementation Details

2.3.1 Fully Convolutional Neural Network

A shown in Fig. 1, The network architecture shares a similar structure as the standard
U-Net architecture [16], which is widely used in medical image segmentation problems.
We mainly made three modifications on top of the baseline architecture. First, we replace
every transpose convolution layer with bilinear upsampling layer. The second change we
made is to add Batch Normalization layer [10]after every convolutional block to stabilize
the learning process. Finally, a Dropout layer [18] was inserted before the final 1 × 1
convolutional layer for class prediction to avoid overfitting. During the training phase,
only a portion of the units were randomly sampled to be fed into the next convolutional
block, while in the testing stage, all the units were kept to generate the prediction. This
operation can reduce overfitting by preventing co-adpation on the training data.

2.3.2 Loss Functions

As described in the last sections, a pixel-wise loss function will be optimized to train the
model. During the training phase, we mainly experimented two different loss functions,
namely Cross-Entropy Loss and Dice Loss. We will give a more detailed definition in this
section.
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Figure 1: UNet architecture

Cross-Entropy Loss. The Cross-Entropy Loss is defined as the following:

LCE = − 1

h× w ×N

N∑
i=1

h∑
n=1

w∑
m=1

K∑
k=1

(
[(y(i)

m,n)k = 1] log(σ(ŷ(i)
m,n)k)

)
(3)

where [·] is the Iverson bracket, σ(·) is the Softmax operator for normalization defined

above , y
(i)
m,n is the one-hot encoded ground truth label, and ŷ

(i)
m,n is the predicted scores

on each class.

Dice Loss. We also experiment with Dice Loss, which aims to deal with the scenarios
where the positive and negative samples are strongly imbalanced in semantic segmenta-
tion. It is formulated as the following:

LDice = − 1

N

N∑
i=1

K∑
k=1

(
1−

∑h
n=1

∑w
m=1[(ŷ

(i)
m,n)k · (y(i)

m,n)k]∑h
n=1

∑w
m=1[(ŷ

(i)
m,n)k + (y

(i)
m,n)k] + ε

)
(4)

where y
(i)
m,n is the one-hot encoded ground truth label, and ŷ

(i)
m,n is the predicted scores on

each class, which shares consistent definition as above. ε is used here to ensure numerical
stability, and it is to 1× 10−5 in all experiments.

Finial Training Loss Finally, we combine Cross-Entropy Loss LCE and Dice LossLDice
together, with equally weighted effect as final loss L to supervise final segmentation models
trained on Cirrus and Spectralis dataset:
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L = LCE + LDice (5)

2.3.3 Training Strategies

Our models are implemented in PyTorch [14], using Adam optimizer [11] with a batch
size of 6 and an input/output resolution of 512×512 unless otherwise specified. We use a
learning rate of 0.001 at the beginning and half it every 15 epochs, and train for a total of
80 epochs on an NVIDIA Quadro P5000. The Dropout layer before the last convolutional
layer is initialized with a probability p = 0.3.
Due to the limited number of training samples of each device especially for Spectralis, we
also perform data augmentation to increase the robustness and invariance properties of
the network. We maily apply random horizontal flipping with a probability of 0.4, and
random rotation within −20◦ and +20◦ around image center with a probability of 0.5 to
each image during training phase. It is worth noting that during inference phase no data
augmentation is applied on input images.
We evaluate the performance of the segmentation models by computing the Dice score
accuracy on the validation set after every 5 epochs to select the best segmentation model
for later domain adaptation performance evaluation.

2.4 Evaluation Metrics

F1-score metric (Dice score). We use Dice Score to evaluate the performance of
the segmentation model and the improvement of the performance in segmentation tasks
before and after the image adaptation. Regardless of the background, we only consider
the dice score of the three fluid types. For each class, given two sets X and Y , the formula
is defined as following:

Dice(X, Y ) =
2 ∗ |X ∩ Y |
|X|+ |Y | (6)

where X denote the set of predictions and Y denote the set of one-hot encoded ground
truth label of the class, |X| and |Y | are the cardinalities of the two sets. We filter out
images within a batch that doesn’t include any pixels belonging to the class since we are
more interested in the non-empty label set Y 6∈ ∅.

2.5 Results & Ablative Study

In this section, we first present the ablative study results for different effect of the Cross-
Entropy Loss LCE and Dice LossLDice. Notably, every model variant for ablative study
is trained on Spectralis dataset. After deciding the best setting of the loss, we trained
two segmentation models with the same training strategy on Cirrus dataset and Spec-
tralis dataset, respectively. These two models will be further utilized to evaluate the
performance of the domain adaptation in the next chapter.
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Table 1: Performance on different model variants

Loss Setting Trained Dataset Test Dataset Mean-Dice IRF SRF PED

LCE Spectralis Spectralis 0.735 0.687 0.875 0.643
LDice Spectralis Spectralis 0.742 0.698 0.883 0.646

LCE + LDice Spectralis Spectralis 0.751 0.722 0.876 0.656
LCE + LDice Cirrus Cirrus 0.505 0.466 0.651 0.400

LCE + LDice Spectralis Cirrus 0.002 0.006 0.000 0.000
LCE + LDice Cirrus Spectralis 0.489 0.299 0.620 0.548

Loss effect As illustrated in Table 1, both Cross-Entropy Loss and Dice Loss can
contribute to the performance of the model. Since Cross-Entropy Loss can be treated as
a standard baseline choice for segmentation task, we mainly investigate how much the
Dice Loss can boost the accuracy in this section. It can be seen that the combination of
both losses yields the best performance of the model, so we opt to this loss setting for the
segmentation model training.

Segmentation Performance We trained two segmentation models on Cirrus dataset
and Spectralis dataset with the best training strategy exploited. From Table 1, we can
see that our segmentation models can generate reliable segmentation predictions and
successfully generalize well to unseen data sampled from the trained domain, which are
scans collected from Cirrus or Spectralis.

Generalization on Unseen Domain We also carried out cross-domain validation
experiments to verify the generalization ability of our model on unseen domain. It can be
seen that the model trained with Cirrus dataset reveals decay of performance when testing
on Spectralis dataset, while for the model trained on Spectralis dataset, it shows poor
generalization on unseen domain. We attribute it to the unequal amount of dataset since
the total amount of Spectralis dataset is approximately 30% of that of Cirrus dataset.
It is worth noting that in this project we don’t intend to design a model that is perfectly
robust across domains. Instead, the models that is able to generate accurate predictions
from trained domain and performs poorly on unseen domain are sufficient for us to assess
the domain adaptation performance, which also reflects the importance of cross-domain
adaptation for more robust predictions.

3 Domain Adaptation

3.1 GAN-based Methods

3.1.1 Cycle-GAN Framework

Cycle-GAN [27]is a framework trained with unpaired images drawn from two domains that
for allows bidirectional domain-to-domain translation. The two domains in our scenario
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would be Cirrus images and Spectralis images.
The goal of this method is to learn functions between two domains X and y with the
training samples drawn from their corresponding domain in a unsupervised manner. Here
we denote the training set from domain X and domain Y as {x(i)}, 1 ≤ i ≤ N , and
{y(j)}, 1 ≤ j ≤M .
The adaptation models consist of two mapping functions GY : X → Y and GX : Y → X,
which are generators parameterized using convolutional neural networks. Apart from the
generators above, two discriminators DX and DY are established as well to train the
corresponding generators GX and GY in an adversarial manner.
To illustrate, the generator GX receives input image y drawn from counterpart domain
Y and outputs a synthetic translated result x̂ = GX(y) which appeared to be drawn
from domain X. Meanwhile, the discriminator DX receives the synthetic results x̂ and
an unpaired sample x randomly drawn from the domain X.
Therefore, GX and DX together are essentially under a generative adversarial model
(GAN) setting, where GX and DX are pitted against each other in competition. On the
one hand, DX aims to distinguish between the translated samples and the real samples
drawn from domain X; on the other hand, GX is optimized to generate the synthetic im-
ages with high quality that are able to deceive DX . As for generator GY and discriminator
DY , they work in an analogous manner to GX and DX .
This training procedure is formulated as a min-max optimization guided by an adversarial
loss Ladv, which will be further discussed in the next section.

3.1.2 Loss Functions

As described in the last section, an adversarial loss will be optimized to train the gen-
erators and discriminators. In this section, we would first introduce the adversarial loss
that plays a key role. Besides, Cycle Consistency Loss, Style Transfer Loss and Content
Preserving loss utilized to boost the adaptation performance will also be discussed.

Adversarial Loss. Binary-Cross Entropy loss is applied to both pairs of generators and
discriminators as adversarial loss [5]. We can at first define The adversarial loss for one
pair of generator and discriminator, e.g, GX and DX , which is expressed as below:

Ladv(GX , DX) = Ex∼pdata(x)[log(DX(x))] + Ey∼pdata(y)[log(1−DX(GX(y))] (7)

where GX aims to minimize this objective against DX that tries to maximize it. Analo-
gously, the same adversarial objective is also designed for the other pair of generator and
discriminator, namely GY and DY : Ladv(GY , DY ).

Cycle Consistency Loss. As discussed in [27], even adversarial training could theoret-
ically guide the generators GX and GY to learn the distribution of the target domain, i.e.
X and Y . However, adversarial loss only is still not sufficient since it could possibly lead
the generators to map the same input images from source domain to the target domain
with random permutation. Therefore, a cycle consistency loss is proposed as a regulariza-
tion to constraint the space of mapping in the target domain. This is achieved by enforcing
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the two generators, namely GX and GY , to be cycle-consistent with each other. More
specifically, for each sample x drawn from domain X, the cycle-translated results (first X
to Y and then Y to X) shall be identical to its original input, i.e., x ≈ GX(GY (x)). This
behavior is formulated with pixel-wise L1 norm objective as the following:

Lcyc(GX , GY ) = Ex∼pdata(x)[‖GX(GY (x))− x‖1] + Ey∼pdata(y)[‖GY (GX(y))− y‖1] (8)

The success of Cycle-GAN mainly grounded on introducing cycle consistency loss Lcyc
that could reduce the space of possible mapping functions and further avoid mismatches
between input images and synthetic images that could occur due to unpaired training.
Moreover, Lcyc can also be well understood as a regularizer for contents preserving to
avoid random permutation as domain translation.
However, as discussed in previous study that pixel-wise losses for such regularization
usually fail to capture the perceptual aspect on human judgements [15]. Therefore, we
propose to appraise the style similarity and perceptual similarity for input images and
synthetic translated images in the feature space with extractor F , which further brings
the style transfer loss and content preserving loss. On the one hand, style transfer loss is
utilized to ensure the synthetic image shares a similar style and texture details as samples
drawn from the target domain by imposing a constraint on Gram matrices; on the other
hand, content preserving loss is applied to better ensure the semantics within the input
image is well preserved regardless of domain translation. These two losses can be treated
as a regularizer for each other as well.

Style Transfer Loss. Given input images x and its synthetic counterpart GY (x), we
feed them together to a feature extractor F to acquire multi-level feature maps and
compute the internal correlations at each level. These internal correlations are represented
by the Gram matrices, which is defined as:

Gr(x)lm,n = vec[F (x)lm]>vec[F (x)ln] (9)

where vec[·] is the vectorization operation, F (x)lm refers to the m−th channel of the
feature maps extracted in the l−th level from feature extractor F for input x.
The style transfer loss is further computed as follows:

Lstyle(GX , GY ) = E(x,y)∼pdata(x,y)

2∑
l=1

[
‖Gr(GY (x))−Gr(y)‖F + ‖Gr(GX(y))−Gr(x)‖F

]
(10)

where ‖ · ‖F represents the Frobenius norm, and we compare the style of features maps
from the first two layers of feature extractor F between the translated image and a random
sample randomly drawn from the target domain.

Content Preserving Loss. Content preserving loss is applied to ensure better seman-
tics preserving after domain adaptation, which is realized by comparing features maps
extracted. We formulate the content preserving loss as follows:

Lcontent(GX , GY ) = E(x,y)∼pdata(x,y)

4∑
l=3

[
‖F (GY (x))l − F (x)l‖1 + ‖F (GX(y))l − F (y)l‖1

]
(11)



3 DOMAIN ADAPTATION 11

where ‖ ·‖1 represents the L1 norm, and we only compare features maps from the last two
layers of feature extractor F between the original input and its translated counterpart.

Full Objective. Combining the above losses, the full optimization task of our proposed
model is given by:

min
GX ,GY

max
DX ,DY

L(GX , GY , DX , DY ) = Ladv(GX , DX) + Ladv(GY , DY ) + λcycLcyc(GX , GY )

+λstyleLstyle(GX , GY ) + λcontentLcotent(GX , GY )
(12)

where λcyc, λstyle and λcotent are weight factors to balance the effect of cycle consistency
loss, style transfer loss, and content preserving loss. We aim to solve:

G?
X , G

?
Y = arg min

GX ,GY

max
DX ,DY

L(GX , GY , DX , DY ) (13)

3.1.3 Feature Extractors

As discussed in Section 3.1.2, a feature extractor is desired to measure the difference re-
garding style and content after domain translation to boost the performance of adaptation.
In this section we will introduce 2 variants of feature extractors we experimented.

Discriminator-based Extractors For discriminator-based extractors, the discrimi-
nators are not only utilized to distinguish fake or real images, but required to extract
high-level features for the input images, which can be interpreted that the feature ex-
tractor is trained with generators and discriminators as well. We then take every level of
features from discriminators to compute style transfer loss and content preserving loss.
More specifically, the feature extractor F is defined as below:

F (z) =

{
DX(z) z ∈ X
DY (z) z ∈ Y (14)

where z could be real images or synthetic translated images. For instance, given x drawn
from domain X, it will be fed into DX for feature extraction, while the corresponding
feature extractor for its synthetic counterpart GY (x) would be DY since it essentially
belongs to domain Y after translation regardless of equality.

Shared Feature Extractors We also experiment with pretrained shared feature ex-
tractors similar to other works [1]. This feature extractor is trained together with a
decoder M using image reconstruction loss in an unsupervised fashion across domains.
The image reconstruction loss Lrec is defined as:

Lrec(F,M) = E(x,y)∼pdata(x,y)

[
‖M(F (x))− x‖1 + ‖M(F (y))− y‖1

]
(15)

The shared feature extractor F will then be utilized to compute the style transfer loss
and content preserving loss during the training of generators and discriminators with fixed
weights.
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3.1.4 Implementation Details

Network Architecture The generators are an encoder/decoder UNet-based architec-
ture with skip connections, enabling us to represent both deep abstract features as well
as local information. In encoder, we apply 6 consecutive downsampling blocks to the
input images, each block contains Leaky ReLU activation, convolutional layer and Batch
Normalization [23] [10]. As for the decoder, it shares a symmetrical structure with the
decoder, the only difference is that we replace the convolutional layer to transpose con-
volutional layer for upsampling.
For the discriminators, it uses 4 convolutional blocks, and each block contains Leaky
ReLU activation, a convolutional layer, and Instance Normalization [19], which aim to
classify whether overlapping image patches are real or fake.
As for the pretrained shared feature extractor, it shares a similar architecture to that of
the generator. The only modification we made is to replace the encoder with ResNet-18
[8].

Training Strategy Our models are implemented in PyTorch [14] using Adam optimizer
[11] with a batch size of 6 and an input/output resolution of 512 × 512 unless otherwise
specified. We use a learning rate of 0.0002 at the first 20 epochs and linearly decay the rate
to zero for the last 5 epochs. We apply random horizontal flipping and vertical flipping
with a probability of 0.5, respectively. For the factors λcyc, λstyle and λcotent that control
the relative importance of each loss term, we set it to 30, 0.1 and 0.1, respectively. We
also follow the strategy as previous work by applying a history pool of generated images
for discriminators and replacing the negative log-likelihood objective with a least-squares
loss to stabilize the model training procedure.
As for the shared feature extractor, we train it for 20 epochs with a batch size of 4 and
an input/output resolution of 512× 512 as well. We use Adam optimizer starting with a
learning rate of 0.0001 for the first 15 epochs, which is then multiplied with 0.1 for the
remainder.

3.2 FCAN Methods

Another possibility to tackle our problem is to use a method similar to Style Transfer with
some extensions. Style transfer [3] typically refers to an optimization technique, which
takes an image and extracts its style, and merges with the content of another image. A
state-of-the-art network named Fully Convolutional Adaptation Network builds upon this
idea and extends it with adversarial learning to directly perform semantic segmentation in
the target domain. We use the Fully Convolutional Adaptation Networks (FCAN) as our
baseline, which we intend to improve on. The FCAN network contains an Appearance
Adaptation Network (AAN) and a Representation Adaptation Network (RAN), where
the AAN focuses on the domain adaptation task and the RAN focuses on the semantic
segmentation task. The core idea of FCAN is to overcome the domain shift coming with
the domain adaptation under the appearance- and representation viewpoints [26]. The
major challenge of using FCAN as our baseline is the implementation: since there is no
code base and the description of the architecture is vague, we are not able to exactly
reproduce this project. We had to implement the network ourselves and searching for
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other possibilities to make the network working. Our proposed network is illustrated in
the Fig. 2.

3.2.1 Appearance Adaptation Networks (AAN)

The Appearance Adaptation Network (AAN) intends to make the images from the source
and target domain appear visually similar. The major idea is to use a white noise image
and iteratively optimize the image to have a similar appearance with the target image and
similar content with the source image. We replace the white noise image with a random
image from the target domain and interpret the AAN as an image-to-image translation.
The reason for using the source image is after experimenting we found it has less noise
than starting from the white noise image and it trivially has the same content (and style)
as the source domain, so our AAN could focus on changing the style. We employ the
two losses from the original FCAN to measure the similarity between the target and the
source image with the input image: the content loss and the style loss. We use a pre-
trained ResNet50 [8] as our backbone for feature extraction and register the response
maps at certain convolutional layer l as M l ∈ RNl×Hl×Wl . The content loss is defined as
the weighted per-pixel mean squared loss between input and source feature maps:

wlsDist(M
l
i ,M

l
s) (16)

The style loss is defined as the weighted per-pixel mean squared loss between the gram
matrix of the input and the target image feature maps. During the translation, we
randomly choose a subset of images from the target domain Xt = {xit|i = 1, ..., n} and
calculate the average of their feature maps to calculate the style loss:

wltDist(G
l
i, G

l
t) (17)

We weigh the style loss with a constant α to make our AAN focus more on adapting the
style. Our AAN translates all the images from the source domain Xs = {xis|i = 1, ...,m}
one-by-one to the target domain. The overall objective LAAN defined as

LAAN(xi) =
∑
l∈L

wlsDist(M
l
i ,M

l
s) + α

∑
l∈L

wltDist(G
l
i, G

l
t) (18)

with i denote the input image, t an image from the target domain and s am image from
the source domain.

3.2.2 Representation Adaptation Networks (RAN)

As mentioned before, while CycleGAN only focuses on domain adaptation, FCAN com-
bines the tasks of domain adaptation and semantic segmentation together. The Rep-
resentation Adaptation Networks (RAN) contains two branches: one adversarial branch
and one segmentation branch. The adversarial branch contains a discriminator and a
feature extractor. The discriminator consists of four Atrous Spatial Pyramid Pooling lay-
ers and attempts to differentiate between source and target feature representations. The
feature encoder is based on a pre-trained ResNet101 architecture and the network utilizes
this network to extract feature representations from the source and target domain and
subsequently performs feature-level image segmentation.
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We abandon this proposed feature extractor and replaced it with a U-Net encoder. The
original FCAN uses a ResNet101 network to generate image representation and then uses
bilinear interpolation to upsample the feature maps to the original size to perform pixel-
level classification. We believe by incorporating our pre-trained, more sophisticated U-Net
we can produce better segmentation results. Our idea is to use the down-sampling part
of our U-Net as a feature extractor, this U-Net encoder with shared weights is trained
in both the segmentation branch and the adversarial branch. We train our discriminator
and our U-Net encoder to make our original U-Net learn to extract domain-invariant
representations, while using the segmentation branch as supervision to fine-tune our entire
U-Net (including the U-Net encoder) to keep our segmentation loss at a low level. We
use the same objective function for RAN from the original FCAN to our modified RAN:

max
F

min
D
{Ladv(Xs, Xt)− λLseg(Xs)} (19)

The RAN calculates the adversarial loss Ladv as the average classification loss over all
spatial units and the segmentation loss Ladv is the same as our previous medical image
segmentation section.

Ladv(Xs, Xt) = −Ext∼Xt [
1

Z

Z∑
i=1

log(Di(F (xt))]− Exs∼Xs [
1

Z

Z∑
i=1

log(1−Di(F (xs))] (20)

We noticed that this could be seen as a standard Generative Adversarial Network (GAN)
[5], with the target domain feature as the true data and the source domain feature as
generated data.
However, after testing the RAN using the proposed standard GAN model we faced the
vanishing gradient problem: the model stops to improve after 15k iterations. This prob-
lem occurs when the trained discriminator becomes optimal and thus does not provide
any information for the generator to further improve. This is not the only problem that
occurred during training: we also noticed that by using the standard GAN the segmenta-
tion performance does not improve compared to the initial model. When evaluating the
segmentation results during training, we noticed a strong oscillation in the performance:
the model does occasionally produce better segmentation results, but we conclude that
there is not enough performance gain that we can conclude the RAN is improving our
model’s segmentation capability in the target domain.
Instead, we use the Wasserstein GAN [7] to counter this problem. The WGAN-GP uses
the Wasserstein loss with gradient penalty to achieve Lipschitz continuity and performs
better than the original WGAN with instead simple weight clipping. The overall objective
function is illustrated as follow:

LWGAN GP = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)] + λEx̂∼Px̂
[(‖∇x̂D(x̂)‖2 − 1)2] (21)

3.2.3 Implementation Details

The detailed illustration of our extended Fully Convolutional Adaptation Network is il-
lustrated in Fig. 2. Our network is implemented with the Pytorch framework. We use an
Nvidia RTX 2070s GPU for training. We use the same parameters for pre-training our
U-Net on the source domain and the AAN-transformed source domain as mentioned in
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Figure 2: Our proposed model based on the original FCAN. In the first stage, we pre-
train our U-Net on the source domain images. In the second stage, we use our per-trained
U-Net and jointly train our segmentation branch and adversarial branch.

the Medical Image Segmentation. We use the pre-trained ResNet-50 as our backbone for
feature extraction. For the AAN we use the activation maps of the five convolutional lay-
ers L = {conv1, res2c, res3d, res4f, res5c} as mentioned in the original paper. However,
the proposed hyperparameters from the original paper did not work well for our data sets,
instead, we found the following set of parameters by hyperparameter-tuning: the weight
α which balances the content loss and the style loss, the initial learning rate β, the max-
imum number of iteration I = 500, the 10 layer weights wls and wlt. Our weights using
ResNet50 are: α = 12358755.73, wls(conv1) = 1, wls(res2c) = 3.7, wls(res3d) = 13.97,
wls(res4f) = 43.15, wls(res5c) = 91.18, wls(conv1) = 1, wls(res2c) = 2.85, wls(res3d) =
8.16, wls(res4f) = 46.44, wls(res5c) = 74.68. Our weights using VGG19 are: α =
30000000, wls(conv1) = 0, wls(res2c) = 0, wls(res3d) = 0, wls(res4f) = 1, wls(res5c) = 1,
wls(conv1) = 1, wls(res2c) = 1, wls(res3d) = 1, wls(res4f) = 1, wls(res5c) = 1.
For the RAN we use our pre-trained U-Net and jointly fine-tune the RAN with segmen-
tation loss and adversarial loss. We use the training set of CIRRUS and SPECTRALIS
for training RAN and use a batch size of 2 because of the limited memory of our local
machine. The maximum number of iteration is set to be 20k, because we only want to
fine-tune our U-Net with our RAN pipeline and we also notice the vanishing gradient
problem after 20k.
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3.3 Original FCAN vs. proposed FCAN

The original Fully Convolutional Adaptation Network (FCAN) examined the usage of
the following architecture: ABN(adaptive batch normalization), ADA(adversarial domain
adaptation), Conv + ASPP (discriminator with an extended image region for classifica-
tion). We have successfully implemented all the mentioned architectures to achieve the
best performance. We extended the ASPP with Xavier weight initialization and examined
the usage of WGAN+GP to enhance the performance of adversarial learning.
For evaluating the impact of AAN on the FCAN, we only examined the two cases: we
use original samples from the source and the target domain images and secondly, we use
AAN-processed source domain samples and original samples. The reason for that is in
the original FCAN paper the author claims the first case has the worst and the second
case has the best performance.

3.4 Evaluation Metrics

We evaluate the quality of domain adaptation from two directions: appearance similarity
and segmentation performance.

3.4.1 Style Metric

The Effectiveness(E) statistics[25] is a quantitative evaluation metric that measures the
extent to which a given style has been transferred to the target. The higher the E statistics,
the adapted image has a closer appearance to the style image. The key idea of the E
statistics is to calculate the divergence between convolutional feature layer distributions
of the style image and the transferred image. The E statistics can be formulated as follow:

Ei = − log(DKLi
(N0||N1)) (22)

where DKLi
(N0||N1) is the KL divergence of i’th layers between the t-dimensional Gaus-

sian distribution N (µ,Σ) of the transferred image I0 and the style image I1. The KL
distance can be expressed as follow:

DKL(N0||N1) =
1

2
(tr(Σ−11 Σ0) + (µ1 − µ0)

TΣ−11 (µ1 − µ0)− t+ ln(
det Σ1

det Σ0

)) (23)

To calculate the parameters µ and Σ, we project the feature map of both style images
and transferred the image’s summary statistics to a t-dimensional representation. The
statistics of the style images are the average summary statistics over a randomly selected
volume from the Spectralis dataset. We randomly select one volume from the Cirrus
dataset to calculate the fixed projection basis. We use the pretrained VGG model to
obtain the convolutional feature map of layer Relu1 1, Relu2 1, Relu3 1, Relu4 1, and
Relu5 1. For each layer, we use dimensions 32, 48, 128, 256, 256 respectively. We in-
vestigated the E statistics through five convolutional layers and the average of 5 layers
and the first 3 layers. Since the lower layer of the convolutional features captures more
information of the image style[4], we use the average E statistic of the first three layers
to be the main quantitative metric to evaluate the style transfer.
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Figure 3: Correlation results between avg − 3 from style metric and Dice

3.4.2 Dice Metric

We use Dice Score to evaluate the segmentation performance on three fluid types before
and after the image adaptation. The idea of evaluating domain adaptation through the
segmentation tasks is that while the domain adaptation model successfully adapts the
appearance of an image to the style image, the segmentation model trained on style
images can better segment the adapted image and performed a higher score on the Dice
metric.

3.4.3 Correlation between Dice & Style Metric

We also utilize the CycleGAN model to further study the correlation between Dice and
style metric. As shown in upper 2 curves of Fig. 3, the performance of segmentation and
dice all indicate a rising trend. We further carried out the curve fitting between avg − 3
from style metric and Dice using tested results from different model variants of each epoch
to study the correlation between two metrics. The result illustrate a positive correlation
between them, which reveals the fact that the better the adaptation, the higher the
both performance. Therefore, we opt to utilize this two metrics to study the adaptation
performance of different methods. It is worth noting that style metric could reflect human
precepts on image quality as well. As shown in Figure 3, example with higher style metric
also indicates better appearance similarity to the target domain, which is in line with our
intuitive visual judgement.

3.5 Domain Adaptation Peformance

3.5.1 Style Metric Performance

We first compare all model variants for domain adaptation with respect to style consis-
tency. As can be shown from Fig. 4. All variants are able to provide synthetic results that
share high visual consistency with the target domain. To further investigate the style-
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Table 2: Performance on Style Consistency

Model E1 E2 E3 E4 E5 avg-5 avg-3

Upper Bound -0.134 -0.539 -1.921 -3.793 -4.710 -2.219 -0.865

Cycle-GAN -0.315 -0.494 -1.993 -3.919 -4.798 -2.304 -0.934
AAN -1.809 -2.200 -3.128 -4.511 -5.028 -3.335 -2.379

Lower Bound -2.416 -2.296 -3.981 -4.965 -5.187 -3.769 -2.897

consistency beyond human precepts, we evaluate the results of style metric proposed in
Section 4.1 as well.
As can be seen from Table 2, CycleGAN baseline obtain a higher value in style metric
compared to AAN baseline which is consistent with the qualitative results shown in Fig.4.
The lower bound is evaluate on the same test set of the Cirrus samples before adapted,
and the upper bound is evaluated on the test samples of the Spectralis. Compare to
the lower bound, both CycleGAN and AAN baselines can successfully transfer the source
images into images with target style appearance.

3.5.2 Semantic Segmentation Performance

Table 3: Performance on Semantic Segmentation Task

Model Mean-Dice IRF SRF PED

Cycle-GAN 0.561 0.578 0.720 0.386
AAN 0.527 0.512 0.719 0.349

FCAN 0.521 0.476 0.688 0.399

To further verify the effectiveness of our proposed adaptation models, we carried out
semantic segmentation experiments for the adapted results using the pretrained segmen-
tation from Chapter 2. There are several sources of the B-scans tested with correspond-
ing pretrained models: (1) Synthetic images from Cirrus to Spectralis using CycleGAN
methods tested with pretrained models on Spectralis dataset; (2) Synthetic images from
Cirrus to Spectralis using AAN methods tested with U-net model pretrained on Spectralis
dataset; (3) FCAN with the adversarial branch trained directly on Cirrus samples.
As can be seen from Table 3, CycleGAN baseline outperforms the other two methods on
the segmentation tasks. Fig. 5 shows the qualitative results of the segmentation tasks.
The segmentation results of CycleGAN baseline acquires the majority of ground truth
labels. It is worth noting that AAN requires only a small amount of style images and the
adaptation process is relatively easy compared to CycleGAN. Besides, the FCAN method
needs only a few hours of computation. Take the amount of data and the computational
effort into account, the results of AAN and FCAN are also acceptable.
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Figure 4: Qualitative results on style adaptation performance

3.6 Ablative Study

3.6.1 Ablative Study on CycleGAN

We further carried out several experiments to study the effect of proposed loss and different
feature extractors.

Effect of Cycle-Consistency Weight. We first carried out several experiments to
empirically find the best selection for the value of λcyc. As can be shown from 6, it can
be seen that when setting λcyc = 10, the model suffers a significant drop in both style
performance and segmentation performance. While for the other two model variants with
λcyc equalling 20 or 30, it shows a very marginal improvements with respect to both
performance. As a result, we empirically set λcyc = 30 and run all the other experiment
under such hyperparameter setting.
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Figure 5: Qualitative results on semantic segmentation performance

Effect of Loss Formulation. We also studied the individual effect of style transfer
loss and content preserving loss. As reflected from the results, content preserving loss
itself has a very marginal contribution to the performance and style preserving loss even
degrades the performance. We explain it is because style transfer loss could help to
generate higher quality results with realistic appearance to the target domain, while leads
to loss of semantic information, which causes a drop in performance. As a result, content
preserving loss acts as a regularizer for style transfer loss to further ensure the contents
shall be consistent with original input after translation. Therefore, we can observe a
significant improvement on performance of the full model with style transfer loss and
content preserving loss together compared with the baseline.

Effect of Feature Extractor. We then carried out experiment on different variants
of feature extractors. We can at first conclude that introducing style transfer loss and
content preserving loss regardless choice of feature extractors boost the performance to a
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Table 4: Performance on different model variants of Cycle-GAN

Loss Setting λcyc Feature Extractors Dice-Mean Style-avg-3

CycleGAN 10 - 0.312 -1.978
CycleGAN 20 - 0.476 -1.386
CycleGAN 30 - 0.487 -1.349

CycleGAN + Lstyle 30 Discriminators 0.458 -0.846
CycleGAN + Lcotent 30 Discriminators 0.505 -1.372

CycleGAN + Lcotent + Lstyle 30 Discriminators 0.561 -0.934
CycleGAN + Lcotent + Lstyle 30 Shared 0.511 -1.322

Figure 6: Performance of selected CycleGAN model variants w.r.t each epoch

certain extent. Moreover, we found that the discriminator-based feature extractor yields
better performance compared with shared feature extractor. We assume the reason lies
in that the discriminator-based feature extractors are essentially trained simultaneously
with generators and discriminators compared with pretrained shared feature extractor,
which potentially guides the discriminator-based feature extractors to learn better feature
representation for style and content measurement. It’s also worth noting that training
with discriminator-based feature extractors is much father than that with shared fea-
ture extractor since it requires no pretraining procedure and less computational effort
because the extracted features will be simultaneously stored during the forward pass of
discriminators.

3.6.2 Ablative Study on AAN

The major advantage of using an Appearance Adaptation Network (AAN) for domain
adaptation is because of its light-weightiness: one can easily use the same network and
apply it to another data set without any per-training. Because of its relative simple
network architecture, we are aware of its lack of performance compared to other networks
like CycleGAN. We therefore think, it is of great importance to focus on the time factor
of our AAN: the AAN should generate good results in a short period.
We compare the impact of using a different feature extraction backbone (ResNet50 vs
VGG19) and between using a different batch size of the target images. The reason we
compared it with VGG19 is because the original Neural Style Transfer paper uses VGG19
as backbone [3] and utilizes the first five convolutional layers to compute the style and
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content loss. Features extracted from deeper layers tend to have more style and semantic
information. ResNet has the ResNet blocks and skip connections architecture designs,
which allows us to train deeper network. We want compare the performance difference
using these two different architectural designs. The top 2 segmentation results of each
backbone are shown in Table 5.

Table 5: Dice score comparison with different batch size of target images and feature
extraction backbone (IRF/SRF/PED)

Epoch ResNet50 - 3 ResNet50 - 5 VGG19 - 1 VGG19 - 5

100 0.289 0.317 0.318 0.373
0.310/0.272/0.284 0.262/0.375/0.313 0.336/0.341/0.276 0.363/0.365/0.393

200 0.454 0.463 0.348 0.409
0.377/0.609/0.377 0.338/0.629/0.421 0.371/0.386/0.287 0.378/0.429/0.418

300 0.499 0.490 0.358 0.417
0.428/0.710/0.358 0.372/0.684/0.413 0.388/0.399/0.286 0.383/0.443/0.426

400 0.518 0.500 0.362 0.411
0.479/0.722/0.353 0.406/0.687/0.406 0.399/0.404/0.285 0.378/0.431/0.423

500 0.527 0.502 0.363 0.408
0.512/0.719/0.349 0.428/0.670/0.407 0.403/0.406/0.281 0.375/0.423/0.425

To summarize, when comparing the best results (independent of the number of iterations)
of each architectural design in Table 6 w.r.t time of each epoch, we found out that overall
the ResNet backbone outperforms the VGG backbone in the segmentation tasks. It is
worth noting that for the ResNet backbone, images adapted from the model with batch
size = 1 have the most similar style with the target image, however, the model with batch
size = 3 perform the best in semantic segmentation, even better than the model with
batch size = 5. Fig. 7 shows that for the dice metric, the ResNet backbone has great
progress on segmentation when epochs increase, while the curve of the VGG backbone
remains flat.

Table 6: Performance comparison with different model parameters and feature extraction
backbone

Parameters Backbone Style-avg-3 Dice-Mean IRF SRF PED Time(s)

500 (5) ResNet50 -2.760 0.502 0.428 0.670 0.407 0.25
500 (3) ResNet50 -2.379 0.527 0.512 0.719 0.349 0.2
500 (1) ResNet50 -1.471 0.425 0.463 0.589 0.222 0.1
500 (5) VGG -1.627 0.408 0.375 0.423 0.425 0.22
500 (1) VGG -2.137 0.363 0.403 0.406 0.281 0.09
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Figure 7: Performance of AAN with with different model parameters and feature extrac-
tion backbone w.r.t epoch

3.6.3 Ablative Study on FCAN

We now examine how the different design influences the overall performance of FCAN.
For the baseline we directly use the U-Net pre-trained on the Spectralis data set and test
it directly with samples from the Cirrus data set. We differentiate between two settings:
when training our adversarial branch we could either use feature representations from
Cirrus or AAN-processed Cirrus samples (Cirrus samples which appear like Spectralis).
By incorporating AAN transferred samples, we enforce our U-Net to also learn to segment
samples with the target style.

Table 7: Imoprovment achieved using FCAN

Design Choise RAN Data Mean IRF SRF PED

baseline Spectralis - Cirrus 0.002 0.006 0.000 0.000
FCAN (GAN) Spectralis - Cirrus 0.521 0.476 0.688 0.399
FCAN (WGAN) Spectralis - Cirrus 0.448 0.428 0.647 0.271
FCAN (GAN) Spectralis (AAN) - Cirrus 0.500 0.457 0.654 0.389
FCAN (WGAN) Spectralis (AAN) - Cirrus 0.422 0.589 0.544 0.133

We tested four different scenarios to evaluate the different design approaches of FCAN:
using the original images from Spectralis or using AAN translated Spectralis images.
We also evaluate the effect of using normal GAN and Wasserstein GAN for adversarial
training. We can see that against our previous assumption, the usage of simple GAN
for adversarial training and the usage of original images produce the best results. Since
we are trying to evaluate the results on the plain Cirrus data set, it might be beneficial
to let our network to learn to extract Cirrus-Spectralis invariant features. The usage of
WGAN with gradient clipping did not achieve the expected results: in the initial testing
it did demonstrate superior performance than normal GAN, we have to further analyze
the reason for the performance drop.
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Figure 8: Upper row: two samples from CaDIS with the original image, overall segmenta-
tion mask, per-category segmentation mask. Buttom row: two samples from Cataract101
with the original image, overall segmentation mask, per-category segmentation mask.
Each color defines a unique category of surgical tool.

4 Extras

4.1 Cadis - Cataract Data Set

The initial objective of the project is to evaluate the domain adaptation methods on
two medical imaging use cases: the Retouch data set (CIRRUS/SPECTRALIS) and the
Cataract data set (Cataract101/CaDIS) [17][6]. The segmentation task is to perform
pixel-wise segmentation of different categories of surgical tools in both domains. In the
Fig. 8, we provide some visualizations of the Cataract101 and CaDIS data set using our
custom dataloader, to give the reader a feeling about the task setting.
We managed to prove the efficacy of our models on the Retouch data set, but because one
of our team member dropped the project, we did not have enough time to also evaluate
our models on the other data set. Nevertheless, because of the light-weighted nature of our
defined Appearance Adaptation Network, we still managed to provide some qualitative
results of domain adaptation. In the following we depict three batches of images: images
from the the original CaDIS data set, images from the original Cataract101 data set and
AAN-processed images from the CaDIS data set. The reason we choose the the CaDIS
as our source domain is because it contains in total 4740 (3584/540/616) samples, while
the Cataract101 data set only contains 385 (237/61/87) samples. Finding a method to
translate images from the CaDIS to the Cataract101 data set would provide the better
gain. In the Fig. 9 we provide some qualitative results of our AAN-processed images.
We can clearly observe a change of style: the AAN-processed images appear to be more
dark and change from warm tone to cold tone. The AAN-processed images still maintain
details like blood vessels and one can still spot the medical apparatus. It is worth men-
tioning, we did perform any hyperparameter-tuning, instead we just use the same set of
hyper-parameters for the Retouch data set. It is justified to believe with some system-
atic hyper-parameter tuning the CaDis images will have a stronger resemblance with the
Cataract101 images.

4.2 Region Proposal Network

During the implementation of our segmentation baseline we encountered some difficulties
to get good segmentation: our segmentation results (IoU and DICE score) did not reach
a satisfying level. So we explored different methods to further boost the performance of
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Figure 9: CaDIS and Cataract101 samples and qualitative results when performing do-
main adaptation using AAN. Upper row: original samples form the CaDIS (left) and
Cataract101 (right) data set. Buttom row: two samples of image translation from CaDIS
to Cataract101.

Figure 10: Left 1: one original image from Cirrus with the bounding boxes. Left 2: the
segmentation masks with the bounding boxes per fluid category. Right 3-4: positive and
negative examples of the generated bounding box proposals (white). Positive bounding
boxes have large IoU values with the ground truth bounding boxes (green).

our model. One of the most common state-of-the-art network for instance segmentation is
Mask R-CNN [9]. One of the most important reason for its good performance is the usage
of a Region Proposal Network (RPN). Through literature research, we also found some
other projects incorporate a Region Proposal Network to perform instance segmentation
in medical domain. Xu et al. performs whole heart segmentation of cardiac CT volumes
by combining a 3D U-Net with Faster R-CNN (predecessor of Mask R-CNN) [24].
The main idea of RPN is to guide the network to focus on some important regions with
a higher probability of containing useful information for instance segmentation. We suc-
cessfully implemented an own RPN network, the major process can be summarized with
the following steps: we first use the VGG19 as backbone to extract image features. Then
we uniformly sample a fixed number of anchor points on the extracted, down-sized fea-
ture map. We use these anchor points as center points and put 9 varying-sized bounding
boxes around it. Finally, by employing two shallow networks the network the network
jointly outputs box regression and box classification [9]. In Fig. 10 we visualize some
intermediate results.
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We did not further follow this path, because after fixing the U-Net baseline, we got
acceptable results and our major focus was on the domain adaptation task. But because of
the simplicity and generalizability of our implemented Region Proposal Network, we could
consider incorporate this network into our future work to further improve the segmentation
results.

5 Conclusions

We have presented CycleGAN and FCAN methods that explore domain adaptation for
semantic segmentation on medical images. Particularly, we study the problem from the
viewpoint of both visual appearance-level and segmentation-level evaluation. In sum-
mary, CycleGAN performs the best on both style consistency and semantic segmentation
compare to AAN and FCAN. Additionally, adding both content and style loss can further
improve the adaptation results of CycleGAN. However, the AAN model and the FCAN
model have their own advantages. The AAN requires a minimum amount of target do-
main data for style transfer, which is quite beneficial for difficult to obtain style images.
The FCAN requires only a few hours for training, which can save computational effort
compare to CycleGAN. Both AAN and FCAN can obtain a reliable segmentation perfor-
mance. One possible direction of our future work is to conduct end-to-end training that
simultaneously trains the domain adaptation network and the segmentation network. In
such a case, it will be easier to evaluate the adaptation performance, and it is possible to
obtain better results on semantic segmentation.
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