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Abstract
Predictive uncertainty estimation on medical image segmentation tasks can provide risk
analysis in particular when applying deep learning methods for segmentation and is a new
and exciting branch of research. In medical image segmentation, an automatic process
of semantic segmentation on Optical Coherence Tomography (OCT) images (B-scans) of
the retina detects fluids representing different retinal diseases and thus can help to fa-
cilitate prognosis. Currently, modern machine learning methods including deep learning
have achieved state-of-the-art performance on semantic segmentation tasks. Specifically,
U-Net-based neural networks have dominated medical image segmentation, and have been
successfully applied on the OCT image segmentation challenge RETOUCH, which aims
at segmenting and detecting three fluid types in retinal regions of human eyes. Although
benchmark segmentation results have been established on the challenge, a credible esti-
mation of the uncertainty of the segmentation due to the input-output black-box charac-
teristic of U-Net is still missing. Therefore, we present a range of uncertainty estimation
methods on the RETOUCH segmentation task to obtain a reliable estimation of both
epistemic and aleatoric uncertainties and then evaluate the quality of this estimation
using calibration metrics to compare the quality of these methods.
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1 Introduction
1.1 Image Segmentation for OCT Scans
Macular edema resulting from the accumulation of leaked fluids within the retina causes
sudden and severe vision loss. Fortunately, this disease can be effectively treated by
several personalized treatment regimens, such as pro re nata (PRN) and treat & extend
(T&E). The injection decision in these regimens relies on the re-occurrence of retinal fluid
accumulation which can be readily imaged using OCT imaging[5]. The OCT visualizes a
high-resolution 3D image which includes a range of B-scans[11]. In the OCT images, three
types of fluid including Intraretinal Fluid (IRF), Subretinal Fluid (SRF) and Pigment
Epithelial Detachment (PED) (Fig. 1) are relevant to the imaging of biomarkers for
visual acuity and the personalized treatment regimens[5]. Clinical studies have proven
that quantifying the amount of the three fluid types as well as measuring their change of
volume and area are helpful to guide the treatment regimens[1, 22, 7].

Figure 1: The three fluid types on a 3D OCT image corresponding to specific colors:
Intraretinal Fluid (IRF), Subretinal Fluid ( SRF), and Pigment Epithelium Detachment
( PED) (Source: https://retouch.grand-challenge.org/Background/)

Unfortunately, manual quantification of the three fluids and their change via OCT scans
is nearly impossible due to the huge amount of information in the scans. Therefore, it
is necessary to establish automatic tools to achieve reliable quantification and analysis of
OCT images. In 2017, the RETOUCH challenge had been launched aiming to acquire a
state-of-the-art algorithm that detects and segments the three fluid types on a common
OCT dataset known as RETOUCH[5] which is also the dataset used in our project. In
the challenge, all eight participating teams applied deep-learning-based methods, in par-
ticular convolutional neural networks (CNN), which are a prevalent type of deep neural
networks (DNN) to implement segmentation. Besides, five teams among the eight built
their model based on fully convolutional neural networks (FCN)[19], in particular a very
effective variant of FCN named U-Net[23], which has dominated medical image segmen-
tation tasks since 2015 (including the first prize team SFU from Simon Fraser University,
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Canada who also used a U-Net based model in the RETOUCH challenge[20]). Although
modified architectures such as Attention UNet [14], UNet++[18] and UNet 3+[12] have
been proposed and achieve the state-of-the-art on their medical image segmentation tasks,
the improvements they achieved are minor when compared to U-Net.

1.2 Uncertainty Estimation for Neural Networks
However, the segmentation results obtained from CNNs on OCT images still lack predic-
tive uncertainty due to the mechanism of CNN architectures which output a predictive
distribution learned from the training dataset. Specifically, the distribution over observed
data may be different from that of training data because of noise (e.g. low signal-to-noise
ratio (SNR) on OCT images due to speckle[5]), and geometric transformations[26] (e.g.
eye motion artifacts when obtaining OCT scans). Additionally, out-of-distribution (OOD)
inputs (e.g. an unseen fluid type in the retina) may fool the prediction of DNNs, since
DNN models such as the aforementioned U-Net may not encounter OOD inputs during
training. These characteristics make the use of DNNs a potential risk in medical di-
agnoses, especially decision making based on the output of DNNs, since one does not
know to what extend the output can be trusted[21]. Hence, to quantify these risks, it is
crucial to develop uncertainty estimation for the safe deployment of DNNs on medically
decision-making applications.
A range of methods has been proposed to estimate two types of uncertainties – epistemic
and aleatoric uncertainty in DNNs. Firstly, epistemic uncertainty comes from the lack
of training data in parts of the input domain, so it can be reduced via the collection of
additional training data. This type of uncertainty can be quantified using approximate
Bayesian approaches such as variational inference[4, 9] and Monte-Carlo Dropout[9], since
full Bayesian neural networks, which would also provide such an estimation, are computa-
tionally almost intractable. In addition, non-Bayesian approaches, especially ensembling
probabilistic DNNs[17], also play significant roles for quantifying not only epistemic but
also aleatoric uncertainty[21]. Moreover, Test Time Augmentation[26] and Learned Loss
Attenuation[15] estimate the effect of different transformations on the input images and
thereby quantify aleatoric uncertainties. Finally, the probability of a model being wrong
about its prediction can also reflect the uncertainty of the prediction, as we will discuss
in later.

1.3 Project Objectives
Currently, nobody has established a benchmark of uncertainty estimation for the RE-
TOUCH segmentation challenge. As a result we mainly aim at constructing a base-
line framework which compares different uncertainty estimation methods including Test
Time Augmentation, Monte Carlo Dropout, Deep Ensembles, Dropout Deep Ensembles,
Learned Loss Attenuation, and Direct Error Prediction which is a method that we propose
for this task.
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2 Image Segmentation
Image Segmentation is a basic computer vision task that consists of partitioning a digital
image into disjoint regions (or segments). In this project, we focus on semantic image
segmentation, which aims at labeling every individual pixel with one of the classes from
a fixed set {1, . . . , C}.
In this chapter, we focus on how we build the segmentation model that we will later
perform uncertainty estimation on in Chapter 3. We first describe the dataset that we
will work with, introduce notation, and define our metrics of interest. We then move
on to describe our model and results in detail, including our network’s architecture, loss
functions, and training procedure.

2.1 The RETOUCH Dataset
The RETOUCH dataset [5] is a popular database of OCT scans of the retina for the detec-
tion of three types of fluid: Intraretinal Fluid (IRF), Subretinal Fluid (SRF) and Pigment
Epithelial Detachment (PED). These three fluid types, together with a background class,
form the set of classes {1, . . . , C} in our problem at hand (i.e. C = 4).
The training set consists of a total of 70 OCT volumes. Each volume (i.e. 3D scan of the
retina) consists of a total of either 128 or 49 2D B-scans with pixel-wise annotations by
experts. The entire dataset amounts to a total of 7064 B-scans. Since test data is not
publicly available, we leave out one third of the training data for testing purposes. Out
of the remaining two thirds, we use one tenth as the validation set. To avoid leakage of
patient information, data splits are always done at the volume level, hence preventing two
B-scans of the same patient from being used both during training and validation.
The 70 OCT volumes were acquired from three different device manufacturers, with 24, 24,
and 22 volumes obtained from Cirrus, Spectralis, and Topcon devices, respectively1. This
variability introduces a challenge for segmentation methods, as volumes from different
manufacturers differ significantly in terms of noise and resolution.
Another challenging feature of this dataset is its severe class imbalance. Since our target
retinal fluids typically accumulate sparsely in small regions, the vast majority of pixels
in B-scans do not contain any fluid and are labeled as background. In fact, only 1% of
pixels belong to either of the three fluids.

2.2 Notation
Before going any further, we formalize our problem at hand and introduce the notation
that we will use for this and all the upcoming chapters.
As explained in the introduction, our general task is to label each pixel from images
in our dataset with a class from a fixed set {1, .., C}. Formally, given a d × d image
X ∈ Rd×d, our goal is to learn a mapping F : Rd×d −→ {1, .., C}d×d that outputs the
per-pixel classes. In practice, we model F as a neural network FNN : Rd×d −→ Rd×d×C

that does not output the hard-assignments but, instead, a probabilistic mapping that
determines the per-class scores at every pixel. More specifically, for every 1 ≤ i ≤ d

1To be consistent with the original dataset configuration, we make sure that our own training, vali-
dation and test sets’ volumes are also uniformly distributed among manufacturers.
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and 1 ≤ j ≤ d, fij(X) := (FNN(X))i,j ∈ RC is a C-dimensional vector representing the
activation of the network for each class for the pixel at coordinates (i, j). In cases where
the input image X is fixed and clear from the context, we write fij := fij(X). To obtain
a prediction Ŷ ∈ {1, .., C}d×d, we just take:

Ŷi,j :=

(
arg max

c∈(1,...,C)
(fij)c(X)

)d

i,j=1

i.e. assign to each pixel the class with the highest activation. Also, for normalization
purposes it is common to apply the softmax function

σ : RC −→ RC , σ(fij)c =
exp (fij)c∑C

c′=1 exp (fij)c′

to the outputs. This does not change the prediction, as the relative ordering of activations
will stay the same, but proves to be useful for uncertainty estimation. In the following,
unless stated otherwise, we will assume that such a softmax has been applied to every
tuple fij, which in particular implies that the elements are non-negative and sum up to
1.
FNN will be learned from our training dataset, which we refer to as D := (X,Y), where
X ⊂ Rd×d is our set of images, and Y ⊂ {1, .., C}d×d our set of ground truth masks. For
every mask Y ∈ Y, we denote with Y one−hot its one-hot representation.

2.3 Evaluation Metrics
We now proceed to review the metrics we will use to evaluate the quality of segmentation
results.
Accuracy. We use accuracy to measure pixel-wise prediction errors. We define the
average accuracy for an image as:

Accuracy(Ŷ , Y ) :=
1

d× d

d∑
i=1

d∑
j=1

1[Ŷi,j = Yi,j]

Note that, since our classification task is severely imbalanced, accuracy is not a partic-
ularly meaningful metric. Indeed, since only ≈ 1% of pixels belong to a target fluid, an
average accuracy of ≈ 0.99% can be achieved by simply not predicting any fluid at all.
Hence, we mainly resort to alternative more informative metrics for our task.
Dice Score. The Dice Score is the main metric we use to evaluate the segmentation
quality of our output masks. For two sets A,B, such that either A ̸= ∅ or B ̸= ∅, we
define.

Dice(A,B) =
|A ∩B|
|A|+ |B|

Whenever A = B = ∅, we define Dice(A,B) = 1. Now, for every class c, let us denote
by Y one−hot = c (resp. Ŷ = c) the set of pixels in Y one−hot (resp. Ŷ ) belonging to class c.
We now define:

AvgDice(Ŷ , Y ) :=
1∑
c wc

C∑
c=1

wcDice(Ŷ = c, Y one−hot = c)
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Where {wc}Cc=1 is a set of non-negative weights that determines the contribution of each
class’ Dice score to the average.
To follow the RETOUCH Challenge evaluation procedure, we compute the Dice score
over voxels (instead of pixels) of entire 3D volumes, and report the average AvgDice
score across all test volumes2, with wc = 0 for the background class. Extending the
definitions above for 3D volumes is straightforward, but not done here for notational
convenience. For the experiments in Chapter 4, we set wc =

#pixels in the dataset
# background pixels in the dataset ,

that is, the inverse ratio of background pixels. We do so because in that case dice scores
are computed scanwise, and empty scans are much more prevalent than empty volumes.
Hence, we need a consistent way to evaluate scans with no fluid.

2.4 Approach
In the following sections, we describe the design choices, implementation details, and
results of our segmentation model, which we later will use for the task of uncertainty
estimation in Chapter 3.

2.4.1 Architecture

We use a U-Net architecture [23] for our segmentation model F . This is a common baseline
for biomedical image segmentation, and has shown good off-the-shelf performance for our
task. An illustration of the architecture is given in Figure 13.
We only make two small modifications upon the original architecture. The first one is
to add Batch Normalization [13] after every convolutional layer. Empirically, we observe
that this addition allows for much faster and stable training. The second change we make
is adding dropout [25] after every convolutional block. Despite this change yielding a
slight improvement in segmentation quality, its main purpose is to allow Monte Carlo-
based uncertainty estimation methods to be implemented on top of our network, as will
be explained Chapter 3.

2.4.2 Loss Functions

We have experimented using two standard loss functions as well as combinations of both
for our segmentation task: Cross-Entropy and Dice Loss. We now proceed to define both
of them.
Cross-Entropy Loss. We can use the Cross-Entropy Loss to optimize for pixelwise
classification performance. We define it as:

CrossEntropy(FNN(X), Y ) := − 1

d× d

d∑
i=1

d∑
j=1

C∑
c=1

wcY
one−hot
i,j,c log (σ(fi,j,c))

where wc denotes a non-negative parameter used to weight pixels from class c in the overall
loss. The standard way to define the Cross-Entropy Loss is by setting wc = 1 for every
c ∈ {1, . . . , C}. However, with such definition, just like with accuracy, this loss function
may not be best suited for our task. Given our dataset’s class imbalance, most of the

2Volumes with no fluid annotations are skipped during evaluation.
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terms in the sum above will correspond to background regions and hence, fluid regions
will have a comparably smaller contribution to the overall loss. To address this issue, wc

is typically given a value proportional to the inverse frequency of the given class in the
dataset. We will experiment with these parameters in Section 2.4.4
Dice Loss. Since our main segmentation metric is the Dice score, it’s natural to ask
whether there’s a differentiable surrogate for it, and the answer is affirmative. We first
define, for two arbitrary 2D tensors A,B ∈ [0, 1]d×d:

DiceLoss(A,B) := 1−
∑

i

∑
j (Ai,j ∗Bi,j)∑

i

∑
j (Ai,j +Bi,j) + ϵ

Where ϵ > 0 is a small constant used for numerical stability. Note that whenever A
and B are binary, DiceLoss(A,B) = 1 − Dice(A,B). Now, given an arbitrary tensor
Z ∈ Rd×d×C , let Z:,:,c denote the tensor corresponding to fixing the third dimension at
index c. We define:

AvgDiceLoss(FNN(X), Y ) :=
1∑C

c=1wc

C∑
c=1

wc ∗DiceLoss((σ(FNN(X))):,:,c, Y:,:,c)

where wc denotes a non-negative parameter used to weight class c in the overall loss and
in our experiments in Section 2.4.4 we will mainly experiment with setting wc = 0 for the
background class.

2.4.3 Training

We train our network end-to-end using an Adam optimizer [16] with a starting learning
rate 0.003 and betas set to default values. We multiply the learning rate by 0.5 every 10
epochs, and train for a total of 40 epochs, which takes around 8 hours on an NVIDIA Titan
X GPU. Images are resized to 512×512 and batch size is set to 4. During training, dropout
probability is set to p = 0.2 and no weight decay regularization is used. We also use
data augmentation during training, which means we apply random affine transformations
(rotations between −20° and 20° in 50% and horizontal mirroring in 25% of cases) to each
image, which is known to help with generalization.
At each epoch, we compute the average dice score over fluid classes in the validation set
and select the model corresponding to the epoch with the highest value.

2.4.4 Results

In this section, we present an ablation study in which we investigate the choice of our
model’s loss function. We experiment using either the Cross-Entropy Loss, the Dice Loss,
or a combination of both. Results are summarized in Table 1
Cross-Entropy Loss Variants. For the Cross-Entropy loss, we consider using its stan-
dard version (i.e. with wc = 1 for every class), or its weighted variant, in which every wc

is set to the inverse frequency of class c among all pixels from images in the dataset and
rescaled so that

∑C
c=1 wc = 1. Surprisingly, we observe that the latter works worse.

Dice Loss Variants. For the Dice Loss, we consider either setting wc = 1 for every c to
1 or setting wc = 0 for the background class and 1 for the remaining ones. We observe
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Table 1: Performance comparison among different model variants and a competing
method.

Setting
Metrics Dice Score

Mean PED IRF SRF

CE Loss wc = 1 ∀c 0.580 0.603 0.537 0.600
Weighted by Inv. Frequencies 0.524 0.523 0.494 0.556

Dice Loss wc = 1 ∀c 0.644 0.652 0.556 0.725
wbackground = 0 0.644 0.635 0.640 0.658

Dice + CE Loss wc = 1 ∀c 0.646 0.604 0.653 0.680
wbackground = 0 0.660 0.639 0.648 0.695

Helios team U-Net + heavy engineering 0.680 0.730 0.610 0.700

that this change does not improve the mean Dice Score, but does yield a more uniformly
distributed performance among classes.
Combining both losses. Lastly, we train the model with both loss functions (Cross-
Entropy and Dice) in an attempt to further boost performance. We experiment with
setting the background weight for the Dice loss to either 0 or 1 and observe again, that
the former works best and yields our top performing model.
External Comparison. Since we do not have access to the test set, we cannot directly
compare our method with most competing teams in the RETOUCH challenge. How-
ever, one of the competing teams, Helios, which finished in 6th overall position, did use
the same test set as us for their ablation studies3. Hence, we report their metrics as a
reference. Their approach also involves a U-Net (trained with Cross-Entropy loss), but
further includes heavily engineered preprocessing and postprocessing pipelines which we
do not use. Overall, our method performs comparably while being significantly simpler,
end-to-end trainable, and having access to less training data.

3 Uncertainty Estimation
With growing interest in not only the quality of the prediction itself, but also the es-
timation and quantification of a models uncertainty about that prediction, there is an
increasing number of different methods proposed for this task. As part of this project,
we adapted several of these approaches for the purpose of medical image segmentation,
tried to fit them in a unified framework and improve on them where possible.
Formally, the goal of uncertainty estimation is to estimate a second function U on top
of the segmentation prediction FNN introduced in Chapter 2, where U : Rd×d −→ Q,
and either Q = R (in which case we will talk of imagewise uncertainty estimation), or
Q = Rd×d, which is then called pixelwise uncertainty estimation. Either way, we expect
U(X) to reflect in some way the uncertainty the network has about its prediction Ŷ . For
the first few sections, we will focus on pixelwise uncertainties, while different ways to
estimate imagewise uncertainty are then discussed in Section 3.5.

3They performed 9-fold Cross-Validation and we report their performance over 3 splits vs our perfor-
mance on a single split, which means that they had access to significantly more training data.
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3.1 Baseline Approach
It is tempting to think of the magnitude of the network’s activation as a measure of its
certainty. This leads to the naive approach of treating every entry fijc := (fij)c as a
predicted probability for the corresponding class c. We then have two ways to estimate
the uncertainty from this: Either, we can calculate the entropy of that distribution:

−
∑
c

fijc log2 fijc

In addition, we may use the residual probability, that is (using c̃ = argmaxi∈(1,...,C) fij)∑
c ̸=c̃

fijc = 1− fijc̃

We will see in Section 4.5.2 that this approach is not sufficient to capture most uncertainty
of the network, but it can serve as a baseline to compare the more sophisticated methods
against.

3.2 Sample-based Methods
Usually, (U(X))ij is assumed to be some moment or other quantity derived from some
underlying probability distribution. This may sound rather vague, as the actual assump-
tions and models differ quite a lot for the different methods, but nevertheless it suggests
the use of a Monte Carlo approach, i.e. drawing multiple samples from the distribution
and then using them for the uncertainty estimation. We will call the methods resulting
from this sample-based methods. Figure 2 shows the general pipeline for sample-based
methods.
In our scenario, this translates to the following: For a given input image X, we generate
N ∈ N different samples (fij(X))Nn=1 (which we will denote by fn

ij), even though the way
these samples are generated will differ from method to method. The output of the model
is then computed as the mean of the individual samples, i.e. fij = 1

N

∑N
n=1 f

n
ij. For

the uncertainty, we use some quantity derived from either the mean fij or the individual
samples fn

ij. Possible choices are:

• The Monte Carlo estimation of the variance, averaged across all classes:
1
C

∑C
c=1

1
N

∑N
n=1

(
fn
ijc − fijc

)2

• The entropy of averages: −
∑C

c=1 fijc log2 fijc

• The average of entropies: 1
N

∑N
n=i−

∑C
c=1 f

n
ijc log2 f

n
ijc

• The residual probability 1 − fijc̃, where again c̃ denotes the class with the highest
value fijc:
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Figure 2: General principle of sample based methods

3.2.1 Monte Carlo Dropout

If we adjust the notation given in Chapter 2 to a Bayesian setting, following the outlines
of [9] and [24], we now assume that we don’t aim at representing an exact function output
Y = FNN(X), but rather want to estimate the conditional probability p(Y |X,D) (we
recall that D = (X,Y) is the training data). Using W to denote the weight matrix of the
neural network, this leads to

p(Y |X,D) =
∫

p(Y |X,W)× p(W|D) dW (1)

The above integral can be approximated using variational inference by minimizing the
KL-Divergence between the variational distributions q(W) and p(W|D) which gives us

p(Y |X,D) ≈ q(Y |X,D) =
∫

p(Y |X,W)× q(W) dW (2)

The weight matrix W in a neural network is layered. More specifically, W = (Wi)
L
i=1,

where L is the maximum number of layers in the network. This means we can sample
q(W) per layer as follows:

Wi = Mi × diag([zi,j]
Ki
j=1) zi,j ∼ Bernoulli(pi) i = 1, ..., L, j = 1, ..., Ki−1 (3)

Here Ki denotes the number of neurons in the ith layer and Mi are the variational
parameters to be optimized. With this, one can estimate the integral in (2) by Monte Carlo
sampling from q(W). Gal and Ghahramani [9] showed that this can be approximated by
performing dropout on the layer i of a network that has weights (Mi)

L
i=1, which is the

central idea of Monte Carlo Dropout.
To implement this, we added a dropout layer to the U-Net after each encoder and decoder
block excluding the bottleneck, as proposed in [24] and leading to the architecture depicted
in Figure 3.
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Figure 3: The U-net architecture after adding dropout layers (Source: Roy et al. [24], p.
3)

At test time, we keep the dropout layer activated, then we evaluate the model for each
input image N times resulting in N samples fn

ij. From there, we calculate the output and
uncertainty measures as described above.

3.2.2 Test Time Augmentation

Data augmentation, that is applying some form of rotation, reflection, noise or other dis-
tortion to input images of a neural network, is a common technique to prevent overfitting
and improve generalization during training. During test time however, it can be used to
predict the networks aleatoric uncertainty, as described in [2] and [26].
For this, we assume that the input to the network, an image X, has been generated
from an actual underlying image X0 by some corruption (which can stem e.g. from
technical or physical issues or inter-patient variability), which we will represent by some
affine transformation τβ consisting of rotation and mirroring, the amount of which is
parameterized by the random variable β, and additional noise ϵ, leading to the model
X = τβ(X0) + ϵ.
While we have access to the augmented image X and can (for every pixel) predict an
output fij(X), we are actually interested in the conditional distribution τβ(fij(X0))|X
whose mean we can use as prediction and the uncertainty of which we want to estimate.
The reason we apply τβ to fij(X0)

4 is that we care about the location of fluids in the actual
(possibly rotated) input image X. We can sample from this conditional distribution via
X0 = τ−β(X) − ϵ, which then enables us to use the standard Monte Carlo techniques
described above.
In practice, this translates to the following procedure visualized in Figure 4: We sample
from β and ϵ N times, generating N new input images Xn := τβn(X) + ϵn

5, collect the
respective predictions FNN(Xn), and finally reverse the rotation and mirroring to generate

4This is also a slight abuse of notation, as we apply τβ to the whole image and then select the specific
pixel. It would be more correct to write (τβ(FNN (X0)))i,j , but we feel that this does not add more clarity.

5Where we also used that β ∼ −β and ϵ ∼ −ϵ.



3 UNCERTAINTY ESTIMATION 13

Figure 4: Test Time Augmentation with two different samples. The noise is exaggerated
to be better visible.

the samples fn
ij.

3.2.3 Deep Ensembles

Lakshminarayanan, Pritzel, and Blundell [17] propose deep ensembles to achieve sim-
ple and salable predictive uncertainty estimation for the following reasons: Firstly, the
quality of uncertainty estimation obtained by Bayesian neural networks heavily relies on
whether the assumed prior distribution is correct and the approximation extent (that is
subject to computational constraints). Also, although Monte Carlo Dropout is relatively
simple to implement for real-world applications, its dropout rates are not tuned based
on the training data. Finally, it is assumed that an ensemble strategy is more powerful
in approximating the true representable function when the function does not lie in the
hypothesis space [8].
The central idea of ensemble methods is that instead of training only a single model, we
instead train N different models, each with different initial weights and a different shuffling
of the training data, assuming that each model will capture slightly different aspects of
the feature space. In contrast to [17], we do not use adversarial training (introduced
in [10] for encouraging local smoothness) that was implemented for robustness against
model misspecification and out-of-distribution examples, since their experimental results
indicate that it becomes barely helpful when ensembling more models [17] and it increases
computational costs to a great extent.
After obtaining all trained models {θ1, θ2, ..., θN}, we can simply generate samples fn

ij(X) :=

f θn
ij , i.e. consider the output of every ensemble member as a new sample. This now fits

nicely into the Monte Carlo framework that we established before and uncertainties can
be calculated as described above.

3.2.4 Dropout Ensembles

Based on Monte Carlo Dropout discussed in Section 3.2.1 and Deep Ensembles in Sec-
tion 3.2.3, Bachstein [3] proposes to combine both methods. This is achieved by using
an ensemble of models and additionally enabling dropout layers at test time for each of
them. One can then sample from each model within the ensemble alternatingly. The
premise is that by combining both methods one obtains a better approximation of the
overall weight distribution in comparison to considering Deep Ensembles or Monte Carlo
Dropout independently.
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3.3 Learned Loss Attenuation
Kendall and Gal [15] propose a sampling-free approach for aleatoric uncertainty estimation
for regression and classification tasks. In particular, the approach focuses on heteroscedas-
tic regression, i.e., it assumes that observation noise varies depending on the input image.
As we consider a segmentation task, we implement the part of the approach designated
for classification. For this, the uncertainty is modeled over the logit space of the output
of the neural network for each pixel and class, which in particular means that, in con-
trast to the previous methods, we assume that no softmax function has been applied to
fij. We now model the uncertainty by a parametric distribution over fij, optimizing the
parameters of the distribution during training.

Model Adjustments In order to incorporate this approach within our standard model,
we change each logit output fij of the network to predict two vectors instead: A mean
vector µij and log-variance log σ2

ij. This amounts to a change in the final feature map
dimensions from d × d × C to d × d × 2C. In order to ensure positivity of the variance
values, an additional exponential activation is applied to the log-variance output to obtain
the final output variance σ2

ij.

Training Using the outputs µij, σ
2
ij ∈ RC , one can parameterize the distribution over

the logits for each pixel fij ∼ N(µij, diag(σ
2
ij)). The overall objective then becomes

maximizing the log likelihood of this model given by

logEfij∼N (µij ,diag(σ2
ij))

[fijc̃] (4)

where c̃ is the groundtruth class for pixel i. Since this expectation is intractable, Kendall
and Gal [15] propose to approximate the expectation using Monte Carlo integration by
sampling from the logit distribution N times6. This is fast, as only a single forward
pass is required to obtain the means and variances of the logit distribution. Afterwards,
only sampling from the analytic distribution is required to approximate the integral,
which is comparatively cheap. Formally, this means we calculate fn

ij = µij + σijϵn, where
ϵn ∼ N (0, I), and then use 1

N

∑N
n=1 f

n
ij to calculate the loss. Since the model is able to

adjust the predicted variance for each logit output, it is able to reduce the expected loss
under the predicted distribution, which can be interpreted as a learned loss attenuation.
The average predicted variance 1

C

∑C
c=1 σ

2
ijc can then be used as an estimation of aleatoric

uncertainty, together with the same metrics the baseline uses.

3.4 Direct Error Prediction
Arguably, a good uncertainty estimate should reflect the probability of a model being
wrong about its prediction. A natural question then arises: Could we learn to output this
probability directly, and use the result as an uncertainty estimate?
We propose to do so by having a new branch of our U-Net output, for every pixel, the
probability that our U-Net labels it incorrectly. This can be casted as a pixelwise binary

6We stress that this is different from the sample based methods of the previous section. Here, we
sample during training, not during test time.
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classification problem and can be trained with the already available ground truth data.
We refer to this approach as direct error prediction and provide an illustration of it in
Figure 5.

Figure 5: Training pipeline with Direct Error Prediction

More specifically, we add a sequence of convolutional layers after our U-Net’s last feature
map in order to estimate uncertainty. During training, at every iteration we first follow
the pipeline described in Section 2.4.3. That is, we feed each image X ∈ Rd×d through the
U-Net, obtain our output mask FNN(X), compare it to the target mask Y and compute
our segmentation loss lseg(FNN(X), Y ). After that, we compute another loss term for the
new branch. We first define, for 1 ≤ i ≤ d, 1 ≤ j ≤ d a new target Yuncert ∈ {0, 1}d×d:

Yi,j,uncert =

{
1 if Ŷ = Yij

0 otherwise

That is, Yuncert is a a binary mask indicating the pixelwise errors in our segmentation Ŷ 7.
We then compute a new tensor g(X) by feeding the last feature map of the U-Net to the
newly added convolutional layers followed by a sigmoid activation, and treat the result as
our uncertainty estimate8. We then compute the binary cross-entropy loss between the
probabilities obtained and Yuncert, which we denote as luncert(g(X), Yuncert). Our final loss
l is computed as l = luncert(g(X), Yuncert) + lseg(FNN(X), Y ).
Note that this approach does not, in principle, require retraining an entire network from
scratch. Instead, the additional convolutional layer could be trained in isolation by min-
imizing luncert and leaving all other layers (and hence, also lseg) frozen. However, in our

7Recall that Ŷ is obtained by selecting the class with highest score from FNN (X) pixelwise.
8Note that we are effectively modelling our uncertainty score as the probability of our model’s seg-

mentation being incorrect
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experiments, we have observed that joint training of the segmentation and uncertainty
estimation branches yields a slight improvement in segmentation performance, and hence
we opt for it (see Table 2).
At test time, we obtain the uncertainty estimates with a single forward pass through the
network, using the same uncertainty outputs as during training. Optionally, we can also
use the same estimates the baseline uses, i.e., calculate entropy and residual probability.
Note that the only additional computation corresponds to the newly added convolutional
layers, and has no significant additional overhead, which makes the runtime of this new
method compare favorably to the alternatives.

3.5 Calculation of Imagewise Uncertainty
Up to now we have only discussed pixelwise uncertainties, which correspond to one un-
certainty value for every one of the d × d pixels in the input image. While this may be
desirable, e.g., to detect uncertainty about individual structures in an image or about
the size of these structures, in practice it is often more useful to have a single number
describe all of the confidence the network has in its prediction. For example, a hospital
may implement the policy to have an additional (human) expert review all scans with an
uncertainty value above a certain threshold.
There are several ways to estimate such an imagewise uncertainty: Firstly, it is straight
forward to aggregate the individual, pixelwise uncertainties which all our methods output
by taking the mean or maximum value, where we additionally considered taking the
average of only the top 1% of values to put less emphasis on the predominant background
pixels. However, this way of compressing information from single pixels into a global
picture turned out to perform very badly in our initial experiments, so we did not explore
it further.
However, for sample based methods (c.f. Section 3.2), there are two additional measures
available, which have been described in [24] and use global information of agreement
between the samples rather than focusing on individual pixels. For this, let Ŷ n denote
the n-th predicted segmentation (i.e. the n-th sample):

• inverted Dice agreement in samples (iDais): For any pair i, j of predictions, we
calculate the Dice score of i, using j as ground truth, then average all of these:

1− 2

N(N − 1)

N∑
i ̸=j

AvgDice(Ŷ i, Ŷ j)

• inverted IoU of samples (iIoU): For each class c, we take the intersection w.r.t. this
class of all samples and divide its size by the size of the union of all samples, then
average between all classes:

1− 1

C

C∑
c=1

|(Ŷ 1 = c) ∩ (Ŷ 2 = c)... ∩ (Ŷ N = c)|
|(Ŷ 1 = c) ∪ (Ŷ 2 = c)... ∪ (Ŷ N = c)|

In contrast to the other uncertainty measures used, the original formulations of these two
actually signal lower uncertainty for higher values, so can be seen as a sort of certainty
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metric. In order to be consistent among our metrics however, we choose to invert them (as
the original formulations assume values between 0 and 1, so will our inverted versions),
so that now higher values again reflect higher uncertainty.
We note that for the iDais, we actually calculate the Dice score with equal weights given
to all classes, even the background, and similarly the mean of the IoU of samples for
individual classes is also not biased. This differs from the way the Dice score is calculated
to assess segmentation quality (c.f. Section 2.3) to better reflect that agreement about
which regions are fluid-free should just as much reduce uncertainty as agreement on fluid
regions.

4 Results and Discussion
With a variety of different methods, each with different options for how to compute
pixelwise and imagewise uncertainties, this section aims to compare their performance in
our setting and evaluate pixelwise as well as imagewise uncertainty estimation.
In order to compare different methods, we need a suitable measure for the quality of the
uncertainty estimation. There are a number of choices to judge this performance by a
single number, such as the Brier score (introduced in [6]), or the negative log likelihood
of the predicted class (used e.g. in [21]), but we choose an arguably simpler approach
that we consider to be more generally applicable to methods with different theoretical
backgrounds: Following the intuition that scans on which the model performs poorly
should also be assigned high uncertainty, while low uncertainty scans should almost always
be correct, we judge the performance of the uncertainty estimation by the strength of
the correlation between the predicted uncertainty and the quality of segmentation. For
pixelwise uncertainties, we consider all pixels of all test images, group them by their
predicted uncertainty values (we use bin sizes of 0.005, i.e., all values between 0.010 and
0.015 will be considered together) and then calculate the accuracy of this group. For
imagewise uncertainty estimation, we simply use the imagewise uncertainty score U(X)
together with the Dice loss9 for that image.
In either case, the performance of the uncertainty estimation is then reflected in a scatter
plot of these two quantities, which in the case of perfect uncertainty estimation should
cluster around a diagonal line, indicating perfect correlation.

4.1 Experimental Setup
In this section, we describe the setup and settings we used to run our experiments. For
sampling-based methods, the number of samples we use is 30. This number of samples is
decided upon based on an experiment detailed in Section 4.3

Monte Carlo Dropout The U-Net model is trained with a dropout rate of 0.2 and
the dropout layers are kept activated during test time.

Test Time Augmentation From inspection of the training data and heuristic exper-
iments, we perform the following data augmentations: Given a test image, we mirror it

9which we recall to be 1−AvgDice, calculated on a weighted version of the Dice Score (c.f. 2.3)
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horizontally with a probability of 0.33 and rotate it by a degree of β ∼ Unif([−20, 20])°.
To further simplify this, we replace the random sampling by deterministically mirroring
every third image and rotating in a fixed pattern.
Additionally, for each pixel xi, we add ϵ ∼ Unif [−0.1, 0.1] representing a uniform noise
where ∀xi, 0.1×max(xi) = 0.1.

Deep Ensembles & Dropout Ensembles For the ensemble methods, we train 10 U-
Net models according to Section 3.2.3. We restrict ourselves to 10 models due to the fact
that new ensemble models have to be retrained from scratch which requires significant
computational resources. Furthermore, [17] shows that there is diminishing benefit in
adding further models to the ensemble.
For the final Dropout Ensemble method, we consider the full 10 models, but also show
results for the case of 2 and 5 models in Section 4.3. For the final sample size, each
ensemble member is sampled 3 times using Monte Carlo Dropout as described above to
obtain 30 samples in total. In general, for a ensemble of M models, N total samples are
generated by sampling every member ⌈N

M
⌉ times.

Loss Attenuation In contrast to [15], who use a Laplace distribution in their evalua-
tion, we instead use a Normal distribution to parameterize the logit distributions. The rea-
son for this are numerical instabilities we experienced when using a Laplace distribution.
Further, we set the number of samples approximating the expectation in Equation (4) to
10 during training.

Direct Error Prediction For the error prediction branch, we use a single convolutional
layer with kernel size 1× 1 and a single output channel.

4.2 Segmentation Performance with Uncertainty Estimation
The performance of the model should not be negatively affected when applying uncer-
tainty estimation. Table 2 shows the Dice score per fluid calculated per volume, their
volumewise and scanwise mean on the OCT segmentation task. As we can see from the
table, except for the case of Test Time Augmentation (TTA), the per-volume model per-
formance is preserved or even improved when incorporating the uncertainty estimation
methods. Further investigation should be done to understand why the TTA method has
this behavior. It is interesting to see that when evaluating on a per image (B-Scan) ba-
sis, we see that TTA performs comparably to the other methods and that Direct Error
Prediction gives results that are significantly better than the rest.
Also, it is important to notice that here the means per B-Scan values are higher as we do
not skip all-background test samples. However, in the case of per-volume mean, we do
skip empty B-Scans from the volumes to be comparable to the RETOUCH benchmark.
This might also explain the differences in ordering amongst the methods.

4.3 Effect of Sample Size for Sample-based Methods
One of the most obvious parameters to tune is the sample size N for each of the sample-
based methods of Section 3.2. There is a clear trade-off between performance in terms of
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Table 2: Comparison of segmentation performance on OCT volumes after applying un-
certainty estimation methods.

Dice score
Method PED SRF IRF Mean (Per Volume) Mean (Per B-Scan)
Baseline 0.646 0.680 0.659 0.662 0.722
Monte Carlo Dropout 0.646 0.680 0.659 0.662 0.841
Ensemble 0.636 0.694 0.670 0.666 0.748
Dropout Ensemble 0.632 0.692 0.671 0.665 0.751
Test Time Augmentation 0.519 0.563 0.446 0.509 0.770
Loss Attenuation 0.651 0.663 0.635 0.650 0.722
Direct Error Prediction 0.677 0.685 0.656 0.672 0.912

the time it takes to generate the samples (i.e to evaluate the model multiple times) and
the quality of uncertainty estimation.
One way to specify the number of samples needed to reliably quantify uncertainty is the
following: If Ui, Uj ∈ Rd×d are one of the types of uncertainty maps defined in Section 3,
obtained from using i and j samples respectively, then we compute

E[|Ui − Uj|] :=
1

d2

∑
k,l

∣∣∣∣(Ui)kl − (Uj)kl

∣∣∣∣
Once this value get small enough, we get the cut off value for N .
Figure 6 shows the results when using different uncertainty methods for our four types
of uncertainty maps. From the graph, one can see that using more samples does not
add much value at some point, as the change in the uncertainty maps becomes smaller
and smaller. Based on this, we decided to have a cut-off at 30 samples as the change
in the uncertainty maps becomes negligible afterwards, while time still increases linearly.
We also note that Test Time Augmentation seems to converge less stably than the other
methods, but also fix the sample size at 30 to be comparable.

4.4 Quality of Imagewise Uncertainty
As discussed in Section 3.5, it is often desirable to aggregate the d×d pixelwise uncertainty
values that all methods produce into a single imagewise score. We explored the inverse
Dice agreement in samples (iDais) and inverse IoU per sample (iIoU), which unfortunately
limit us to sample-based methods only. For all four of these, both measures are compared
in Figure 7.
We see overall good performance for all combinations of measures and methods (recall
again that good performance corresponds to high correlation, i.e. a tight diagonal line in
the plots), but notice three horizontal clusters in the iIoU, which are most prominent in
the case of Test Time augmentation, but occur in principle for all metods: These result
from the fact that iIoU is a very strict metric, in the sense that the intersection is taken
over all samples, so a fluid missing from a single prediction will have a heavy impact on
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Figure 6: Mean absolute change in B-Scan Uncertainty Maps when switching from using
i to j samples. We have 4 different methods to generate the uncertainty maps Ui and
Uj. Each of the graphs here shows the E|Ui − Uj| × 103 as we use add more samples to
compute Ui and Uj

Figure 7: Performance of iDais and iIoU as a measure of imagewise uncertainty for all
sample based methods. The horizontal and vertical clusters discussed in the text are
clearly visible.
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the score. The horizontal stripes reflect then cases where 1, 2 or 3 fluid types are missing
from some samples, so the IoU for these categories will be 0, affecting the overall score.
Similarly, iDais has some issues, as we can notice two horizontal artifacts at Dice loss
values close to 0 and 1. These correspond to empty images that are predicted correctly
in the first case and images with a small fluid patch present in either the ground truth
or the prediction in the second. In both cases, if some samples predict fluid patches, but
some do not, we will assign a medium uncertainty value, leading to these clusters in the
graph. These cases are a inherent feature of our uncertainty prediction (sometimes, the
model will be somewhat unsure even though it is completely correct or completely wrong),
but they make it hard to compare the quality of uncertainty estimation from these plots
alone.
However, an objective comparison can be made via Confidence-Accuracy Curves10 which
have been introduced in [17]. For these, we set different thresholds for the iDais and iIoU
at 0.05, 0.1, 0.15, ..., 1.0 (which is the highest possible value for both metrics) and calculate
the average Dice loss for all images with an iDais lower or equal to the threshold. This is
similar to a receiver operating characteristic (ROC) curve used to evaluate classification
quality and mirrors what might happen in practice, where scans with a high estimated
uncertainty might be redirected to a human expert for further judgment. However, unlike
for a ROC curve, a random uncertainty classifier in this case would correspond to a straight
line, as its provided uncertainty values would not carry any information in regard to image
quality. Using these curves, we compare the four sample based methods in Figure 8,
where we find that Test Time Augmentation and the two Ensemble methods show similar
behaviour, while Monte Carlo Dropout shows less signs of a good discrimination, i.e.
referring uncertain images to human epxerts does not improve performance in the same
way it does for the other methods. We hypothesize that this reflects the fact that our data
set is uniform11, so aleatoric uncertainty plays a bigger role, and as Monte Carlo Dropout
is designed to measure epistemic uncertainty, this explains the difference in behaviour.

4.5 Quality of Pixelwise Uncertainty
In a second part of our discussion, we are focusing on the performance of the uncertainty
estimation methods when considering pixelwise predictions. For this, we follow a similar
approach as in the imagewise discussion in Section 4.4, however, we show correlation plots
on a pixelwise prediction scale. We recall the different measures we introduced in Section
3: For sample-based methods, we can calculate the variance among samples, the average
entropy, entropy of averages or the residual probability. For the other three methods, we
always can calculate the entropy12 and residual entropy as well, but in case of Learned
Loss Attenuation and Direct Error Prediction also have the predicted uncertainty the
networks use during training available as an uncertainty measure at test time.

10We neither use confidence, nor accuracy, but rather iDais/iIoU and the Dice loss, but we still choose
to keep the original name.

11While we do have three different devices, all of them are well represented in the data set, so none
can be considered to be out-of-distribution.

12This corresponds to the entropy of averages in the sample-based case.
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Figure 8: Confidence-Accuracy Curves for iDais/iIoU and all four sample based methods

4.5.1 Sample-based Methods

We first analyze the sample-based methods as they share the same set of uncertainty
measures. Firstly, we show correlation plots for the sampled-based methods on the re-
spective metrics in Figure 9. For a sound uncertainity estimation method we expect a
strong correlation between the uncertainty and the performance of the model. Thus, we
can directly compare the methods based on correlation which is shown in Table 3. Test
Time Augmentation in general outperforms the other methods on this benchmark.

Table 3: Pearson’s correlation coefficient of the respective plots in Figure 9

Correlation MCD Ensemble Dropout Ensemble TTA
Variance 0.888 0.693 0.515 0.944
Average Entropy 0.755 0.694 0.642 0.709
Entropy of Averages 0.713 0.498 0.725 0.840
Residual Probability 0.843 0.697 0.760 0.918

4.5.2 Baseline, Learned Loss Attenuation and Direct Error Prediction

For the three methods where no samples are generated, the variance and entropy across
samples cannot be computed. However, they all are able to use the entropy and residual
probability of the output distribution as uncertainty measure. Additionally, for Learned
Loss Attenuation and Direct Error Prediction we can also use the uncertainty that is
learned during training as an estimate at test time. Comparing the performance of these
measures in Figure 10, we observe that the uncertainty predictions of the baseline are not
very useful. While very low values indeed imply high accuracy13 and a lot of errors are
made for very high uncertainty values, a medium uncertainty holds almost no information

13This is very easy to achieve, as any method can just assign low uncertainty to background pixels,
which will be correctly predicted most of the time
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Figure 9: Performance of pixelwise uncertainty for all sample based methods. Each data
point in the image corresponds to one uncertainty value and the average error rate among
pixels with that value.

at all, which is reflected in the almost horizontal slope for each of the uncertainty measures.
This does not change significantly when considering uncertainty in training, as can be
seen from the minimal change in the behaviour of these curves for the other two methods.
However, the predicted uncertainties in both cases show more useful shape, as these have
more discriminatory value. They are also qualitatively very similar between these two
methods, but on rather different absolute scales.

4.5.3 Calibration

Finally, we report the calibration of the output softmax distribution of each method.
Intuitively, calibration measures that if a model makes a prediction with a certain proba-
bility, it should be correct in a corresponding percentage of cases, e.g., if it outputs 0.5 it
should be correct in half of the cases. In other words, calibration is a measure of how well
a model reports its own uncertainty. This relationship is usually captured in a calibration
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Figure 10: Performance of all non sample-based methods. Each data point in the im-
age corresponds to one uncertainty value and the average error rate among pixels with
that value. There is no predictive uncertainty for the baseline, as this is not part of its
architecture.

plot where one plots output probability versus the frequency of the model being correct
for that particular output probability. We construct this plot by binning the output
probabilities for each fluid class and pixel and then computing the frequency of the model
being correct in each bin. The resulting plot is shown in Figure 11 where the black line
x = y corresponds to a perfectly calibrated model. Based on this, we further report the
calibration error computing the absolute difference between the probability and frequency
of each bin where lower values correspond to better calibration in the caption. We observe
that TTA outperforms all other methods by a large margin, while the other sample-based
methods, i.e., both Ensemble methods and Monte Carlo Dropout, perform comparably,
with Dropout Ensembles having an edge since it obtains additional samples beyond the
10 samples of the standard Deep Ensemble. Both considered non-sample based methods
show similar calibration to the Baseline method aligning with the results in Figure 10
on the pixelwise entropy and residual probability, however they still benefit of their ad-
ditional methods to obtain uncertainty estimates through their model-specific prediction
heads whose training does not seem to influence calibration of the output distribution at
all.
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Figure 11: Calibration curve for all considered methods. Perfect calibration corresponds
to the black line x = y. Calibration errors for each method are reported in the legend.

5 Conclusion
In this project, we explored methods for uncertainty estimation in the context of medical
image segmentation of pathological fluids within the retina based on the ReTouch dataset.
We conducted experiments and hyperparameter tuning to obtain a baseline segmentation
model based on the U-Net architecture and to make the consecutive evaluation of the
uncertainty estimation approaches as comparable as possible. We implemented several
baseline methods for the task of epistemic as well as aleatoric uncertainty quantification
and added more recent approaches and our own proposal afterwards. While we have seen
that sample based methods such as Monte Carlo Dropout, Test Time Augmentation and
(Dropout) Ensembles outperform the more direct approaches in our experiments, we still
see a lot of potential for these, e.g. by deriving loss functions that are better suited to
the problem at hand. Altogether, we have provided a extensive study of the problem of
uncertainty estimation for optical coherence tomography and considered a wide range of
common methods. As with any field as vast as this, there is a large number of further
research to be done: The literature still hold a number of methods we have not examined,
not to mention all the ways in which the methods we have described may be improved.
Also, considering the special setting of OCR scans, one might think about additions
to our distinction of imagewise and pixelwise uncertainty: One could e.g. calculate a
single number for every connected fluid region, or, on the other hand, try to predict the
uncertainty for each class of fluid type separately. However, we hope to have provided
the suitable foundation and framework for these and other questions and are eager to see
them tackled.
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Appendix

Figure 12: Visual comparison of all proposed methods. The uncertainty estimates are in
the first row and the fluid prediction in the second row. The first column shows the input
B-scan to the network and the respective groundtruth fluid annotation. We superimpose
the input B-scan below uncertainty estimates and predictions for visual orientation. We
note in particular that the baseline approach simply traces the outlines of the prediction
as its uncertainty estimation, which is only of limited use in practice, justifying the need
for the more sophisticated methods.
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Figure 13: U-Net Architecture (Source: Ronneberger, Fischer, and Brox [23])
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