UNCERTAINTY ESTIMATION FOR DEEP MEDICAL IMAGE SEGMENTATION

DATA INNOVATION LAB

AUTHORS: Mohammad Alamleh, Guillem Brasó, Yu Chen, Sven Elflein, Martin Hermann

MENTORS: Dr. Ghazal Ghazaei, Dr. Alexander Urich (CARL ZEISS AG)

CO-MENTOR: Dr. Tobias Köppl (DEPARTMENT OF MATHEMATICS)

PROJECT LEAD: Dr. Ricardo Acevedo Cabra (DEPARTMENT OF MATHEMATICS)

SUPERVISOR: Prof. Dr. Massimo Fornasier (DEPARTMENT OF MATHEMATICS)

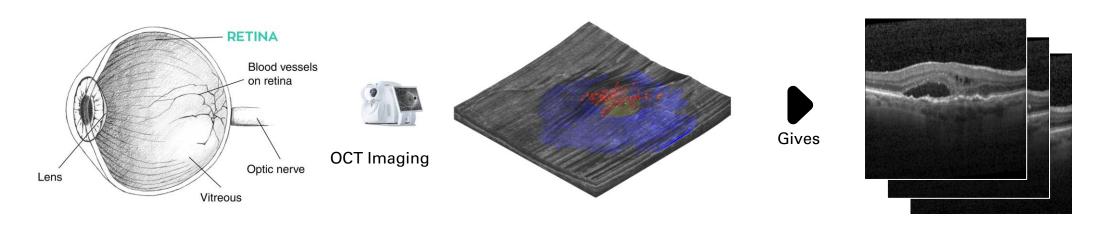
OUTLINE

Introduction Semantic Segmentation Uncertainty Estimation Conclusion

INTRODUCTION

Background Information Dataset - RETOUCH Semantic Segmentation Uncertainty Estimation

Background Information

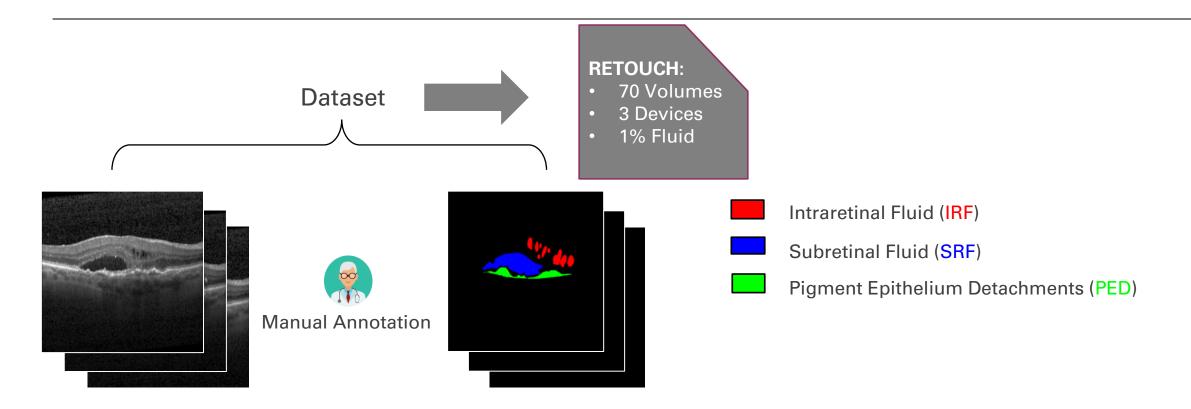


Anatomy of the Eye

3D RETINA with fluids: IRF, SRF, PED A volume of B-scans

How do doctors detect the fluids from B-scans?

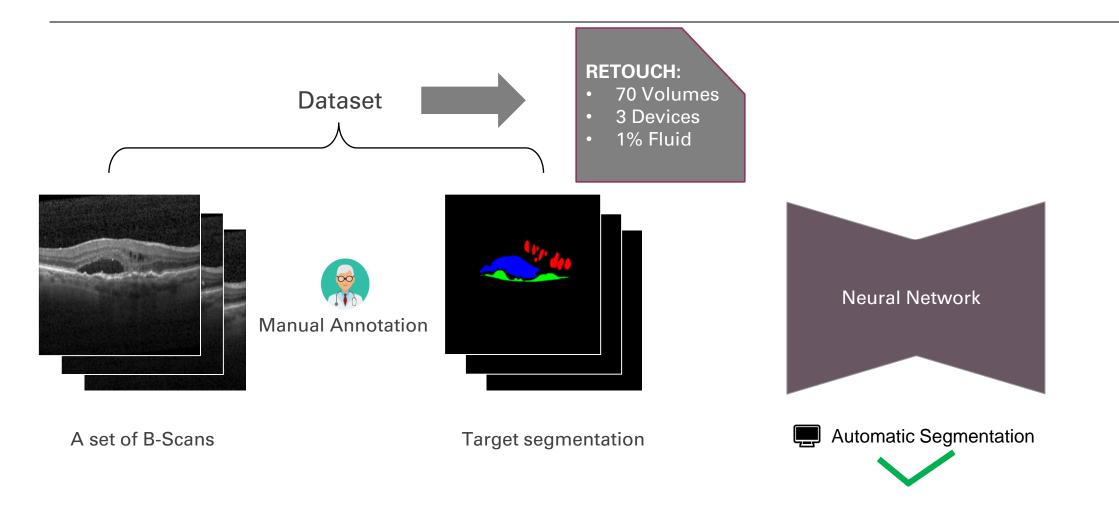
Dataset - RETOUCH



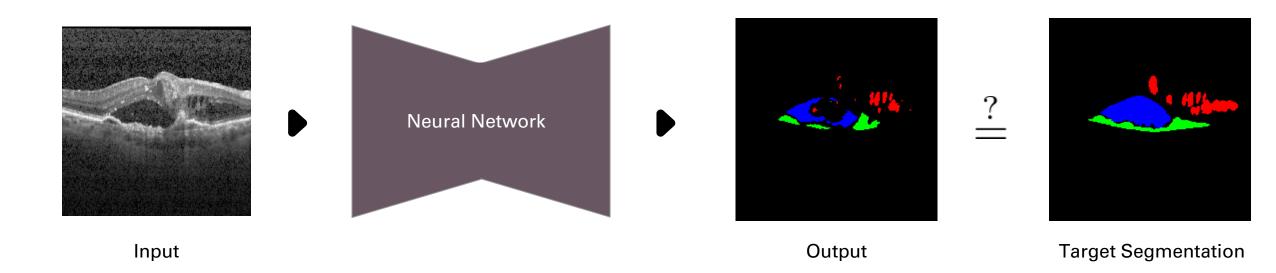
A set of B-Scans

Target segmentation

Dataset - RETOUCH



Segmentation using Deep Learning

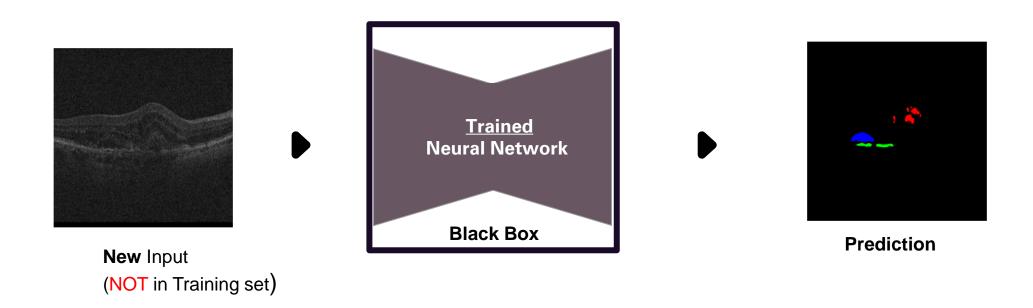


Training = Update the weights of NN to minimize the difference between Output and Target
 Segmentation

Prediction using Trained Neural Network

New Input (NOT in Training set) Prediction

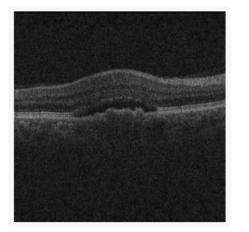
Can You Trust the Prediction of a NN?

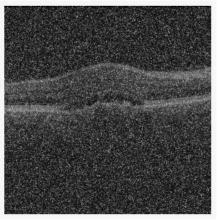


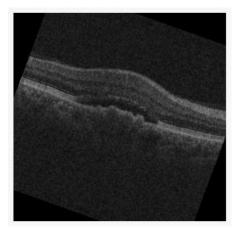
Problem: How certain/uncertain the Trained NN is about its prediction?

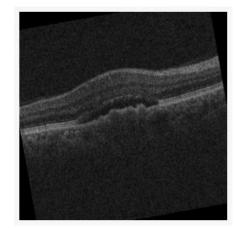
Need Uncertainty Estimation!

Where does Uncertainty come from (1)?









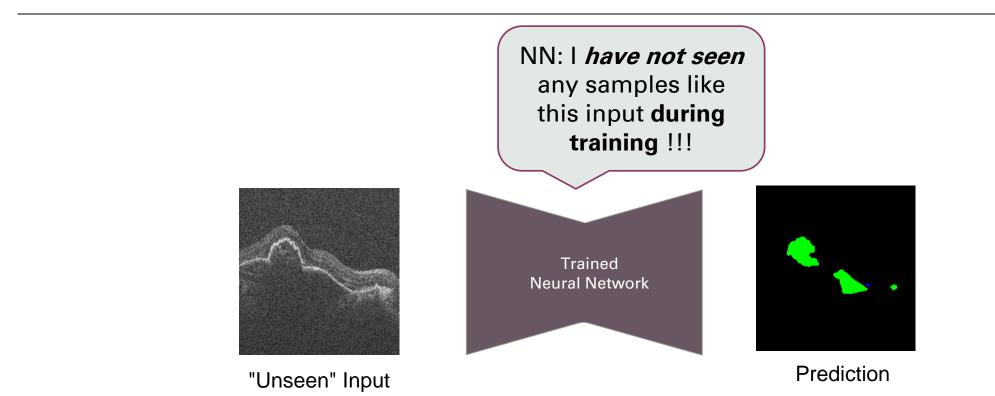
B-Scan

Noise

Geometric Transformation

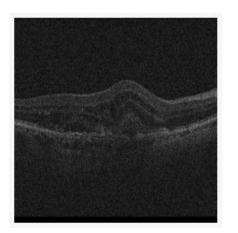
 Aleatoric Uncertainty – from data generation process (Noise and Geometric Transformation)

Where does Uncertainty come from (2)?



• **Epistemic Uncertainty** – from the trained NN that **has not seen** all samples during training

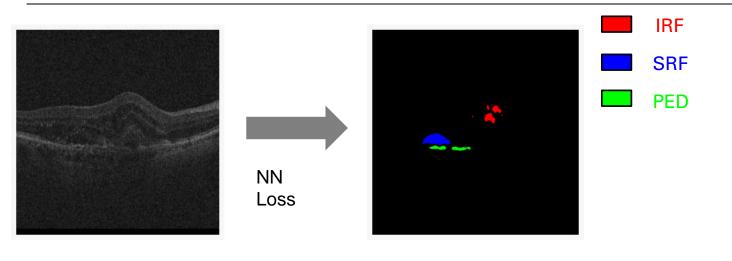
Pipeline



B-Scans

RETOUCH Dataset

Pipeline



B-Scans

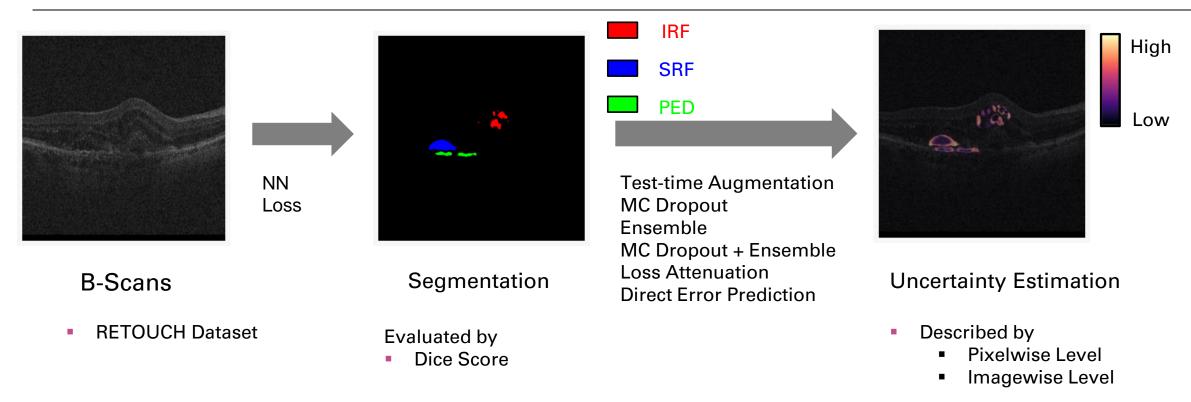
RETOUCH Dataset

Segmentation

Evaluated by

Dice Score

Pipeline

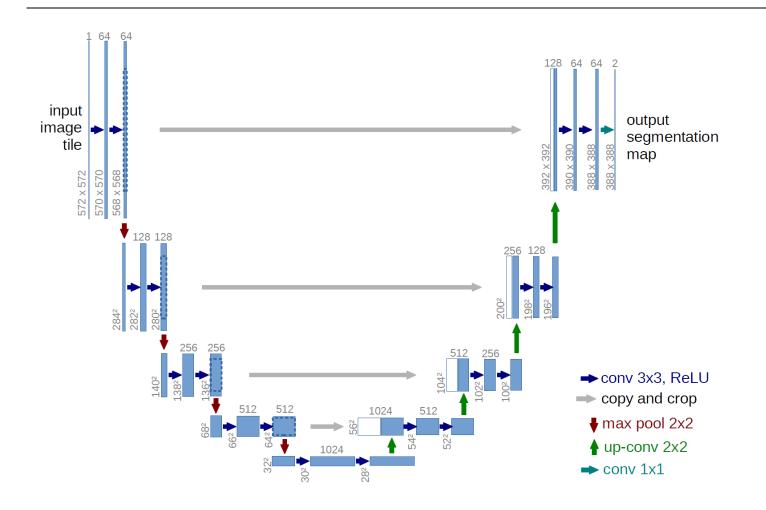


- Evaluated by
 - Correlation
 - Calibration

SEMANTIC SEGMENTATION

U-Net Architecture Loss Functions Evaluation Metrics Results

U-Net Architecture

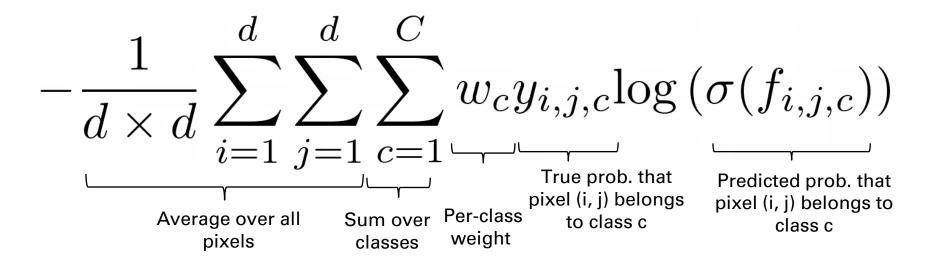


- Standard baseline for biomedical segmentation tasks [1]
- Fully convolutional
- Outputs 4 scores per input pixel at input resolution

Modifications:

- Batch-Normalization layers
- Dropout after convolutional blocks

Cross Entropy Loss:



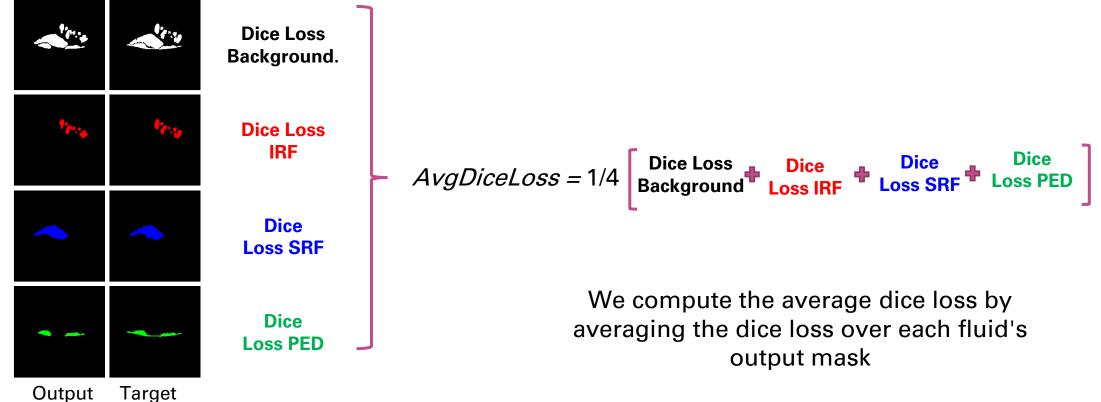
The Cross-Entropy loss penalizes predicted pixelwise probability distributions that deviate from the ground truth

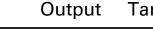
Dice Loss:

$$1 - \frac{2\sum_{i}\sum_{j} (A_{i,j} * B_{i,j})}{\sum_{i}\sum_{j} (A_{i,j} + B_{i,j}) + \epsilon} \qquad \underbrace{\overset{2 \times \mathbf{O}}{\mathbf{O}}}_{\mathbf{O}}$$

The Dice Loss is a continuous relaxation of the Dice Score, which measures the *similarity* of two sets

Dice Loss:

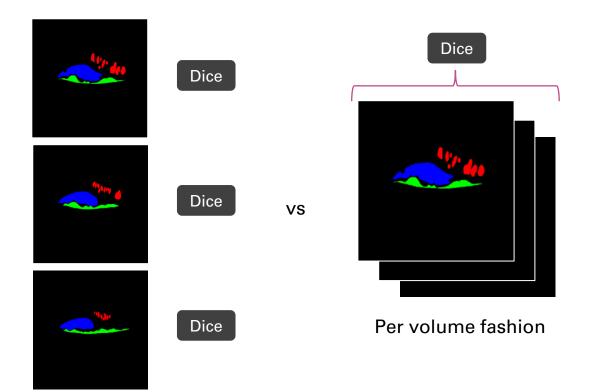




Dice Loss:

Evaluation Metrics

- The *Dice Score* is computed as 1 Dice Loss over discretized output probabilities
- Scores are computed over entire 3D OCT volumes (instead of individual scans)
- Volumes with no fluid are skipped for consistency with the RETOUCH evaluation protocol



Per B-scan fashion

Results

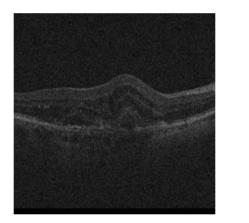
Metrics		Dice Score			
Setting		Mean	PED	IRF	SRF
CE Loss	$w_c = 1 \forall c$	0.580	0.603	0.537	0.600
	Weighted by Inv. Frequencies	0.524	0.523	0.494	0.556
Dice Loss	$w_c = 1 \ \forall c$	0.644	0.652	0.556	0.725
	$w_{background} = 0$	0.644	0.635	0.640	0.658
Dice + CE Loss	$w_c = 1 \ \forall c$	0.646	0.604	0.653	0.680
	$w_{background} = 0$	0.660	0.639	0.648	0.695
Helios team	U-Net + heavy engineering	0.680	0.730	0.610	0.700

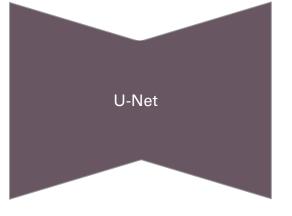
- Dice Loss clearly outperforms Cross-Entropy, and a combination of both works best
- Not computing the dice loss over background pixels improves performance
- Our model performs comparably to the Helios Team, without heavy engineering

UNCERTAINTY ESTIMATION

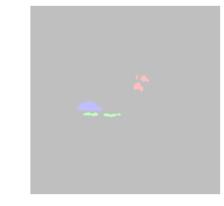
Sample-based Methods Imagewise Uncertainty Loss Attenuation Direct Error Prediction Results

Uncertainty Estimation





Input



outputs

(1) Segmentation

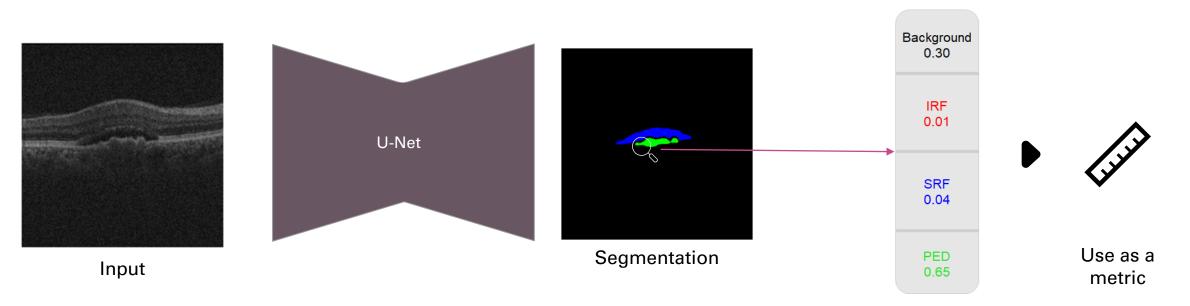
123

(2) Uncertainty

DATA INNOVATION LAB | UNCERTAINTY ESTIMATION FOR DEEP MEDICAL IMAGE SEGMENTATION

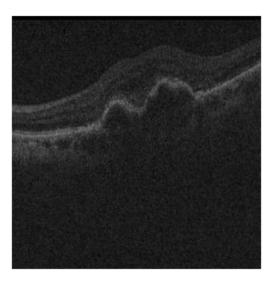
Baseline

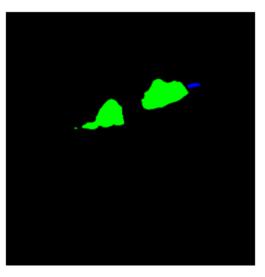
- From the segmentation, we already have a (softmaxed) distribution among the classes
- It is tempting to interpret this as a form of uncertainty



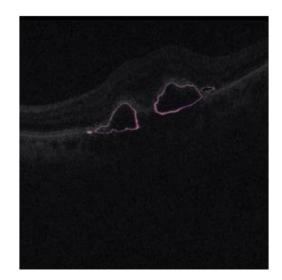
Baseline

- However, it turns out that this does not work very well
- In most cases the "uncertainty" from this method just traces the edges of the prediction



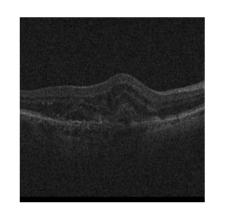


Segmentation

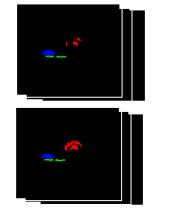


Sample-based Methods

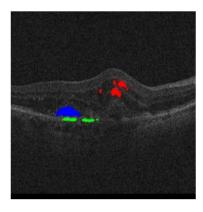
- Usually, uncertainty is interpreted as some property of some probability distribution
 - Epistemic: Distribution over the network weights
 - Aleatoric: Distribution over the data
- Standard approach for this sort of problem: Monte Carlo Integration



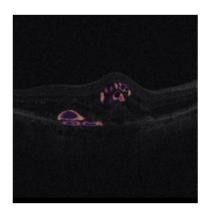
Input



Samples



Sample mean



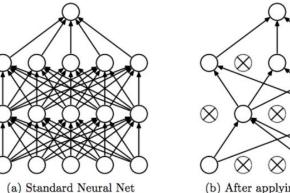
Uncertainty map

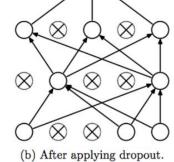
Sample-based Methods

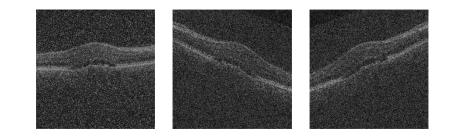
Different ways to generate samples:

- Monte Carlo Dropout [2]:
 - For every forward pass, disable some neurons at random
 - Approximates a probability distribution over the learned weights

- Test Time Augmentation [3]:
 - Apply different rotations and noise to the image before classifying
 - Tries to mirror the variation found in the dataset





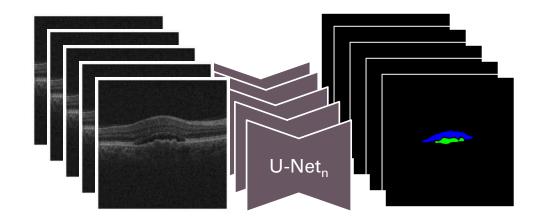


Sample-based Methods

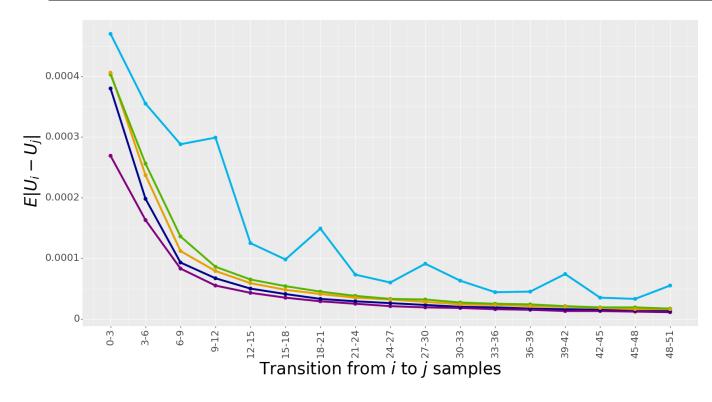
Different ways to generate samples:

- Deep Ensembles [4]:
 - Train multiple networks, each with different initializations
 - For each sample, use the output of a different network

- Dropout Ensembles [5]:
 - Combine Ensembles and Dropout
 - The different methods approximate different uncertainties



How many samples to choose?

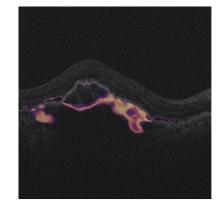


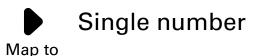
Dropout Ensemble (2 Models)
 Test Time Augmentation
 Dropout Ensemble (5 Models)
 Monte Carlo Dropout
 Dropout Ensemble (10 Models)

- After ~30 samples, not much additional information from adding additional ones
- We make a cutoff there, as model evaluation runtime is linear
- Less stable behavior for Test Time Augmentation, but similar in principle

Imagewise Uncertainty

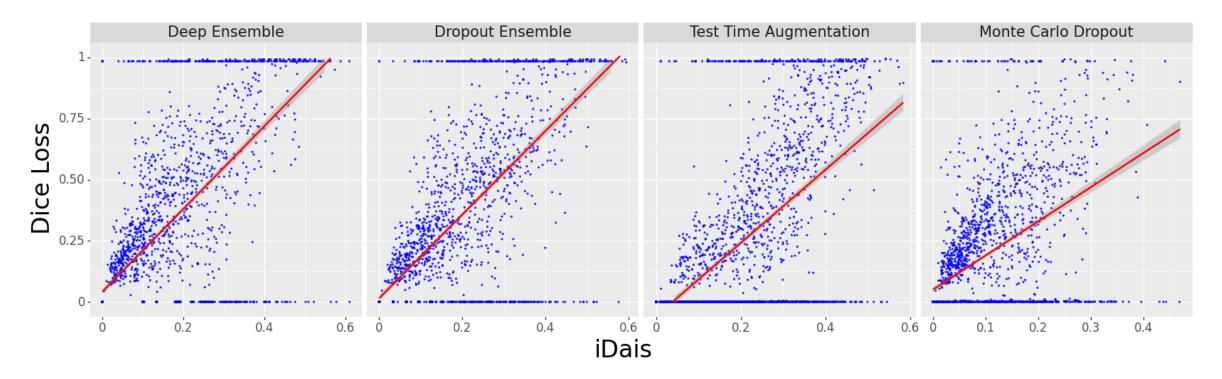
- Aggregate uncertainty maps into single number
- Helps with decision-making in practical situations
- Refer images with high uncertainty to human medical experts
- Two measures, both rely on agreement between samples:
- iDais: $1 \frac{2}{N(N-1)} \sum_{i \neq j}^{N} Dice(s_i, s_j)$ • iloU: $1 - \frac{1}{c} \sum_{c=1}^{C} \frac{|(S_1 = c) \cap (S_2 = c) \cap \dots \cap (S_N = c)|}{|(S_1 = c) \cup (S_2 = c) \cup \dots \cup (S_N = c)|}$



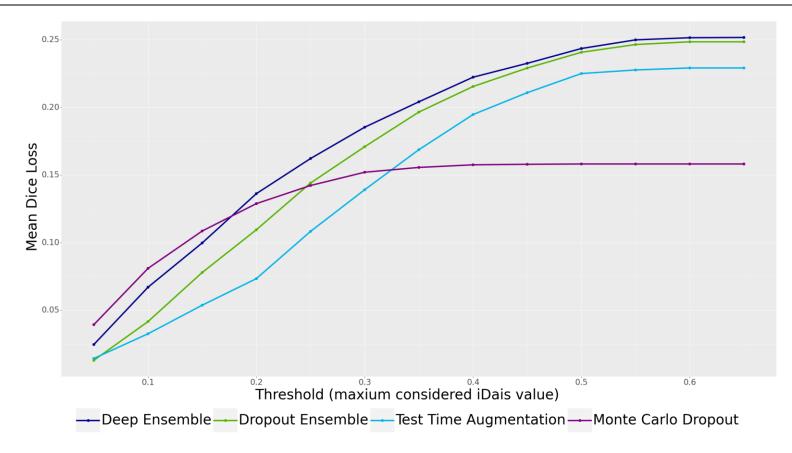


Imagewise Uncertainty: Performance (iDais)

- Plotting Error (Dice loss) versus Uncertainty (iDais) reveals a linear relationship
- Outliers at top and bottom caused by properties of Dice loss



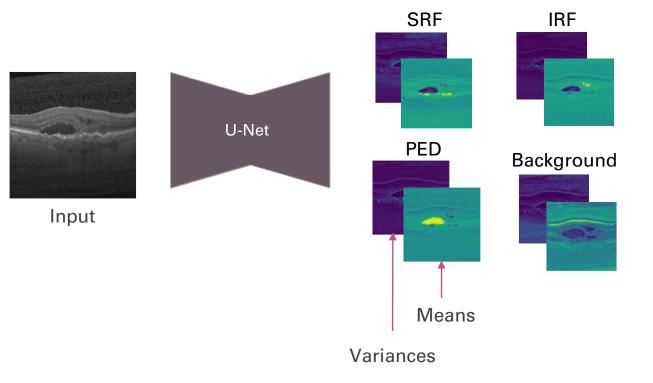
Imagewise Uncertainty: Performance (iDais)



→ Similar behavior for all methods, except Monte Carlo Dropout

Loss Attenuation

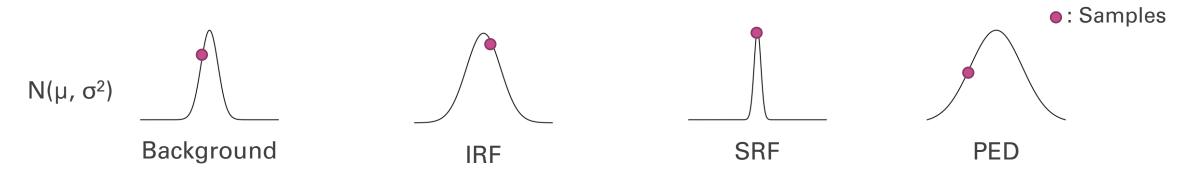
- Sampling-free aleatoric uncertainty estimation method [6]
- Replace every output per pixel and class with two outputs
 - Variance σ^2
 - Mean µ
- Parametererize Normal distribution
 N(μ, σ²) per pixel and class (logit)



Loss Attenuation

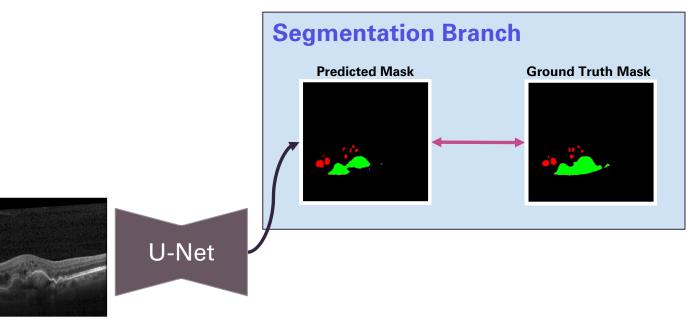
• **Testing**: Single forward pass to obtain logit prediction (means) and uncertainty (variances)

- Training Combine Ensembles and Dropout
- Forward pass to get mean and variance of normal per logit
- Monte Carlo approximation of the loss by sampling logits from the distributions
- \rightarrow For every pixel we get four Normal distributions over the class logits



Direct Error Prediction

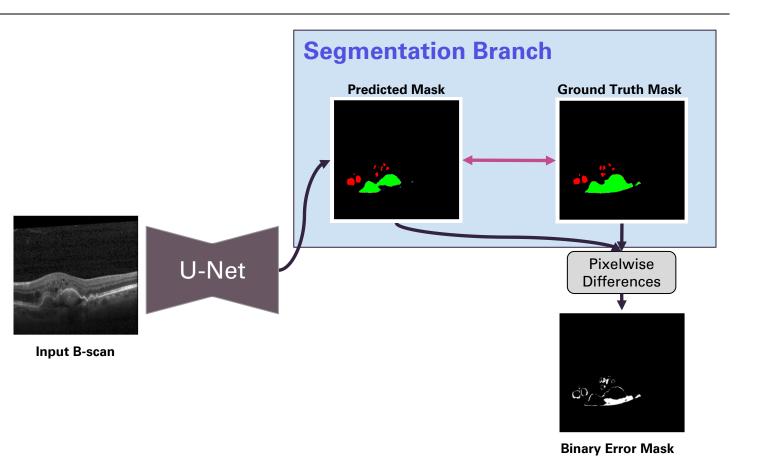
- Idea: Directly predict probability of network being wrong
- Realized by additional output branch trained jointly with the rest of the network
- 'Ground Truth' for the new branch is generated on-the-fly based on segmentation branch



Input B-scan

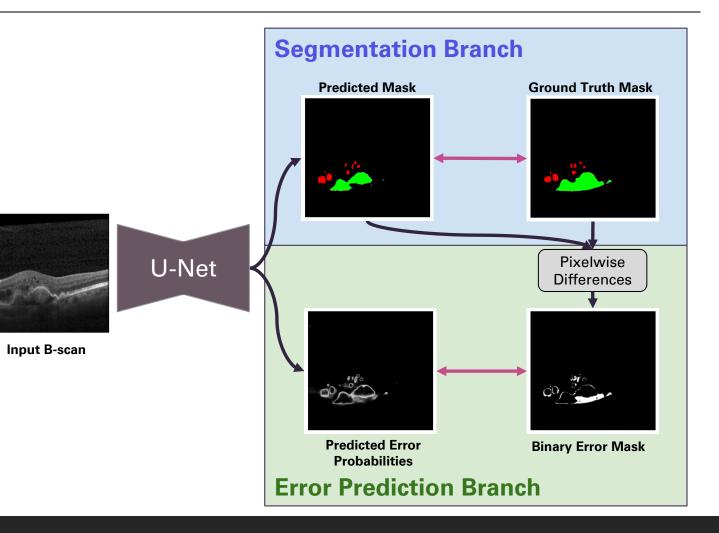
Direct Error Prediction

- Idea: Directly predict probability of network being wrong
- Realized by additional output branch trained jointly with the rest of the network
- 'Ground Truth' for the new branch is generated on-the-fly based on segmentation branch

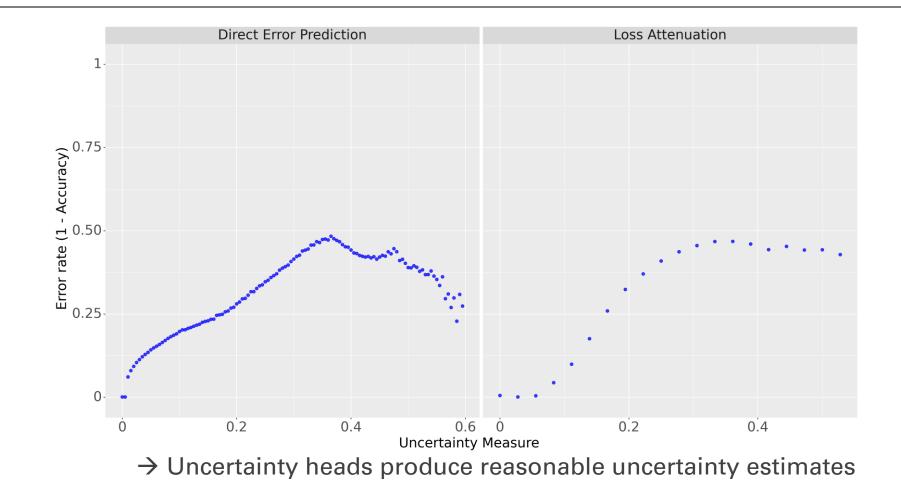


Direct Error Prediction

- Idea: Directly predict probability of network being wrong
- Realized by additional output branch trained jointly with the rest of the network
- 'Ground Truth' for the new branch is generated on-the-fly based on segmentation branch



Correlation – Non sampling-based methods

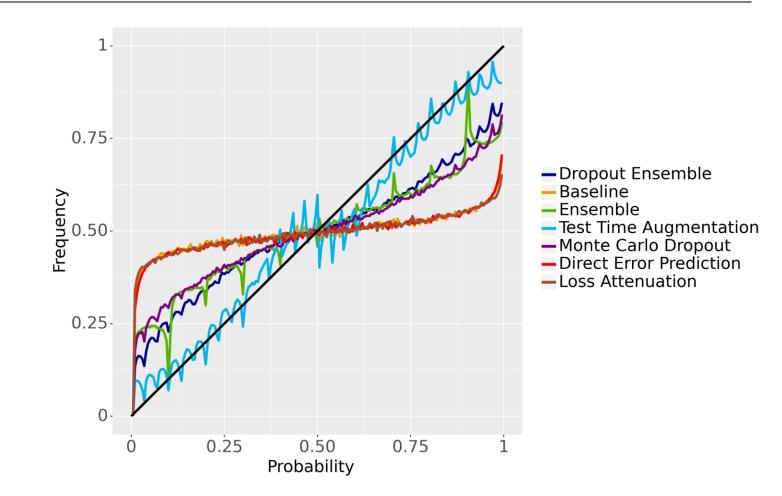


DATA INNOVATION LAB | UNCERTAINTY ESTIMATION FOR DEEP MEDICAL IMAGE SEGMENTATION

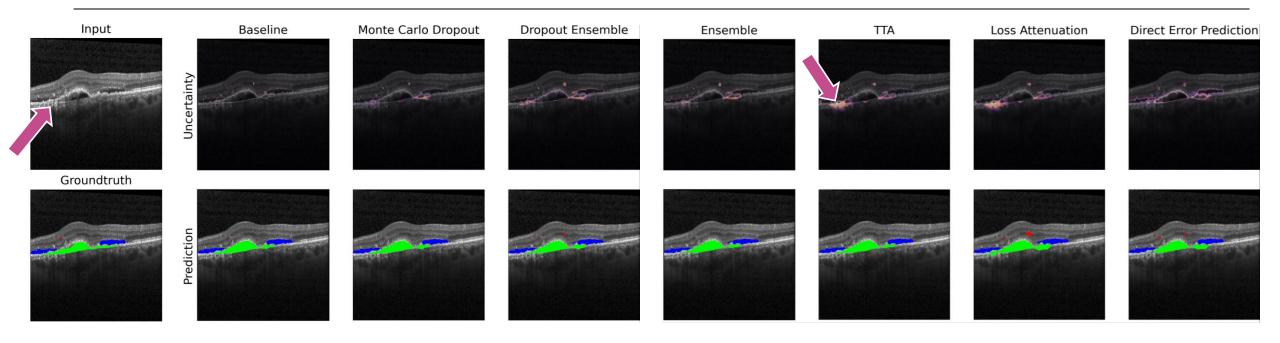
Calibration of the Softmax distribution

- Idea: Confidence of a model should match the frequency the model making a correct prediction
- **Remark**: Considers the Softmax output of the methods only

- Sampling improves calibration of the output distribution
- Behavior of baseline and sample-free methods similar



Visual Comparison – RETOUCH Dataset



CONCLUSION

DATA INNOVATION LAB | UNCERTAINTY ESTIMATION FOR DEEP MEDICAL IMAGE SEGMENTATION

Conclusion

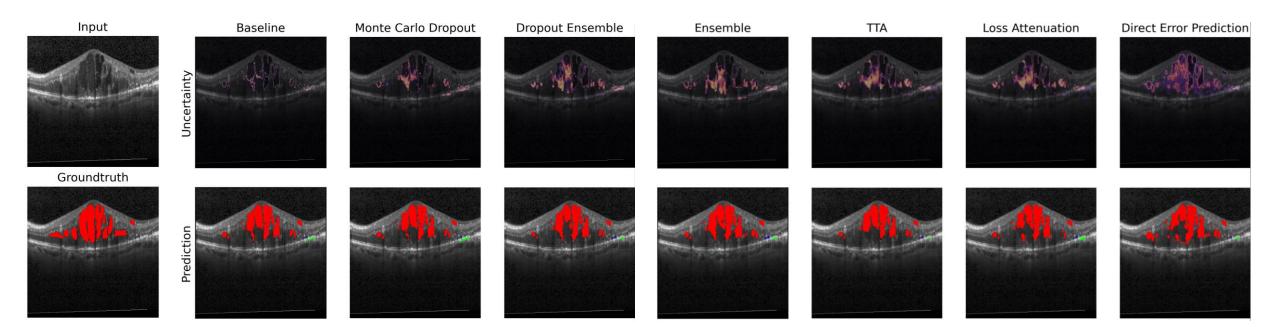
- Segmentation performance close to participants of the RETOUCH challenge without additional engineering
- All methods improve upon the baseline uncertainty estimate considerably
- Adding dropout to ensembles helps with uncertainty estimation quality
- Incorporating uncertainty during training does not boost calibration/meaningfulness of the softmax outputs, but aggregating samples does
- Similar performance on imagewise uncertainty measures except for Monte Carlo Dropout

Future Work

- Evaluation of methods independent of how uncertainty estimates are obtained
- Evaluation of uncertainty under dataset shift (DUKE Dataset) to better reflect epistemic uncertainty

Future Work

- Evaluation of methods independent of how uncertainty estimates are obtained
- Evaluation of uncertainty under dataset shift (DUKE Dataset) to better reflect epistemic uncertainty



References

[1] O. Ronneberger, P. Fischer, and T. Brox. "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234–241

[2] Y. Gal and Z. Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning". In: international conference on machine learning. 2016

[3] G. Wang et al. "Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks". In: Neurocomputing 338 (2019)

References

[4] B. Lakshminarayanan, A. Pritzel, and C. Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles". In: Advances in neural information processing systems. 2017

[5] S. Bachstein. "Uncertainty Quantification in Deep Learning". MA thesis. 2019.

[6] A. Kendall and Y. Gal. "What uncertainties do we need in bayesian deep learning for computer vision?" In: Advances in neural information processing systems.2017

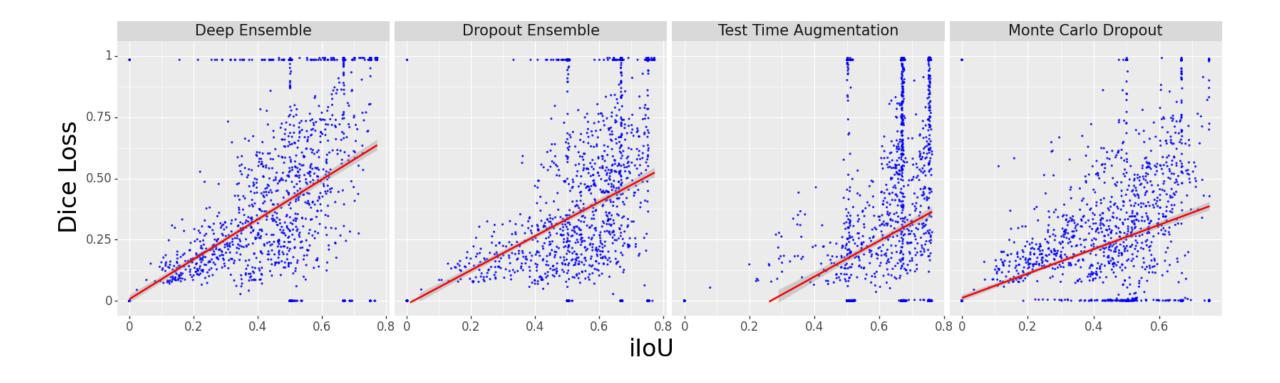
Sources for Figures

- https://engedal.it/saadan-optimerer-du-retina-billeder/
- https://www.zeiss.com/meditec/int/product-portfolio/optical-coherence-tomography-devices.html
- https://retouch.grand-challenge.org/Background/
- <u>https://www.flaticon.com/free-icon/doctor_194915</u>
- https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
- Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014
- https://medium.com/konvergen/understanding-dropout-ddb60c9f98aa

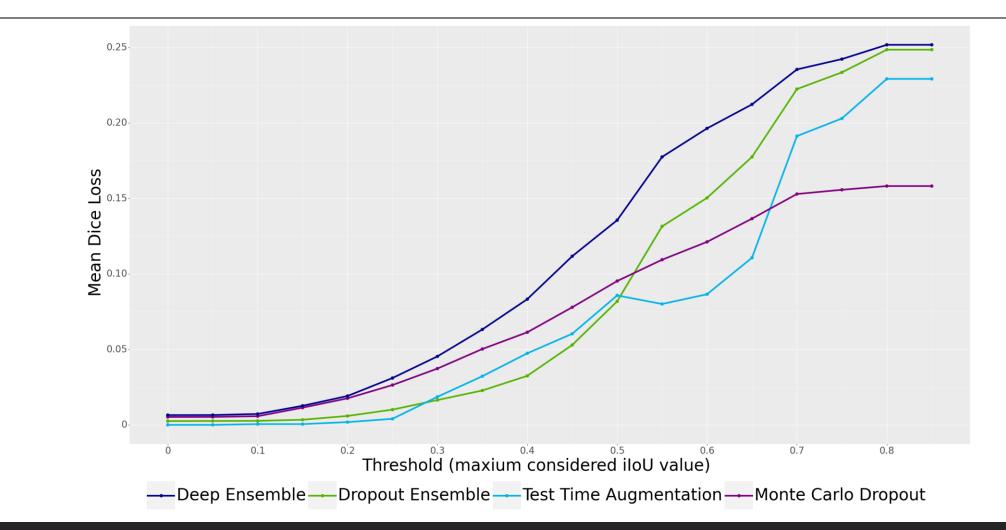
Supplementary Material

DATA INNOVATION LAB | UNCERTAINTY ESTIMATION FOR DEEP MEDICAL IMAGE SEGMENTATION

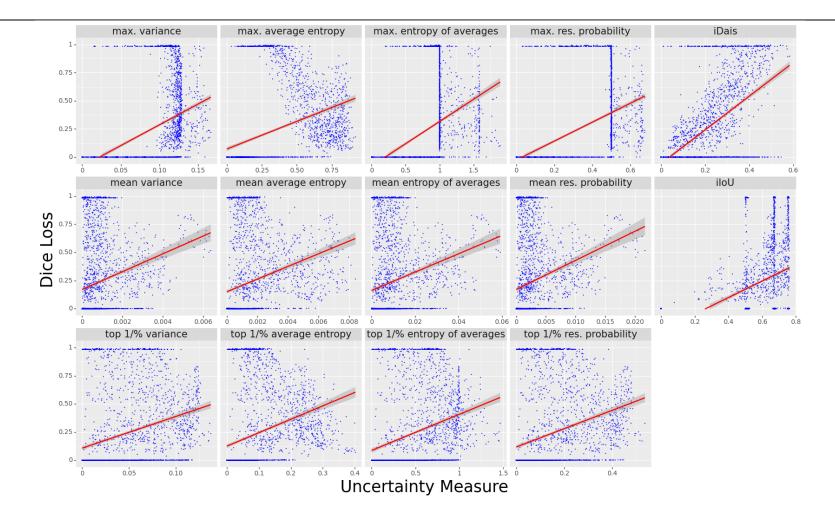
Supplementary Material: Performance (iloU)



Supplementary Material: Performance (iloU)



Supplementary Material: Imagewise Scores



Supplementary Material: Segmentation Quality

	Dice score				
Method	PED	SRF	IRF	Mean (Per Volume)	Mean (Per B-Scan)
Baseline	0.646	0.680	0.659	0.662	0.722
Monte Carlo Dropout	0.646	0.680	0.659	0.662	0.841
Ensemble	0.636	0.694	0.670	0.666	0.748
Dropout Ensemble	0.632	0.692	0.671	0.665	0.751
Test Time Augmentation	0.519	0.563	0.446	0.509	0.770
Loss Attenuation	0.651	0.663	0.635	0.650	0.722
Direct Error Prediction	0.677	0.685	0.656	0.672	0.912