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Abstract

High-quality automatic summarization of German news articles presents a valuable op-
portunity for streamlining editorial workflows in broadcasting organizations such as ZDF.
However, the effectiveness of small and mid-sized language models (SLMs and LLMs)
for this task remains underexplored, particularly under resource constraints and domain-
specific requirements. In this work, we evaluate the summarization capabilities of four
instruction-tuned language models, LLaMA-3.2-1B, Qwen2-1.5B, Teuken-7B, and LLaMA-
3.1-8B, exploring different optimization techniques including n-shot prompting and pa-
rameter efficient fine-tuning via LoRA. We assess model performance through both auto-
matic metrics and targeted human evaluation, and validate the quality of ZDF’s internal
article-summary dataset for training and benchmarking.

Our results show that LLaMA-3.1-8B delivers consistently high-quality summaries, even
in zero- and few-shot settings, with fine-tuning yielding outputs that rival or exceed human
references in fluency and relevance. In contrast, smaller models struggled with hallucina-
tions and coherence issues, highlighting their current limitations for deployment.

Relevance to ZDF and Society: Automated news summarization has broad societal
implications, especially in an era of information overload and rapidly evolving news cycles.
By enabling the efficient generation of concise, accurate summaries, language models can
support journalists, editors, and media consumers alike by helping professionals focus on
verification and analysis, while making high-quality information more accessible to the
public. For public broadcasters like ZDF, integrating trustworthy AI-driven tools can im-
prove editorial productivity and scalability without compromising journalistic standards.
This work demonstrates that such technology is not only feasible with today’s open mod-
els, but also increasingly practical on consumer hardware, paving the way for transparent,
cost-effective AI adoption in public-interest media.
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1 Introduction

The increasing availability of digital news content across online platforms has introduced
challenges for efficient content curation. While manual summarization remains valuable,
it is often labor-intensive and difficult to integrate seamlessly into fast-paced editorial en-
vironments [20]. The current rise of artificial intelligence, especially in the field of natural
language processing motivated ZDF to explore possibilities for Automatic Text Summa-
rization (ATS) to reduce manual effort and to better align editorial workflows. ATS
systems aim to algorithmically condense large textual inputs into concise summaries, pre-
serving essential information while minimizing redundancy and noise. These systems offer
substantial benefits in terms of speed, scalability, and cost-effectiveness, and are appli-
cable across domains such as journalism, legal analysis, scientific literature review, and
intelligence gathering [28, 2].

In recent years, the rise of Large Language Models (LLMs), such as GPT [6], BERT [10],
and their successors, has transformed the field of natural language processing (NLP), in-
cluding summarization tasks. LLMs have demonstrated impressive capabilities in both
abstractive and extractive summarization, owing to their high capacity, contextual aware-
ness, and ability to generalize across diverse domains. However, the deployment of LLMs
is often constrained by their computational overhead, memory requirements, and infer-
ence latency. These limitations pose significant challenges for real-time, on-device, or
resource-constrained applications, where efficiency and cost are critical considerations [5].

In light of these constraints, this work investigates the underexplored potential of Small
Language Models (SLMs) as an alternative to LLMs for ATS. While SLMs typically
underperform LLMs in general-purpose NLP benchmarks, recent research suggests that
task-specific fine-tuning, architectural optimization, and domain adaptation can signifi-
cantly enhance their utility [35, 42, 19]. Our goal is to evaluate whether SLMs, when
carefully designed and tuned, can offer a competitive balance between performance and
efficiency in the context of news summarization. In doing so, we aim to advance the
development of lightweight, accessible, and deployable summarization systems that can
operate effectively in low-resource settings without compromising on output quality.

1.1 Problem Definition and Goals

In this project, we address the challenge of automatically summarizing news articles in a
manner that balances quality, efficiency, and resource constraints. The problem is partic-
ularly relevant given the continuous influx of textual content generated by news organi-
zations and media outlets. To facilitate this research, we collaborated with ZDF (Zweites
Deutsches Fernsehen), a major German public-service television broadcaster, who gener-
ously provided us with a large dataset of annotated news articles and summaries written
by ZDF expert editors in German language. This dataset forms the empirical foundation
of our evaluation and experimentation pipeline.

The overarching aim of our study is to systematically explore the capabilities of both
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Large Language Models (LLMs) and Small Language Models (SLMs) in the task of news
summarization. We formulate three principal goals that guide our investigation:

1. Assessing the quality of news summarization using language models in
German language. We evaluate how well different language models, regardless
of size, can capture and condense the key information in news articles, using both
automated metrics (e.g., ROUGE, BLEURT, BERTScore) and human evaluation.

2. Comparative analysis of SLMs and LLMs. We compare the summarization
quality produced by SLMs against that of LLMs, while also considering associated
computational costs such as inference time, memory usage, and hardware require-
ments. This trade-off analysis is critical for applications where resource efficiency is
an important consideration.

3. Model recommendations based on deployment context. Based on our find-
ings, we aim to provide informed recommendations on which class of models, SLMs
or LLMs and even further which model specifically, is most appropriate under spe-
cific conditions, such as real-time processing, offline summarization, or low-resource
environments.

Through this multi-faceted evaluation, our project seeks to contribute actionable insights
into the practical deployment of summarization models, particularly in media and broad-
casting settings where both quality and efficiency are crucial. It is also important to
note, while this work was undertaken to advance scientific understanding, any potential
applications are intended to support editorial workflows, ensuring human oversight and
full alignment with ZDF’s principles for the responsible use of artificial intelligence.

2 Related Works

2.1 Summarization & Evaluation

Summaries take various forms, such as headlines, sentence-level condensations, bullet-
point highlights, or comprehensive full-text summaries [20]. Additionally, there are mul-
tiple ATS techniques, such as by selecting important existing sentences (extractive), by
generating new sentences through paraphrasing (abstractive), or by combining both ap-
proaches.

For evaluation, human assessment of faithfulness (factual correctness), coherence (logical
flow), and relevance (alignment with the source) would yield the most reliable evalua-
tions [48]. Furthermore, several Automatic Evaluation Metrics (AEMs) exist, including
ROUGE, BLEURT, BERT-Score, BARTScore, and MoverScore. ROUGE, a traditional
and widely used metric, measures n-gram overlap but struggles with semantic equivalence
when phrasing differs [24]. BERTScore employs token-level embedding similarity to better
handle semantics but can yield high similarity scores even in cases of meaning reversal due
to its token-wise nature [49]. MoverScore computes semantic similarity via optimal trans-
port distances between word embeddings, effectively capturing context and paraphrasing
but also at higher computational cost [50]. BLEURT leverages fine-tuned transformers to
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predict human-like judgments directly, showing high correlation with human assessments,
but it is computationally intensive and lacks interpretability [37]. Lastly, BARTScore
evaluates summaries by calculating sequence-to-sequence probabilities, providing flexibil-
ity including reference-free evaluation but requiring significant computational resources
[46].

Recent studies highlight the dataset dependency of AEM reliability. For example, ROUGE-
L often correlates better with human evaluation for extractive summarization tasks,
whereas BERTScore may excel in abstractive summarization contexts [4]. Moreover,
[48] emphasize the critical influence of data quality on AEM performance. Their analy-
sis shows that reference-based metrics sometimes have negative correlations with human
judgments regarding faithfulness, particularly in datasets with low-quality reference sum-
maries like CNN/Daily Mail and XSUM, derived from incidental supervision.

2.2 Large Language Models

2.2.1 LLaMa

The LLaMA family of models [41], developed by Meta, is an open-source collection of
transformer models offering a range of natural language processing tasks by supporting
large-scale deployment and streamlined fine-tuning use cases. Ranging from 7B to 65B
parameters at the time of the initial LLaMA release in 2023 [41] and as high as 70B for
LLaMA 2 [40], these models perform competitively with the state-of-the-art. While most
LLaMA models are LLMs, some smaller models have less than 4B parameters; therefore,
they fall under the definition of SLMs.

Among the newer releases, LLaMA 3 [16] supports multilinguality with dedicated train-
ing methods for non-English languages. Specifically, Meta trained on a token mix of 90%
multilingual content, thus generating a multilingual expert model. In addition, LLaMA 3
introduces support for a token context length of 128K tokens, which is particularly useful
for summarization applications with long-document comprehension. In fact, summariza-
tion was introduced into the formal training curriculum for LLaMA 3, further enhancing
its capability for German summarization.

2.2.2 Teuken-7B

Mehdi Ali [1] and colleagues present Teuken-7B-Base and Teuken-7B-Instruct, two open-
source large language models designed to support all 24 official European Union lan-
guages. This work addresses a significant gap in the AI landscape, where most models
exhibit strong English-centric bias, limiting accessibility and performance for non-English
European languages.

The research is motivated by the need for linguistically diverse AI systems that can serve
Europe’s multilingual population without requiring costly translation or adaptation. The
authors emphasize that existing models like BLOOM and LLaMA, while supporting mul-
tiple languages, still underperform for many European languages, particularly those with
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complex morphology or limited resources.

Methodologically, the models were trained on an extensive 4 trillion-token dataset with
60% non-English content [31], sourced from web crawls, academic texts, and the FineWeb-
EDU dataset. A key innovation is their custom multilingual tokenizer, specifically op-
timized to reduce token fragmentation across European languages. This tokenization
strategy particularly benefits morphologically rich languages like Finnish, German, and
Hungarian, improving computational efficiency and text processing.

The base architecture consists of a 7-billion parameter transformer-based decoder-only
model with a 4096-token [32] context window, employing grouped-query attention and
rotary positional embeddings. Following pretraining, Teuken-7B-Instruct underwent in-
struction tuning focused on high-quality English and German data, including multi-turn
dialogues and reasoning tasks.

Evaluation across multilingual benchmarks (EU21-ARC, EU21-HellaSwag, EU21-Truth-
fulQA, EU21-MMLU) demonstrates competitive performance, with Teuken-7B-Instruct
achieving 54.3% average accuracy across benchmarks. The model shows particular strength
in commonsense reasoning tasks and maintains consistent performance across both high
and low-resource languages.

When compared to similar initiatives like EuroLLM, Teuken-7B models excel in general
instruction-following capabilities while maintaining strong multilingual support. However,
limitations persist in specialized domains like coding and mathematics, attributed to
training data constraints.

2.3 Small Language Models

Smaller Language Models (SLMs) are gaining traction due to their low inference latency,
cost-efficiency, ease of deployment, and adaptability, making them ideal for resource-
constrained settings and domain-specific tasks. Unlike LLMs, SLMs offer advantages in
privacy-sensitive applications and scenarios requiring fast, lightweight fine-tuning [43].
These properties make SLMs particularly suitable for tasks like news summarization.

While there is no universally accepted definition, SLMs (also referred to as sLLMs) are
commonly understood as neural, transformer-based language models with ≤ 4B parame-
ters. In this paper, we adopt this definition. A straightforward approach to SLM devel-
opment involves using smaller variants of established LLMs. Models such as Qwen2-1.5B-
Instruct, TinyLLAMA, Phi-3-Mini, and LLaMA-3.2-1B-Instruct fall under this category.

When properly selected and fine-tuned with high-quality task-specific data, SLMs can
approach or even exceed the performance of larger LLMs. They may perform within
10% of state-of-the-art models like GPT-4o and outperform models such as DS-2, GPT-
4o-mini, and Gemini-1.5-Pro in terms of efficiency and task alignment [38]. SLMs, when
fine-tuned, have also shown strong results in content moderation and creative writing, key
components of news summarization, often matching or surpassing LLMs in this domain
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[47, 26, 14, 44].

2.4 Ethical Considerations

Concerns about LLMs are growing, particularly regarding their environmental impact,
embedded social biases, and the false sense of understanding they can create. For exam-
ple, to train such model as GPT-3 can emit as much carbon as five average Americans
do in a year [39]. Large, uncurated online datasets that silence minority perspectives
and overrepresent dominant opinions are used to train LLMs. For instance, content from
websites like Reddit, where conversations frequently express sexist or racist views, is in-
cluded in the Common Crawl dataset used to train GPT-3 [3]. Even worse, LLMs run
the potential of propagating false information since they imitate patterns without un-
derstanding their meaning. For example, GPT-3 can produce smooth, persuasive text
supporting conspiracy theories, which extremists could weaponize [27].

This connects us to the idea of “stochastic parrots”, which holds that LLMs assemble
text according to statistical patterns to give the appearance of coherence without any
real purpose or significance. Fluent language, even when produced by machines, is inher-
ently meaningful to humans. GPT-3, for instance, is capable of creating a phony Q&A
regarding extreme views that appears reasonable but lacks factual support [27]. This
“coherence in the eye of the beholder” is dangerous because people trust these outputs as
if they were written by humans, not realizing the models lack accountability or grounding
in reality.

This raises big questions: Are bigger models always better? For instance, GPT-3 has
privacy problems because of its 175 billion parameters, which enable it to remember and
replicate private information from its training data [8]. In the meantime, the emphasis on
growing LLMs distracts from ethical alternatives. Smaller, more focused models might be
safer and greener. For example, models such as DistilBERT [35] or ALBERT [22] employ
techniques such as “knowledge distillation” to reduce large models into more manageable,
quicker, and energy-efficient variants.

3 Methodology

3.1 Data Preparation and Analysis

ZDF provided us with a large dataset of their text data containing many formats of
publications including web content, video descriptions, articles and the corresponding
human-produced summaries. Through pre-processing and further analysis, we made sure
that we ended up with high quality data, suitable for fine-tuning and model evaluation.

3.1.1 Data Preparation

The original dataset provided by ZDF comprised 248,753 article-summary pairs (textMod-
ule and metaDescription), exclusively containing ZDF-produced news content. Due to
limited prior knowledge of the dataset, we iteratively inspected random samples to guide
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our filtering process.

First, we removed all entries with null article or summary fields, reducing the dataset
to 50,825 valid pairs, eliminating roughly 80% of the original data. Next, we discarded
entries containing ellipses (“. . . ”) in summaries, which typically indicate truncation, and
removed cases where the summary was a substring of the article, as these often reflect
extractive redundancy.

To ensure content quality, we applied length-based filters: articles with fewer than 100
words and summaries with 15 or fewer words were excluded, as such entries were typically
insubstantial or resembled metadata rather than true summaries.

After applying the word count filters, we analyzed the distribution of summary lengths in
our dataset and found that the overall average summary length was 350 tokens, indicating
that our process successfully shifted toward richer and more informative examples.

Finally, we filtered the dataset based on content type, retaining only entries labeled as
“news” while excluding other content types such as “article”, “episode”, “mobile-news-
video”, or “foto”. This decision ensured stylistic and structural consistency across exam-
ples, focusing specifically on news content for our summarization task. We also excluded
entries from certain brands like “In eigener Sache” to remove ZDF internal content such
as information about “ZDF-Fernsehrat” or job opportunities rather than normal news
articles.

This comprehensive filtering process yielded a final dataset of 24,072 clean, high-quality
document-summary pairs for downstream model training and evaluation.

Figure 1: Dataset filtering funnel.

3.1.2 Data Distribution and Metadata

The curated dataset spans a variety of brands. Figure 2 reports the percentage share of
each major brand (based on 24,072 rows) and their corresponding average word counts.
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The total average word count is 373 vs. 308 on the non-curated data.

Figure 2: Pie chart of the brand distribution with corresponding average word counts.

3.1.3 Data Splitting

From the cleaned dataset of 24,072 document-summary pairs, we applied a stratified split-
ting strategy to ensure balanced representation across brands and article lengths.

We first constructed a test set via stratified sampling: for each of the 10 brands, arti-
cles were binned into 10 length-based groups, and samples were drawn from each bin.
Although the goal was to select 10 articles per brand, some brands had fewer available
samples, resulting in a final test set of 90 examples. This process was repeated with
manual inspection to refine quality and ensure diversity.

After removing the test set, the remaining 23,982 examples were randomly split 80-20
into training and validation sets:

• Training set: 19,185 examples (80%)

• Validation set: 4,797 examples (20%)

• Test set: 90 examples

This three-way split allows us to train our models on the training set, while tracking
generalization performance using the validation set, and evaluate final performance on
the held-out test set, following standard machine learning practices for unbiased model
evaluation.
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3.2 Hardware

We were given access to Google Colab Enterprise by ZDF and a limited budget. Through
Colab we had access to runtimes with up to eight datacenter GPUs where we could choose
between the models L41 and A1002. The L4 GPU is cheap and efficient with 24 GB of

GPU Model VRAM FP16 performance Cores
L4 24 GB 30 TFLOPS 7424
A100 40 GB 78 TFLOPS 6912

Table 1: Comparison of GPU RAM, FP16 (Half Precision) Performance and number of
Cores

VRAM and the A100 GPU is faster but also more expensive with 40 GB of VRAM. To
give an estimate of the cost, running an instance with 8 GPUs costs around 7.20e/h for
the L4 and 25.64e/h for the A100.

Multi-GPU Training

For running and training LLMs, the amount of VRAM plays a vital role as it must fit
the model. While in theory our runtime allows for eight GPUs in parallel, splitting the
model across multiple GPUs would cut performance dramatically due to the great amount
of communication during each execution necessary between the GPUs. We opposed this
due to our time and cost limitations. Instead, we restricted ourselves to models that fit
into our GPUs. During training we load a copy of the model on each GPU and divide
the batch of data equally among all GPUs which they evaluate seperately. Afterwards,
gradients are accumulated to perform a training step. We implemented this using Hug-
gingface Accelerate which utilizes PyTorch’s DistributedDataParallel module. This sped
up training by a factor of 6 when using 8 GPUs compared to a single one.

3.3 Model Choice

We selected Teuken-7B-Instruct and Llama-3.1-8B-Instruct for the LLMs based on ZDF’s
interest in Teuken and Llama. These specific models are comparable in size, fit on a 24GB
L4 GPU using half precision, and are instruction-tuned.

For the SLMs, we chose Qwen2-1.5B and Llama-3.2-1B. The former shows its promise in
multilingual news summarization and the latter to compare directly against Llama-3.1-8B
[45]. After selecting the model, we tuned the hyperparameters for each model in order to
make sure we have the optimal hyperparameters for our fine-tuning process.

3.4 Optimization Techniques

There are different ways of improving a model’s performance on a specific task. We
focused on prompt engineering and fine-tuning. In prompt engineering, one optimizes the

1https://www.techpowerup.com/gpu-specs/l4.c4091
2https://www.techpowerup.com/gpu-specs/a100-pcie-40-gb.c3623

https://www.techpowerup.com/gpu-specs/l4.c4091
https://www.techpowerup.com/gpu-specs/a100-pcie-40-gb.c3623
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instruction one gives the model to minimize errors due to ambiguity. In fine-tuning, one
starts from a pre-trained model and optimizes parameters, either the model parameters
directly or by adding so-called adapter layers.

3.4.1 Prompt Engineering

For consistency and high performance in our experiments, we chose a prompt format
based on the findings from Schubiger [36]. In the study, it was discovered that structured
prompts significantly improve summarization accuracy for models such as LLaMA2-7B,
especially when the prompts are in the same language as the input text. Following their
results, we chose the German prompt that has been proven to show strong performance
among several different prompt formats:

Erstelle eine Zusammenfassung vom folgenden Artikel in 3 oder weniger

Sätzen:

Artikel: {article}
Zusammenfassung:

n-shot learning n-shot learning refers to adapting a model to a new task using n la-
beled examples. In the context of LLMs, this typically involves in-context learning which
is providing examples directly in the input prompt without altering model weights [7], or,
alternatively, fine-tuning with a small labeled set. This paradigm is particularly useful in
low-resource settings and tests a model’s ability to generalize from limited supervision.

We evaluated n-shot prompting for n ∈ 0, 1, 2 to assess its effect on summarization perfor-
mance. All prompts followed a shared structure, incorporating n article-summary pairs
sampled from the training set. To encourage stylistic consistency, examples were drawn
from the same ZDF brand as the test article.

3.4.2 Truncation

Teuken-7B’s has a limited context size of 4096 tokens. This leads empty summaries if its
context is completely filled by the prompt alone. This is particularly relevant for one and
two shot learning, however, our longest article is around 4600 tokens long, which makes it
impossible to fit even for a zero shot prompt. We avoid empty summaries by employing
truncation. Specifically, once we encounter a prompt that exceeds a certain length, we
remove tokens from the left until the prompt is only 3996 tokens long, leaving space for
100 tokens generated by the model.

3.4.3 Fine-tuning

Contrary to prompt engineering during fine-tuning we are optimizing parameters to teach
a model a new skill. The straight forward approach is to fine-tune all parameters of
the model using a gradient based optimizer. However, especially for the LLMs, this is
quite inefficient as it would increase the amount of VRAM required by a factor of 2-3 as
gradients and optimizer states have to be loaded into memory in addition to the model
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parameters. Also, full fine-tuning has the risk of catastrophic forgetting [21].

For SLMs, we chose to perform full fine-tuning since they fit within our VRAM constraints
and can benefit from additional training, particularly in improving their ability to generate
coherent text. In contrast, full fine-tuning of LLMs would exceed our available VRAM and
is unnecessary from a linguistic standpoint, as we assume these models already produce
coherent and fluent output. Therefore, we used parameter-efficient methods to simply
adapt our LLMs to our summarization task.

Parameter Efficient Fine-Tuning (PEFT) allows for fine-tuning a model using only
a fraction of memory. The simplest approach would be to only fine-tune certain layers
(such as the head) and freeze the rest. Intuitively, it’s performance depends on the num-
ber of layers fine-tuned, therefore, scaling the memory requirements quickly as well.

Low-Rank Adaptation (LoRA) also allows for fine-tuning selective layers aswell but with
a fraction of the memory required [18]. Let P0 ∈ Rn×m be the parameters of a layer we
want to optimize. If we were to optimize it using stochastic gradient descent, we would
calculate

Pk+1 := Pk − λk∇Lk = P0 −
k∑

i=0

λi∇Li (1)

where ∇Li ∈ Rn×m is the gradient of the batch’s loss regarding Pi and λi > 0 is the
learning rate in each iteration i = 0, ..., k.
In LoRA we write

P ′ = P +BA (2)

using matrices B ∈ Rn×r, A ∈ Rr×m of rank r ≪ min(n,m) and optimize P ′ by freezing
P and training these matrices. The number of values in A and B combined should be far
less than in P (usually multiple magnitudes): r · n+ r ·m ≪ nm.
The intuition behind LoRA is that for BA ≈ −

∑k
i=0 λi∇Li this should yield a similar

result as in common fine-tuning.
Matrices that closely approximate this sum do exist (what validates this approach) be-
cause using singular value decomposition (SVD) any matrix M ∈ Rn×m of rank r can be
decomposed in singular vectors ui ∈ Rn, vi ∈ Rm and its corresponding singular values
σi > 0 as

M =
r∑

i=1

σiuiv
T
i =: UΣV T (3)

It can be shown that if we truncate this sum to r̂ < r this still yields the best approx-
imation of rank r̂ for M [11]. Additionally, quantized LoRA (QLoRA) offers even more
parameter efficiency by using quantized parameters [9]. Common options are four or
eight-bit floats.
Finally, learned embeddings or prompt tuning [23] allow the parameters of a model to
be completely frozen. Instead, one introduces new embedding vectors that are appended
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to the prompt. During training, only these vectors receive gradients; the standard token
embeddings and all other parameters remain frozen. This is the most parameter-efficient
method of the ones mentioned, as it only needs to calculate the gradients of these tokens.

As prompt tuning still lacks behind LoRA-based methods in absolute performance [23]
and we are able to employ QLoRA on our hardware, we opted for this technique when
fine-tuning our LLMs.

3.4.4 Loss Calculation

In order to optimize parameters through a gradient based method, we must first define a
loss function. Since all of our models are so-called CausalLMs they are trained on next
token prediction which allows us to train them using the cross-entropy-loss. Specifically,
given a prompt and completion of token indices p0, ..., pn and c0, ..., cm respectively, we
want to train the model to produce ci given an input of (p0, ..., pn, c0, ..., ci−1).

CausalLMs produce one output for each input token, where the output is a distribution
of floating point numbers xi,j resembling the probability of the token of index j ∈ [N ]
succeeding the ith input token where N ∈ N is the vocabulary size. CausalLMs are au-
toregressive and therefore employ attention masking which makes sure each token only
attends to the tokens preceding it. This allows us to train the model on a complete ex-
ample in a single run rather than running it once per token.

The input is the sequence (p0, ..., pn, c0, ..., cm−1) and the labels are defined by the the
sequence (p1, ..., pn, c0, ..., cm). For the ith output-label pair

(
(xi,j)j∈[N ], yi

)
, the cross-

entropy-loss is defined as

li = −log(xi,yi) (4)

i.e. the higher the probability of producing yi the lower the loss. Usually, we obtain xi,j

using the Softmax activation function

σ(z⃗)j =
ezj∑N
k=0 e

zk
(5)

where z⃗ is the output of the last layer for token i, the so called logits. Therefore, the loss
affects all outputs not only the yith component.

To ensure the model only trains on the completions rather than the whole sequence, the
first n losses are masked out. Finally, all the remaining losses are averaged to obtain the
final loss for the example. Fortunately, Huggingface’s “Supervised Fine-tuning Trainer”
handles these processes internally, minimizing the chance of misimplementation.

3.4.5 Hyperparameter Tuning

To systematically optimize model performance, we used Optuna for hyperparameter tun-
ing. Optuna eliminates the trial-and-error process of hyperparameter tuning by automat-
ically searching for the best combination of hyperparameters based on an optimization
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target we define. Instead of manually testing different configurations, Optuna systemati-
cally explores the hyperparameter space to find optimal values that maximize or minimize
our chosen performance metric [33].

Our objective function for Optuna includes the hyperparameters shown in Table 2 with
their corresponding ranges and distributions. The parameter ranges were chosen based
on established best practices and empirical observations from the literature. For learning
rates, we used different ranges for LLMs and SLMs due to their distinct parameter scales
and training dynamics. Training a LoRA from scratch for the LLMs requires a higher
learning rate than tuning all the pre-trained parameters of the SLMs. The LoRA-specific
parameters (rank, alpha, dropout) are set within commonly used ranges that balance
model expressiveness with parameter efficiency. The rank values {16, 32, 64} represent
typical low-rank decomposition sizes that maintain performance while reducing computa-
tional overhead. The choice of num_of_epochs is mostly to define the curve of the learning
rate scheduler. We stop the trail after 3 epochs either way to maintain consistency. Of
course, in the final fine-tuning run, we do not cut off early.

Parameter Type Range/Values Notes
learning rate log-uniform LLMs: 1× 10−5 to 3× 10−4 Higher for LoRA (LLMs)

SLMs: 5× 10−6 to 3× 10−5 Lower for SLMs
lora rank categorical {16, 32, 64} Low-rank decomposition size
lora alpha float 0.5–2.0 Multiplied by rank for final alpha
lora dropout float 0.0–0.3 Regularization for LoRA layers
total batch size categorical {8, 16} Hardware memory constraints
warmup ratio float 0.01–0.05 Learning rate schedule
weight decay float 0.0–0.05 L2 regularization
num of epochs categorical {3, 5} Training duration
adam beta1 float 0.8–0.95 Adam momentum parameter
adam beta2 float 0.95–0.999 Adam second moment parameter
adam epsilon log-uniform 1× 10−8 to 1× 10−6 Numerical stability
neftune noise alpha float 0.0–10.0 Noise injection for training
max grad norm float 0.5–2.0 Gradient clipping
lr scheduler type categorical {cosine, polynomial} Learning rate decay strategy

Table 2: Hyperparameter search space for Optuna optimization.

We ran 30 Optuna trials per model, balancing search efficiency and compute budget. Each
trial used 15% of the training data. The objective metric for optimization is validation
loss, reflecting generalization performance.

Each trial involves testing a specific set of parameters across multiple training epochs.
We considered two strategies for selecting the final parameter state in each trial: using
the set of parameters that achieved the lowest validation loss during the trial (“best”) or
using the parameters from the final epoch (“last”). While intuitively, it might make more
sense to choose the “best” parameters within a trial, we observed signs of overfitting
shortly after the point of minimum validation loss. To address this, we conducted an
additional Optuna optimization run using the “last” parameters from each trial, with
the aim of identifying configurations that maintained more consistent performance and
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reduced overfitting. The best configuration from each study was then used for final model
training and evaluation.

3.5 Metrics

3.5.1 Human Evaluation Justification

Human evaluation is critical for assessing the performance of language generation models,
particularly for tasks involving summarization, translation, and open-ended generation.
While automatic metrics provide efficiency and reproducibility, human judgment is essen-
tial for capturing subjective qualities such as coherence, relevance, fluency, and factual
consistency [17]. Human evaluators serve as the gold standard, especially in cases where
automatic metrics are misaligned with human preferences.

3.5.2 Automatic Metrics: ROUGE and F1-BERTScore

To evaluate summary quality comprehensively, we combine standard and advanced met-
rics: ROUGE [24], BERTScore [49], and BLEURT [37], each capturing different aspects
of performance. ROUGE, widely used in summarization, measures lexical overlap via
ROUGE-1 (unigrams), ROUGE-2 (bigrams), and ROUGE-L (longest common subse-
quence), but often fails to reflect semantic adequacy, particularly in abstractive settings.

To address this, we include BERTScore, which computes similarity using contextual em-
beddings from pretrained Transformer models. It aligns tokens based on embedding
distance and provides F1 scores that better correlate with human judgments on meaning
preservation. We report BERTScore F1 using three different BERT variants, namely:

(1) bert-base-multilingual-cased

(2) T-Systems-onsite/german-roberta-sentence-transformer-v2

(3) FacebookAI/xlm-roberta-base.

3.5.3 Metrics After Translation

There are multiple metrics only available in English language, such as BLEURT [37],
MOVERScore [50], and BARTScore [46]. Since the dataset is in German, it is conceptu-
ally possible to use another large language model for translation and evaluate the reference
summarization translation with the model summarization translation. Some scientific pa-
pers support this method empirically [29, 25]. However, this is not without a cost. In
practice, a larger resource will be required. In theory, the summarization error will be
further affected by the translation infidelity/error.

In order to exhaust all possible metrics, we are using facebook/nllb-200-distilled-600M
as a translation model and then BLEURT on top of that for the evaluation metric. We
chose this model as it is quite popular on Huggingface currently and produced convincing
translations that did not seem to change the structure of the original summary.
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3.5.4 Metric Robustness to Summarization Length

When selecting evaluation metrics for summarization, it is critical to consider their robust-
ness to variations in summary length particularly in abstractive summarization. Table
3 shows the robustness of the selected metrics with regards to length of summarization
based on theoretical point of view of the practical implementation of these metrics. This
however does not influence the reliability of the metrics in summarization. How fitting a
metric is will be determined by its correlation to the human evaluation. [30, 13, 49, 37].

Metric Type Robustness
to Length

Notes

ROUGE Overlap-
based

Low Biased toward longer summaries; favors
extractive systems due to reliance on n-
gram overlap

BERTScore Embedding-
based

Moderate Captures semantic similarity via con-
textual embeddings, but still somewhat
sensitive to token count

BLEURT Learned /
Regression

Moderate Fine-tuned on human judgments; ro-
bust to paraphrasing and summary
length variability

Table 3: Robustness of evaluation metrics with respect to summary length variation.
Color indicators denote qualitative robustness levels.

3.5.5 Interplay Between Human Evaluation and Metrics

While automatic metrics enable scalable and consistent evaluation, they often fail to fully
capture linguistic nuance, especially in creative or complex texts. Human evaluations are
therefore commonly used to complement metrics, ensuring that high metric scores reflect
truly fluent and useful outputs. This combined approach yields a more robust evaluation
framework [15].

To quantify alignment between human judgments and automatic metrics, we use statisti-
cal correlation analysis. Specifically, we compute Kendall’s tau (τ), which measures rank
correlation between two ordered lists, for example, human quality rankings and metric-
based rankings of summaries [34]. Higher τ values indicate stronger agreement between
metrics and human preferences.

We calculate Kendall’s τ per article to respect annotator-specific judgments and avoid
cross-annotator bias. To assess overall statistical significance, we combine the resulting
p-values using Fisher’s method [12], a standard technique for aggregating independent
significance tests.

X2 = −2
k∑

i=1

ln(pi) where X2 ∼ χ2
2k (6)
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This allows us to test whether the overall correlation across all 28 articles is unlikely
to be due to chance, even if individual article-level p-values are not significant on their
own. Overall, this methodology enables us to identify which metrics most faithfully reflect
human judgments and to prioritize them in model assessment and recommendation.

4 Experiment Results

Model n-shot Complete Summaries
Llama-3.2-1B 0 0.22
Llama-3.2-1B 1 0.76
Llama-3.2-1B 2 0.78
Qwen2-1.5B 0 0.02
Qwen2-1.5B 1 0.43
Qwen2-1.5B 2 0.54

Llama-3.1-8B 0 0.06
Llama-3.1-8B 1 0.73
Llama-3.1-8B 2 0.90
Teuken-7B 0 0.57
Teuken-7B 1 0.77
Teuken-7B 2 0.76
Teuken-7B (trunc) 0 0.49
Teuken-7B (trunc) 1 0.78
Teuken-7B (trunc) 2 0.83

Table 4: Ratio of completed summaries across models and n-shot settings. We consider a
summary complete if the model’s generation did not need to be cut off after 100 tokens.

4.1 Completion Ratio

The average number of words per summary is about 20 in our data and we prompted
our models to produce at most 2-3 sentences. Therefore, we decided to limit the number
of tokens the model is allowed to produce to 100 which equals roughly 60-80 words as
this should be plenty to produce a reasonable summary. Generation terminates once this
number of tokens is exceeded and we say that the model overproduces. We call a summary
complete if the model does not overproduce.

Table 4 shows the ratio of completed summaries on the test set across models and n-shot
settings. We observe that all models tend to overproduce in the 0-shot setting, espe-
cially Qwen2-1.5B and Llama-3.1-8B completing only 2 and 6 percent of their respective
summaries. Increasing the number of shots, i.e. the number of examples given, this ratio
increases for nearly all models. For Llama-3.1-8B it even jumps up to 90% in the 2-shot
setting. After fine-tuning, all models reach a completion ratio close to 1. However, we
did not include those results in Table 4 to keep it readable.
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4.2 Human Evaluation

Model n-shot Faithfulness Relevance Coherence Average
Llama-3.2-1B 0 2.14 2.29 1.66 2.03
Llama-3.2-1B 1 2.16 1.95 1.82 1.98
Llama-3.2-1B 2 2.33 2.09 2.26 2.23
Qwen2-1.5B 0 1.87 1.67 1.54 1.69
Qwen2-1.5B 1 1.98 2.14 1.97 2.03
Qwen2-1.5B 2 2.25 2.23 1.84 2.11

Llama-3.1-8B 0 4.08 3.29 2.59 3.32
Llama-3.1-8B 1 3.58 3.08 3.22 3.30
Llama-3.1-8B 2 3.74 3.27 3.58 3.53
Teuken-7B 0 3.43 3.04 3.20 3.22
Teuken-7B 1 3.57 3.02 3.12 3.24
Teuken-7B 2 2.94 2.65 2.99 2.86
Reference 4.09 3.21 4.12 3.80

Table 5: Average human evaluation scores across models and number of shots.

Multiple human annotators rated random articles of our test set on faithfulness, relevance
and coherence. In total, 456 summaries were evaluated spanning 28 articles in total. Some
articles were reviewed by multiple annotators due to randomness. Due to a network error,
however, we can only recover 409 usable reviews.Table 5 shows the results of the human
evaluation of the models in different n-shot settings. We highlight the best and worst
SLM and LLM in green and red respectively.

Llama-3.1-8B in the 0-shot setting achieves close or even better results compared to the
reference in faithfulness and relevance. This hints towards the quality of our references.
They tend to be rather short and abstract including only a single highlight of the article
in some cases. In the 0-shot setting, Llama-3.1-8B is very verbose which the annotators
seem to prefer regarding the content. However, they punish the model’s coherence which
is likely due to its low completion ratio as shown in Table 4.

Llama-3.1-8B in the 2-shot setting seems to have the best trade-off between content and
completion reaching an average score of 3.53 which is already quite close to the reference.
The same seems to hold for our two SLMs, especially the LLama model. However, they
do not seem to reach the same level as the LLMs yet. Teuken-7B seems to benefit less
from increasing the number of shots which is due to its context size. As it was trained on
only 4096 tokens it produces nothing or gibberish if this number is exceeded.

4.3 AEM-based Analysis

Next, we compute AEMs on the generated summaries by the models in different n-shot
scenarios (see Table 6). The resulting values have completely different distributions across
metrics, making interpretations of single values and comparisons between different metrics
useless. However, within a metric we can at least rank models accordingly. However, as
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Model n-shot ROUGE-L BS (1) BS (2) BS (3) BLEURT
Llama-3.2-1B 0 0.1239 0.5350 0.4743 0.9853 -0.4754
Llama-3.2-1B 1 0.1256 0.5309 0.4319 0.9852 -0.5482
Llama-3.2-1B 2 0.1199 0.5294 0.4396 0.9852 -0.5385
Qwen2-1.5B 0 0.1226 0.5249 0.4795 0.9852 -0.4369
Qwen2-1.5B 1 0.1262 0.5402 0.4715 0.9856 -0.4806
Qwen2-1.5B 2 0.1405 0.5482 0.4875 0.9858 -0.5047

Llama-3.1-8B 0 0.1490 0.5532 0.5206 0.9859 -0.3790
Llama-3.1-8B 1 0.1580 0.5682 0.5175 0.9861 -0.3554
Llama-3.1-8B 2 0.1681 0.5709 0.5171 0.9862 -0.3991
Teuken-7B 0 0.1306 0.5364 0.4787 0.9853 -0.4641
Teuken-7B 1 0.1307 0.5331 0.4800 0.9746 -0.5385
Teuken-7B 2 0.1269 0.5140 0.4444 0.9523 -0.5814
Teuken-7B (trunc) 0 0.1230 0.5259 0.4566 0.9630 -0.4972
Teuken-7B (trunc) 1 0.1379 0.5484 0.4887 0.9856 -0.4690
Teuken-7B (trunc) 2 0.1413 0.5400 0.4770 0.9639 -0.5316

Table 6: Model performance with varying n-shot settings.

Table 6 shows, this ranking still differs from one metric to another. To shine some light
on which metric to trust, we compute the correlation between these AEM based rankings
and the human rankings.

Metric tau p-value
ROUGE-L 0.1550 0.0404
BERTScore F1 (1) 0.2322 0.0366
BERTScore F1 (2) 0.2498 0.0010
BERTScore F1 (3) 0.1536 0.0444
BLEURT 0.1955 0.0266

Table 7: Kendall’s tau between AEMs and average human scores. The tau values are
averaged over 28 articles and the aggregated p-values are obtained using Fisher’s method.

4.3.1 Correlation of AEMs and Human Ratings

The tau values in Table 7 suggest that BERTScore models (1) and (2) generally achieve
stronger rank correlations with human judgments compared to the others. Both metrics’
scores are far from the ideal tau value of 1. This is likely due to the fact that our metrics
are reference-based and as our human evaluation showed, our references are imperfect
relevance-wise. However, even these moderate values validate the use of the AEM as
a first indicator of a model’s performance and allows us to identify certain trends. To
interpret whether the computed correlations are statistically meaningful, we report the
aggregated p-values obtained via Fisher’s method as well. All metrics achieve low p-
values, surpassing a common threshold of < 0.05, validating the statistical significance of
our test.
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4.3.2 Interpretation of n-shot Results

Similar to the human evaluation, the AEMs have a tendency towards Llama-3.1-8B as
Table 6 shows. While BERTScore model (1) prefers the 2-shot version, model (2) prefers
the 0-shot version. One possible intuitive explanation could be that model (2) focuses
more on faithfulness and relevance as shown in Table 7 while model (1) weights coherence
slightly stronger.

Considering that Llama-3.1-8B only has a 6% completion ratio in the zero shot setting
(see Table 4), rendering it effectively useless and the potential inaccuracy of our human
evaluation we tend to trust model (1) more than (2) as it prefers the 2-shot version and
aligns with the majority vote in most cases.

Moreover, for the SLMs the AEMs seem to prefer 2-shot Qwen2-1.5B over Llama-3.2-1B
which is contrary to the human evaluation. Again, possibly because they focus more on
faithfulness and relevance rather than coherence. If we only consider the average of these
two, 2-shot Qwen2-1.5B performs best on the human setting as well.

4.3.3 Truncation

Now we observe the effect of truncation for Teuken-7B. As Table 6 shows, most metrics
agree that the non-truncated version in the 2-shot setting performs the worst, partially
even worse than the SLMs. This is due to the fact that many 2-shot prompts exceed the
models designed context length of 4096 leading to an empty output which receives a score
of zero in BERTScore models.

This is a slightly different result compared to the human evaluation where Teuken-7B
clearly outperforms SLMs. Likely, the reason is that a score of zero is a significant outlier
for the AEMs having a greater impact on the average compared to human evaluation.

After applying truncation, the results improve, especially for the one and two shot settings.
One shot with truncation yields the best results for Teuken-7B, likely as it benefits from
an example but does not need to truncate as often as the two shot version leading to
incomplete, possibly misleading, examples.

4.3.4 AEMs after Fine-tuning

Figure 3 contains the best scores of the non-fine-tuned models from Table 6, denoted by
the model-name, as well as the results of the two respective fine-tuned versions denoted
by model-name-ft-best and model-name-ft-last. The names correspond to the re-
spective hyperparameter optimization objectives “best” and “last” explained in Section
3.4.5. For the fine-tuned versions, increasing the number of shots did not yield better
results, which is why we are considering only the 0-shot versions here. Colors are chosen
as a heatmap to make the differences easier to observe. Again, we choose green for the
best model and red for the worst, interpolating between them.

As shown in Figure 3, fine-tuning Llama-3.1-8B seems to be the best model overall.
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Model ROUGE-L BS (1) BS (2) BS (3) BLEURT
Llama-3.2-1B 0.1256 0.535 0.4743 0.9853 -0.4754
Llama-3.2-1B-ft-best 0.1711 0.5616 0.4815 0.9866 -0.6349
Llama-3.2-1B-ft-last 0.159 0.5642 0.4858 0.9865 -0.6328
Qwen2-1.5B 0.1405 0.5482 0.4875 0.9858 -0.4369
Qwen2-1.5B-ft-best 0.1496 0.5599 0.4807 0.9864 -0.6604
Qwen2-1.5B-ft-last 0.1487 0.5506 0.4769 0.9862 -0.6555

Llama-3.1-8B 0.1681 0.5709 0.5206 0.9862 -0.3554
Llama-3.1-8B-ft-best 0.173 0.5737 0.5043 0.9867 -0.5731
Llama-3.1-8B-ft-last 0.1764 0.5856 0.5198 0.987 -0.5579
Teuken-7B 0.1413 0.5484 0.4887 0.9856 -0.469
Teuken-7B-ft-best 0.1763 0.5693 0.5009 0.9866 -0.599
Teuken-7B-ft-last 0.1751 0.5664 0.5018 0.9757 -0.5826

Figure 3: AEM scores of the different fine-tuned models compared with each models best
score before fine-tuning.

However, the non-fine-tuned version is still quite competitive. Teuken-7B benefits from
fine-tuning as well but lacks behind Llama-3.1-8B slightly. None of the fine-tuned SLMs
has competitive performance in comparison to the bigger ones. They are comparable to
the non-fine-tuned Teuken-7B. Even then, the non-fine-tuned Llama-3.1-8B still is the
better option based on the metrics.

4.4 Qualitative analysis

While the AEM based analysis provides insights on the performance differences between
different models, their actual usability in practice remains uncertain. Based on our n-shot
and fine-tuning results (Table 6, Figure 3), we selected seven representative models for
closer inspection: LLAMA-3.1-8B-Instruct in zero-shot, two-shot, and fine-tuned (ft-last)
variants; Teuken-7B-ft-best; and three SLMs: Qwen2-1.5B-ft-best, Llama-3.2-1B-ft-last,
and Llama-3.2-1B-ft-best.

Evaluation on 10 randomly sampled articles revealed consistent trends. The SLMs showed
frequent hallucinations and occasional incoherence. Teuken-7B produced abstract, cre-
ative, and largely faithful summaries with minimal hallucinations, though its style oc-
casionally introduced confusion by deviating from the source. All Llama-8B variants
generated coherent, faithful summaries with minimal hallucinations, showing reliability
across prompting and fine-tuning setups. The Llama-8B variants usually highlighted simi-
lar aspects of the article as the reference, while Teuken-7B occasionally prioritized stylistic
flair over strict adherence to the source.

Among the Llama-8B models, the zero-shot version attempted exhaustive coverage, often
resulting in incomplete outputs. The two-shot variant was more elaborate but gener-
ally stayed within length constraints. The fine-tuned version (ft-last) consistently pro-
duced concise, relevant, and sometimes superior summaries. Based on these findings, we
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strongly recommend LLaMA-3.1-8B-Instruct for high-quality summarization, ideally us-
ing our fine-tuned version ft-last.

5 Conclusion

This study evaluated the capabilities of recent language models for the task of summariz-
ing German news articles, with a focus on applicability within ZDF’s editorial workflows.
We examined two small language models (SLMs), LLaMA-3.2-1B-Instruct and Qwen2-
1.5B-Instruct, and two larger models, Teuken-7B-Instruct and LLaMA-3.1-8B-Instruct,
under various optimization strategies including n-shot prompting and parameter-efficient
fine-tuning via LoRA.

Our evaluation employed three automatic metrics, whose reliability was verified through
a targeted human evaluation using Kendall Tau’s correlation analysis. Additionally, we
also evaluated the underlying data quality of ZDF’s article-summary corpus and found it
well-suited for supervised training, shown by the performance increase after finetuning.
Our results demonstrate that n-shot learning alone substantially improves model ad-
herence to summarization prompts, particularly in terms of output length and focus.
Nonetheless, both SLMs suffered from significant hallucinations and coherence issues,
even after fine-tuning, rendering them unsuitable for production use.
Teuken-7B, while more capable than the SLMs, exhibited context window limitations
and occasional hallucinations, resulting in an inconsistent performance profile. These
limitations, along with its qualitative shortcomings, preclude its recommendation for use
in ZDF environments.
In contrast, LLaMA-3.1-8B-Instruct consistently delivered faithful, coherent, and relevant
summaries across all configurations. The 0-shot and 2-shot variants already performed
competitively, and the fine-tuned model produced outputs comparable to or better than
reference summaries. It also demonstrated robustness in minimizing hallucinations, mak-
ing it a strong candidate for real-world deployment. According to our qualitative analysis,
after fine-tuning LLaMA-8B produced very good summaries, comparable or even better
than the reference.

Overall, our findings highlight that modern LLMs, particularly LLaMA-8B, are capable
of high-quality summarization of German news articles, and can be effectively optimized
even with lightweight methods such as prompt tuning. This shows the practical feasibil-
ity of deploying conservatively sized models within ZDF’s editorial infrastructure without
compromising output quality.

Looking ahead, a possible direction involves leveraging knowledge distillation techniques
to transfer the performance gains of larger models (e.g., LLaMA-8B) into smaller, more
efficient SLMs. While not pursued in this work, knowledge distillation had been consid-
ered as a secondary option, with fine-tuning initially prioritized as the preferred strategy.
However, due to time constraints and limited computational resources, this direction re-
mained unexplored. Nevertheless, this approach may help mitigate the hallucination and
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coherence issues currently observed in small models, while retaining much of the perfor-
mance improvements gained through fine-tuning.
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