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Abstract

Deciding on the manufacturability of 3D models by a 3D printer is still a task that is very
time-consuming and requires expert knowledge. The main goal of the project is to auto-
mate this process using convolutional neural networks. We present a data pipeline that
selects suitable input data and processes it through a series of transformations consisting
of cleaning, scaling, alignment and voxelization. For the generation of non-manufacturable
models we developed an algorithm that inserts various defects to 3D models. With this
algorithm we were able to generate a dataset for our classification task, which we refer
to as AMC dataset. We trained deep learning models, based on advanced convolutional
neural network architectures, such as ResNet and InceptionNet on the AMC dataset. Us-
ing the InceptionNet architecture we were able to classify the manufacturability with an
accuracy of 98% and an F1-score of 0.98. We further evaluated the performance of the
deep learning models and the quality of the generated models in more detail.
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1 Introduction

1.1 Motivation

Additive Manufacturing (AM), commonly referred to as 3D printing, is the most general
term which describes the process of adding material layer by layer, where each layer is
a slice of a digital 3D model [1]. There are a plenty of different methods for AM, as
described for example in [2]. What most of these methods have in common is that they
offer a variety of high-impact benefits compared to classical manufacturing processes.
More complex objects can be produced faster, more sustainable and on demand [3, 4, 5].
It is therefore no coincidence that the AM market faced an average growth rate of 27%
over the last decade and is currently estimated at $12.8 billion [6]. Some industry experts
estimate that the market will reach $100-250 billion by 2025 [3]. Additionally, companies
in the automotive sector [7, 8, 9], aerospace sector [10, 11, 12] and many more are investing
heavily in AM technology and its application to high volume manufacturing.

1.2 Problem Definition

AM still has many limitations at the moment, mainly lack of design knowledge, imperfec-
tions during the printing phase, and high costs in mass production. One significant reason
and source of these limitations is that AM currently requires a lot of human expertise and
supervision [3, 4].
In particular, the process of identifying whether a 3D model is manufacturable by a given
3D printer is a very time-consuming and complex task, as 3D models could have many
geometric elements and the requirements of the 3D printer are very specific. In this
project we want to automate this process using advanced convolutional neural networks
(CNNs).

1.3 Project Goals

The overall goal of this project is to develop an inference algorithm, based on advanced
CNN architectures, that is able to detect defects in 3D models, consequently classifying
them as manufacturable or non-manufacturable. This is done by achieving two main
technical goals:

1. Develop a data generation module that, given a 3D mesh model, returns the vox-
elized 3D model with a defect augmented into it. The defect is a hole that goes
through the 3D voxelized model at a random location within the object.

2. Develop a deep learning module that offers a choice of several supported architec-
tures, trains the deep learning models, and carries out performance analysis on the
classified 3D models.
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1.4 Project & Report Outline

The remainder of the report is organized as follows: We introduce similar literature work
in section 2. This is followed by section 3 which gives an insight into the data source
which has been exploited and corresponding data preprocessing steps (i.e. data selection,
cleaning, normalization, alignment and voxelization). Subsequently, an approach for the
synthetic data generation is outlined in section 4, which is called DefectorTopDownView.
As the name already suggests, this algorithm inserts defects into existing 3D models.
Section 5 showcases an in depth investigation of the ability of different neural network
architectures to classify the generated data as printable or non-printable 3D models. This
is followed by section 6 which presents the final results. The report is concluded by a
discussion which is carried out in section 7.

Figure 1: Overview Project and Report Structure.
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2 Related Work

This sections aims for giving an overview about any similar work we are aware of, with
respect to additive manufacturing and/or deep learning.

Generally, 3D CNNs have been used for object recognition based tasks using the vox-
elized shape of corresponding models. Balu et al., demonstrated the feasibility of using
3D CNNs to identify local features of interest using a voxel-based approach. The 3D
CNN used, was able to learn local geometric features directly from the voxelized model,
without any additional shape information. The deep learning based design for manufac-
turability (DLDFM) tool developed in the paper has successfully learned the complex
Design for Manufacturability (DFM) rules for drilling which include not only depth-to-
diameter ratio of the holes but also their position and type. As a consequence, the DLDFM
framework out-performs traditional rule-based DFM tools which are currently available
in computer-aided design (CAD) systems. The 3D CNN was able to identify the local ge-
ometric features irrespective of the external object shape, even in the non-representative
test data. In contrast, within our project, we approached the problem by developing data
driven model to classify whether a given 3D model is printable or not.

Fast and reliable industrial inspection is a main challenge in manufacturing scenarios.
However, the defect detection performance is heavily dependent on manually defined fea-
tures for defect representation. Daniel Weimer presented an approach for visual defect de-
tection using deep machine learning, namely deep CNN. The performance of the proposed
approach is measured on a data set representing 12 different classification categories with
visual defects occurring on a heavily textured background. As opposed to hand-crafted
features on pixel level, the CNN architectures are engineered by investigating different
hyperparameters involved in the process. In this way, systems for optical quality control
(OQC) can be developed with minimum prior knowledge within the problem domain. In
our project, we proposed various deep learning architectures to classify a given 3D model
with a very high accuracy.

Banadaki et al. proposed an automated quality grading system that uses a CNN for the
additive manufacturing process. The CNN model was trained online using images of the
internal and surface defects in the layer-by-layer deposition of materials. Furthermore, it
was tested online by studying the performance of detecting and classifying the failure in
the AM process at different extruder speeds and temperatures. The model achieved an
accuracy of 94% and specificity of 96% for classifying the quality of the printing process
to five classes in real-time. The online model offers an automated non-contact quality
control inspector that eliminates the need for manual inspection of parts after they are
completely built.
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3 Data Source & Data Preprocessing

This chapter aims for giving an insight into the data source that was utilized and all
consequent preprocessing steps applied. The holistic workflow is depicted in the block
diagram below.

Figure 2: Holistic representation of the data source & data preprocessing workflow.

3.1 Data Source

As a baseline dataset the ABC dataset was used, which consists of computer-aided design
(CAD) models for research of geometric deep learning methods and applications [16].
Generally, the dataset consists of one million mechanical 3D models, which are scattered
over one hundred data chunks of equal size. The file format is given as standard triangle
language (stl) which is one of the most common representations of 3D models [17]. The
complexity level of the different 3D models is distributed from rather easy (i.e. simple 3D
cube) to very complex examples (i.e. car engine block).

3.2 Data Selection

As a consequence of the non-uniform complexity distribution of the 3D models across the
dataset, we tackled the problem by filtering the data right before any preprocessing is ap-
plied. Furthermore, in order to be able to make the assumption of the each selected model
being printable, the complexity has to be restricted. From exploratory data analysis, it
can be concluded that if the general complexity of the model increases, more triangular
meshes are required to represent the exact shape of the 3D model. Consequently, this
is an indicator, that more complex models result in stl files which may be much bigger
than less complex 3D models (i.e. there is a positive correlation between non-complexity
and printability). To this end, the final data, which is used for any further preprocessing
steps, is selected according to a file size threshold, that was identified empirically.

In fact, the total number of files that are considered depends first of all on the number of
initially selected data chunks. Building up on that, the file size parameter basically works
like a cutoff criterion. First, the actual size of every 3D model is identified, followed by
an ascending ordering of those. Finally, the selected file size parameter determined which
files were regarded for further preprocessing steps and which were disregarded. In our
current approach, three data chunks were taken and all models having a file size smaller
or equal to 25 kilo bytes (kb) were selected, resulting in a total of 3457 initial models,
that were considered for further preprocessing steps and in addition to be printable.
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3.3 Data Preprocessing

Once a decision was made with respect to the 3D models that were considered for any
further preprocessing steps, all models had to undergo cleaning, normalization, alignment
and voxelization step. In the following, those steps are explained in more detail.

3.3.1 Cleaning

For a 3D mesh to be 3D printable, certain conditions have to be satisfied. The first
condition is water tightness and the second condition is having manifold geometry. Water
tightness is satisfied if the 3D mesh has no holes and if all normal vectors of the 3D
mesh are facing outwards [18]. Manifold geometry is satisfied if no edges of the 3D mesh
are shared by more than two faces [19]. The data cleaning applied involves cleaning of
a mesh’s vertices, edges, and triangles. The cleaning of mesh vertices is performed by
applying the following:

1. Removing vertices that have identical coordinates

2. Removing vertices that are not referenced in any triangle

The cleaning of mesh edges is performed by removing non-manifold edges.

The cleaning of mesh triangles is performed by applying the following:

1. Removing triangles that reference the same three vertices (f.e. triangle1: [v1, v2,
v3], triangle2: [v2, v1, v3])

2. Removing triangles that reference a single vertex multiple times in a single triangle
(f.e triangle1: [v1, v2, v2])

All these cleaning functionalities were implemented using Open3D [20] functions.

In addition to that, the following filters defined by PyMeshlab, a Python library that
interfaces to MeshLab, a well-known open source application for editing and processing
3D triangle meshes, were used:

• remove duplicate face: Two faces are considered equal if they are composed by the
same set of vertices, regardless of the order of the vertices.

• remove duplicate vertices: If there are two vertices with same coordinates they are
merged into a single one.

• repair non manifold edges by removing faces: For each non Manifold edge it itera-
tively deletes the smallest area face until it becomes 2-Manifold.
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3.3.2 Normalization

Normalization is necessary in order to ensure having stable gradients while training neural
networks [21]. Since different models come with different sizes and their vertices lie
in different ranges, it is important to apply a normalization step to ensure that the
vertices components lie in the same range. The main obstacle with 3D vertices is that all
components have to be scaled with the same factor to not destroy the appearance/scale
of the model. In traditional normalization, where each feature is scaled according to the
range that the feature lies in independent of the other features will not work with the
components of 3D vertices. To that end, normalization in two steps was applied. First,
the model were centered on the origin by finding the center of mass of the model and then
translating it to the origin. xtyt

zt

 =

xy
z

−
cxcy
cz

 (1)

where (xt, yt, zt) are the components of a three-dimensional point after translation to
the origin, (x, y, z) is the three-dimensional point before translation, and (cx, cy, cz) is
the center of mass of the 3D points of a mesh. The center of mass of the 3D points is
computed by finding the mean of the components.cxcy

cz

 =
1

n

n∑
i=i

xiyi
zi

 (2)

The points were then scaled such that all components (X, Y, Z) of the 3D vertices lie in
[−1, 1] range. This was done by finding the range of each component and then scaling
the points by the component range with the maximum value.

xsys
zs

 =

xtyt
zt

÷ max
axis=x,y,z

{range(axis)} (3)

3.3.3 Alignment

3D objects are generally represented in an arbitrary orientation [22]. The aim of this
part of preprocessing is to have a common orientation of the models. An idea that is
generic enough to be applied to all models is to find the axis of the minimum moment of
inertia (MOI). The axis of the minimum moment of inertia is the axis around which most
of the mass of the model is wrapped [23]. Thus, the resistance to rotation around that
axis is minimal. The alignment proposed is to find the axis with the minimum moment of
inertia and align it with one of the coordinate axes (X, Y, Z). To find the axis of minimum
moment of inertia, principal component analysis (PCA) is applied on the inertia tensor.
The eigenvector with the minimum eigenvalue is the axis of minimum moment of inertia
for a given model [24]. Listed bellow are the elements of the inertia tensor. (x, y, z) denote
the position vectors.
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Ixx =
N∑
n=1

y2 + z2 (4)

Iyy =
N∑
n=1

x2 + z2 (5)

Izz =
N∑
n=1

y2 + x2 (6)

Ixy =
N∑
n=1

xy (7)

Ixz =
N∑
n=1

xz (8)

Iyz =
N∑
n=1

yz (9)

The inertia matrix is a constant real symmetric matrix. The inertia matrix is formulated
as follows:

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (10)

The second step is the alignment between the axis of minimum moment of inertia and
one of the coordinate axes. This is done by finding a rotation matrix that can be applied
on the vertices of a mesh such that the two unit vectors (axis with minimum moment of
inertia and a coordinate axis) are aligned [25]. Finding a rotation matrix R that rotates
a unit vector a onto another unit vector b is done as outlined in the following.

Let v = a × b (cross product), s = ‖v‖ (Frobenius norm of a vector) and c = a · b (dot
product a), then the rotation matrix R is given by Equation 11:

R = I + [v]× + [v]2×
1

(1 + c)
(11)

where [v]× is the skew-symmetric cross-product matrix of v, and can be expressed as

[v]×
def
=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (12)

After finding the rotation R, matrix multiplication is applied with the N×3 points matrix,

P =

v11 v12 v13
...

...
...

vN1 vN2 vN3

 ·R (13)

where P is a N × 3 matrix that represents the 3D points after applying the rotation.
Figure 3 shows the results of the alignment algorithm using the equations mentioned
above for an exemplary 3D model.
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(a) (b) (c)

Figure 3: (a) Alignment of min MOI axis and x-axis (b) Alignment of min MOI axis and
y-axis (c) Alignment of min MOI axis and z-axis.

3.3.4 Voxelization

All previously handled preprocessing steps were applied in the mesh status level of the
3D models. The final preprocessing step is devoted to the transformation of those 3D
mesh models (see Figure 4) into a 3D voxel representation (see Figure 5). Generally, a
voxel can be regarded as a pixel in a three-dimensional space. The reason why a voxelized
representation of the 3D models was chosen is due to the following aspects. First, a voxel
can be simply considered as an upscaling of 2D pixels into 3D. Thus, the assumption
was made that state-of-the-art 2D vision models will show a rather good performance on
the voxelized data by transforming them into 3D neural network architectures (i.e. 3D
convolutions). Second, the voxel representation also allows an easy introduction of defects
into existing models, as the 3D model is given as an easy interpretable 3D matrix and
defects can be added by simply removing voxels (i.e. setting matrix elements to zero).

Generally, there are several techniques how to represent 3D models using voxels [26]. In
this work, the occupancy grid was used [27]. It is the most straight forward method used
in order to represent voxels. Occupancy grids represent a binary array/tensor with a value
of 1, if the voxels are intersecting with the surface and 0 everywhere else.

Figure 4: Stanford bunny in mesh format.
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As there were a total of 3457 models initially selected, the process of transforming all
models into a corresponding voxel representation is very compute intensive. Predom-
inately, the computational demand depends on the final decision with respect to the
occupancy grid resolution. As this was chosen to be a grid of 128 × 128 × 128 voxels, a
GPU accelerated voxelization method was leveraged in order to obtain the transformed
models within a reasonable amount of time [28]. The GPU voxelization algorithm is built
on the ”Möller–Trumbore” intersection algorithm [29], which describes the ray-triangle
intersection method used, and CUDA [30].

The voxelization step concludes the data preprocessing cycle. After all steps, an initial
3D mesh model now is transformed into a 128×128×128 voxel representation model that
is in addition cleaned, normalized and axis aligned. As the assumption was made, that
all initial selected models are considered to be printable, a technique has to be found in
order to create non-printable models in order to finalize the dataset for any further deep
learning steps. As a consequence, the next chapter will give an in-depth insight into the
synthetic data generation which solely focuses on the task of adding defects to all existing
models and label them accordingly.

Figure 5: Stanford bunny in voxel format: Occupancy grid representation.
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4 Synthetic Data Generation

After selecting the right models out of the ABC dataset and preprocessing the data, the
next step is to extend the current dataset by models that are non-printable, in order to get
the dataset that can later be used for classification, which we call AMC dataset (compare
to Figure 6). This chapter aims to describe how printable and non-printable models are
defined and how defects with different complexity are added to the 3D models.

Figure 6: Holistic representation of the synthetic data generation workflow.

Defects are defined here as holes that are added to the 3D model and can have an influence
on the manufacturability of the resulting model. It was assumed that the selected models
from the ABC dataset are printable and that the parameters deciding about manufac-
turability can be described by the radius of the hole and the distance between the border
of the defect and the border of the model, that will be referred to as border. That results
in four hyperparameters:

• rp: radius printable

• rnp: radius non-printable

• bp: border printable

• bnp: border non-printable.

For a model dimension of 128x128x128 it was identified that a radius printable of 5, a
radius non-printable of 10, a border printable of 5 and a border non-printable of 3 works
best, which consequently were used to generate the AMC dataset. By combining a radius
and a border out of the given hyperparameters the following models can be generated:

• model with a non-printable defect in the middle (mm
np): radius of rnp and

border larger or equal than bnp (Figure 8 (d))

• model with a printable defect in the middle (mm
p ): radius of rp and border

larger or equal than bp (Figure 8 (f))

• model with a non-printable defect at the border (mb
np): radius of rp and

border of smaller or equal than bnp (Figure 8 (h)).

Given the hyperparameters and the definition of the defect types, the problem of adding
defects is reduced to finding an offset such that the requirements for each defect type is
fulfilled. For this, two algorithms were developed and evaluated. The first algorithm,
called DefectorExhaustive, uses an exhaustive approach which finds a suitable radius,
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axis, and location of a cylinder to create a defect. The second algorithm, called Defector-
TopDownView, projects the 3D data of the model onto a 2D grid and uses the resulting
information to select a suitable offset. Since the second algorithm can add complex defects
in a more robust way, it was decided to use this method for the generation of the AMC
dataset (for more details about the first algorithm refer to the appendix).

The DefectorTopDownView algorithm is described in algorithm 1. The main idea of this
algorithm was to complement a trial and error approach for adding defects, by transform-
ing the 3D model data in a way that it can be used to add defects in a more efficient and
controlled manner. The inspiration for this was given by the heatmap visualization. A
heatmap is a 2D visualization of a 3D matrix [31]. The 3D model data is projected onto
the (x, y) grid by summing the 3D matrix of the model over the z-axis. Since the voxelized
models are represented as a 3D grid, by summing over the z-axis the color represents the
number of voxels having the same (x, y) indices. The resulting 2D matrix was named
top down view (tdv) (an example of a tdv is given in Figure 7 (b)).

(a) (b)

Figure 7: (a) Voxelized Stanford bunny. (b) tdv of the Stanford bunny represented as a
heatmap. Scale on the right indicates the number of voxels at each (x, y) point.

By removing all points that have a previously set distance to the border of tdv in x and
y direction a subsample of indices is generated, that defines suitable offsets for a (radius,
border) combination, as seen in Figure 8 (a), (d) and (g) and described in step 5 and 10 in
algorithm 1. Then, a random offset is selected and the tdv will again be used to check if
the hole is fully in the model (compare to step 8 of algorithm 1). This additional check is
needed to check the given criteria in the non-axis aligned directions. If all checks are met,
a hole, that is aligned with the z-axis at the determined offset will be added. The output
of the DefectorTopDownView algorithm is zero, two (input model without an defect and
mm
np) or four 3D models (previous two models, mm

p and mb
np), depending on whether it

could find an offset satisfying the given conditions (example of the results are visualized
in Figure 8 (b), (c), (e), (f), (h) and (i)). Note here that due to this fact, the defect types
might not be equally distributed.

Applying the DefectorTopDownView the given dataset was extended to 7430 3D models.
A few resulting models are visualized in Figure 20 in the appendix.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: (a), (d) and (g) binary tdv of the Stanford bunny. The red area visualizes the
indices that are removed by step 5 for (a) and (d), and step 15 for (g) of algorithm 1
by using a border of 5 for (a), a border of 10 for (d) and a border of 14 for (g). The
light area indicates possible offsets. (b), (e), (h) binary tdv of the Stanford bunny with
an added hole of radius of 5, 10 and 10 and consequently the tdv of mm

np, m
m
p and mb

np,
respectively. For finding the offset the light area of indices out of Figure 8 (a), (d) or (g)
has been used. (c), (f) and (i) resulting 3D models with added defects, i.e. mm

np, m
m
p and

mb
np of the Stanford bunny.
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Algorithm 1: DefectorTopDownView

input : 3D model data in occupancy grid format (m), hole radius printable (rp)
and non-printable (rnp), border printable (bp) and non-printable (bnp),
number of trials (t)

output: 0/2/4 models containing different defects that are printable or
non-printable, depending on the input model

1 begin
2 tdv ← sum m over z axis
3 possible offsets ← determine non-zero indices of tdv
4 for r, b in [(rnp, bnp), (rp, bp)] do
5 remove all indices of possible offsets were the corresponding points in tdv

are b away from the border of tdv in x and y direction
6 offset ← randomly select offset from possible offsets
7 for 0 up to t do
8 if for every point given by a hole with radius = r + b at offset the value

of tdv at this point is not zero then
9 new model ← m with added hole aligned with z-axis at offset with

radius r
10 add new model to pre output
11 break

12 end

13 end

14 end
15 possible offsets ← determine points of tdv that are bnp + rp + 1 away from the

border of tdv in x and y direction
16 repeat code block 6-13 with radius=rp and border=1
17 if model with non printable defect middle in pre output then
18 add m and model with non printable defect middle to output
19 end
20 if model with non printable defect border and

model with printable defect middle in pre output then
21 add model with non printable defect border and

model with printable defect middle to output

22 end
23 if output is not empty then
24 return output
25 else
26 return empty list
27 end

28 end
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5 Machine Learning

Machine Learning is the science (and art) of programming computers so that they can
learn from data [32]. Generally, there are a lot of aspirations which give a definition of
machine learning. The following showcases two attempts, first a rather generic definition
and second an engineering-oriented notation:

“Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed”

– Arthur Samuel, 1959

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

– Tom Mitchel, 1997

5.1 Architectures

In this project, a 3D convolution neural network based method is proposed in order to
learn distinct local geometric features of interest within a three-dimensional object. The
task at hand is a binary classification task to recognize whether a part is printable or
not. Thus, the feature of interest to be learned is, whether there are holes inside the 3D
models which make them non-printable. Since, it’s a simple binary classification task, it
is essential to obtain an appropriate feature extractor architecture which is subsequently
followed by dense layers and a final sigmoid activation. The general structure of the clas-
sification task used within the project is shown in Figure 9.

Overall, four different 3D convolution neural network architectures were examined in
order to perform the feature learning. Vanilla3DCNN, ResNet and both InceptionNet
architectures are designed and built up on state-of-the-art 2D vision models. The following
will introduce the reader into these architectures and will give a detailed outline of their
specific layout.

Figure 9: Holistic representation of the deep learning workflow using 3D convolutions.

Vanilla3DCNN is the simplest Neural Network used. The architecture based on the VG-
GNet [33] has 1.8M trainable parameters with 4 convolution layers using kernel sizes of
9, 7, 5 and 3. The detailed description of the Vanilla3DCNN architecture can be found
in Figure 26 in the appendix. Maxpooling layers are added in between to reduce the
spatial size of the input data. The batch normalization layers were initially absent in the
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architecture resulting in failure of the model to train. These were then added in between
all the CNN layers to stabilize the training process and standardize the inputs to all the
layers for each mini-batch [34]. As Vanilla3DCNN is a very simple network, it requires
hyperparameter tuning if stochastic gradient descent (SGD) optimizer is used. A gradient
descent method based on momentum is hence recommended for this approach to ensure
faster convergence.

Much of the success of deep neural networks is attributed to additional layers. The func-
tion of these layers is to progressively learn more complex features of the input data.
Despite the popular meme shared in AI communities from the Inception movie stating
that ”We need to go Deeper”, He et al. empirically showed that there is a maximum
threshold for depth with the traditional CNN model. The increase in the training error
with increasing depth of the neural network is due to vanishing and exploding gradients.
The problem of training deep neural networks was alleviated with the introduction of the
ResNet architecture[35]. For the project, a customized ResNet architecture was built. The
detailed description of the architecture can be found in Figure 28 in the appendix. This
architecture has 9.1M trainable parameters. The basic residual block shown in Figure 27
in the appendix contains 2 convolution layers with batch normalization and dropout lay-
ers in between and a skip connection layer that adds the output from the previous layers
to the output of stacked layers. Each residual block is repeated twice. From the descrip-
tion Figure 28, it can be found that the number of residual blocks that are repeated are
reduced as the data set size is relatively small and using a larger ResNet model would
lead to overfitting of the model to the data. It is a well known fact that CNNs are very
sensitive to sudden dimensional changes. In order to avoid rapid dimensionality changes,
two pooling layers were added before converting the CNN layers into feature vectors fol-
lowed by 1 x 1 x 1 convolutions to increase the number of channels without exponentially
increasing the number of operations.

The Inception network [36] was an important milestone in the development of CNN classi-
fiers. Prior to this, most popular CNNs just stacked convolution layers deeper and deeper,
hoping to get better performance. For the project, 3D InceptionNet V1 and InceptionNet
V3 were built. The detailed description of InceptionNet V1 and InceptionNet V3 can be
found in Figure 30 and Figure 32 in the appendix, respectively. Salient parts in the 3D
model can have large variation of size. Due to this variation, choosing right kernel size
for the convolution operation is difficult. A larger kernel is preferred for information that
is distributed more globally, and a smaller kernel is preferred for information that is dis-
tributed more locally. InceptionNet tries to solve the problem of choosing the right kernel
size to capture salient features in the data by using multiple kernel sizes operating at the
same level [37]. InceptionNet V1 has 9.6M trainable parameters. From the InceptionNet
V1 module as shown in Figure 29 in the appendix, it can be observed that kernel sizes 1,
3 and 5 at the same level were used, hence providing the ability the network the ability
to learn salient features of the input data of all dimensions. This InceptionNet V1 block
is repeated four times to reduce the input 3D model into a feature vector. InceptionNet
V3 contains 17.9M trainable parameters and is an improvement over the InceptionNet V1
architecture. Large reduction in input dimensions due to the filter size of 5 x 5 x 5 leads
to decrease in the accuracy of prediction hence making the neural network prone to loss
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of information. 5 x 5 x 5 kernel is hence replaced with 3 x 3 x 3 kernel and the depth of
each inception block is increased. From Figure 31 (see appendix), it can be observed that
the the depth of a branch containing 3 x 3 x 3 kernel is increased. This particular branch
containing 5 x 5 x 5 kernel is replaced with 3 x 3 x 3 kernel to avoid sudden reduction
in the input dimensions. The detailed description of the InceptionNet V3 architecture is
shown in Figure 31 (see appendix).

5.2 Implementation Details

Since the task is a binary classification task, sigmoid activation function is used in the
final dense layer while the layers in between use ReLU activation functions [38]. Use of
ReLU activation function in all the other layers prevents saturation of parameters, hence
preventing vanishing gradients allowing the model to learn faster [38].

Binary cross-entropy (BCE) [39] loss also called as sigmoid cross-entropy loss is a sigmoid
activation plus a cross-entropy loss. Unlike softmax loss [39], it is independent for each
vector component (class), meaning that the loss computed for every CNN output vector
component is not affected by other component values. That’s why it is used for multi-
label classification, where the insight of an element belonging to a certain class should
not influence the decision for another class. It is called binary cross-entropy loss because
it sets up a binary classification problem between C=2 classes for every class in C. So
when using this loss, the following formulation of cross-entropy loss for binary problems
is often used:

BCE = −
C=2∑
i=1

tilog(f(si)) = −t1log(f(s1))− (1− t1)log(1− f(s1))

where, t1 and s1 are the predicted label and ground truth label of class C1 respectively
and t2 = 1 - t1 and s2 = 1 - s1 are the predicted label and ground truth label of class C2

respectively.

Gradient descent [39] is one of the most popular algorithms to perform optimization and
by far the most common way to optimize neural networks. Gradient descent is a way to
minimize an objective function J(θ) parameterized by a model’s parameters θ ∈ Rd by
updating the parameters in the opposite direction of the gradient of the objective function
∇θJ(θ) w.r.t. to the parameters [39]. The learning rate η determines the size of the steps
the algorithm takes to reach a (local) minimum. In the project, Adam optimizer [40] was
used to optimize the parameters with a learning rate of 0.00001.

Regarding the dataset it has to be mentioned, that all of the 7430 data samples of the
AMC dataset were used in order to train and validate the respective experiments. Within
that, a proper dataset split of 80 % belonging to the training data and the remaining
20 % belonging to the validation data were used. The neural networks were trained and
validated in 100 epochs.
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5.3 Infrastructure & computational Resources

Artificial Intelligence in general has been around since the middle of the last century. Since
that time, challenges solved by machine learning techniques, especially deep learning and
corresponding neural networks, faced an ever-expanding boom in terms of computational
demand. Above all, this is mainly due to rather easy accessibility to big datasets, open-
source frameworks and the continuous development of more and more sophisticated neural
network architectures, which are available online and therefore represent a key driver in
order to come up with extensive algorithms. Training a large neural network on a single
machine with a single central processing unit (CPU) can take days or even weeks. As a
consequence, powerful computational resources are indispensable in order to tackle the
problem of continuously increasing computational requirements. This subsection intro-
duces the infrastructure that was exploited, distributed learning across multiple graphic
processing units (GPUs) using horovord [41] and monitoring neural network learning life-
cycle using MLflow [42].

Conducting deep learning experiment on different neural network architectures, tuning
hyperparameters and using massive dataset can clearly be considered inefficient without
having access to powerful compute nodes. Especially, for the task at hand, where a single
3D model already consists of more than two million voxels (i.e. 128 × 128 × 128) the
input dimensions ruthlessly comes to light and thus make the availability of GPUs indis-
pensable [38]. Thanks to Leibniz Rechenzentrum (LRZ), we were equipped with powerful
resources all along the way and were able to distribute experiments across multiple de-
vices simultaneously in order to excessively speed up the training and hyperparameter
tuning procedure. To this end, we have luckily been able to make use of up to eight
Nvidia Tesla V100 GPUs in parallel. This kind of GPU is exceptionally powerful as it
offers 640 tensor cores per device in order to accelerate the training process. The exact
course of action of how the parallelization is done is outlined in the subsequent paragraph.

Figure 10: Big picture representing the project workflow using the LRZ infrastructure.
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Apart from computations with respect to neural networks (i.e. gradient calculation using
backpropagation or weight updating using various optimization techniques) GPUs can
also be leveraged to perform general purpose computation tasks. As a consequence, the
provided resources were additionally used within the data generation step. Therein, the
heavy computation of transforming the 3D mesh models to 3D voxel models is completed
by unloading the task to a CUDA capable device [43, 30].

The data parallelism strategy exploited in this project relies on the distributed deep
learning framework called horovod, that was developed by researchers at UBER [41]. As
deep learning in general is commonly compute intensive and thus resource demanding,
GPU utilization or even multi-GPU usage is essential in order to counteract ever lasting
training processes. Conceptually, a distributed deep neural network task across multiple
GPU devices can be outlined as follows: Every device which is intended to be involved
in the training process gets a copy of the to be executed training script. Every GPU
individually reads a chunk of the provided data, performs the forward pass and computes
the gradients with respect to the deviation of the predicted and the actual label using an
appropriate loss function (i.e. in this case sigmoid). The gradients across those multiple
devices are averaged using Baidu’s algorithm [44], which in turn is based on a paper that
describes bandwidth optimal all-reduce algorithms for clusters of workstations [45]. Once
the averaged gradients are computed, the model gets updated and the next iteration again
starts by reading data chunks for each device which is involved. The schematic workflow
of the distributed training process is depicted in Figure 11 below.

Figure 11: Schematic workflow of distributed training using two GPUs, inspired by [41].

During the life-cycle of any deep learning model, different hyperparameters are tuned, in
order to perform best possibly at the given task. Furthermore, different state-of-the-art
architectures are commonly investigated, which often constitutes the baseline for further
hyperparameter optimization. In order to not loose track of any architecture experiments
which have been performed and corresponding hyperparamter tuning, MLflow is used to
monitor the life-cycle of all our attempts. Basically, MLflow is an open source platform
to streamline machine learning development, including tracking experiments, packaging
code into reproducible runs, and sharing and deploying models [42].
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6 Experiments & Results

“All models are wrong, but some are useful.”
– George Box, 1976

Generally, every machine learning model represents merely an approximation of the hid-
den data pattern to be learned. Thus, as George Box put it in 1976, every model will
never represent the exact behaviour of the task at hand. Even though, the respective
data pattern can not be learned exactly, machine learning models can be useful by only
using approximations of the data features. This section aims for giving an insight into the
experiments that were carried out alongside with a corresponding performance analysis
and their respective results.

In order to perform an in-depth performance analysis of our trained neural network mod-
els, different metrics were employed. A very common way in order to evaluate the output
quality of a classifier is to make use of the so-called receiver operation characteristic (ROC)
and the corresponding area under the curve (AUC). Typically, ROC curves are exploit in
binary classification problems in order to examine the performance of the classifier. In
general, those curves are comprised of a true positive rate (tpr) indicated on the y-axis,
and a false positive rate (fpr) indicated on the x-axis. Thus, the top left corner of the
plot represents the most desirable point, that exhibits a false positive rate of zero, and a
true positive rate of one. Furthermore, a larger AUC score and the steepness of the ROC
curve are valid indications, in order to conclude a better performing classifier, as the tpr
is maximized while the fpr is minimized [32].

Figure 12: ROC curve with AUC, indicating the performance of different architectures.
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From Figure 12 above, it is clearly visible that both InceptionNet, as well as the ResNet
and Vanilla3DCNN architectures are capable of handling the binary classification task in
a rather convincing manner. According to the ROC curves and their corresponding AUC
score depicted above, it can be concluded that the best performing model is Inception-
Net V3, followed by InceptionNet V1, ResNet and Vanilla3DCNN. Nevertheless, as both
InceptionNet models are based on the same intuition (i.e. inception block) with different
parameter settings (e.g filter size), it was decided to only consider the slightly better per-
forming InceptionNet V3 model alongside the ResNet and Vanilla3DCNN architectures
in the remainder of this performance evaluation.

Besides a rather graphical performance evaluation using the ROC curve, another common
way to assess the output quality of a classifier is to rely on numeric measurements. To
this end, the F1 score metric, which represents the harmonic mean of precision and recall,
was used [32]. Thus, the F1 score mirrors a trade-off between precision and recall and
weights both at the same importance. Generally, the highest possible value score is one,
indicating perfect precision and recall, and the lowest possible value is zero. The latter
happens, if either the precision or the recall is zero.

F1 =
2

recall−1 + precision−1
recall =

tp

tp+ fn
precision =

tp

tp+ fp
(14)

The overall goal of any classifier is to be as good as possible in correctly predicting the
positives and negatives. When comparing the 3D models classified by the deep neural
networks and the ground truth, there are following possibilities (the notation is given with
respect to the context of additive manufacturing):

• true positive (tp): A printable 3D model is classified as printable.

• true negative (tn): A non-printable 3D model is classified as non-printable.

• false positive (fp): A printable 3D model is classified as non-printable.

• false negative (fn): A non-printable 3D model is classified as printable.

Since the AMC dataset, that was used for training the neural networks, is balanced in
terms of printable and non-printable 3D models, the accuracy is already giving rather
good unbiased indication of the actual model performance. Besides an overwhelming
accuracy of 98.1 % for InceptionNet V3, 95.9 % for ResNet and 95.8 % for Vanilla3DCNN
on the validation dataset, all architectures were also able to achieve outstanding F1 score
values of 0.980, 0.959 and 0.957 respectively. In contrast to straight forward numerical
measurements like the F1 score or the accuracy metric, another common approach in order
to evaluate the performance is to leverage confusion matrices [32]. They are especially
beneficial as they provide a more detailed analysis than just a numeric value. Within
a confusion matrix, diagonal elements represent the number of samples for which the
predicted label is equal to the true label, whereas off-diagonal elements are those that
are mislabeled by the classifier. The higher the number of diagonal elements within the
confusion matrix, the better, consequently indicating many correct predictions.
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(a) (b) (c)

Figure 13: Confusion Matrix: (a) Vanilla3DCNN (b) ResNet (c) InceptionNet V3

Figure 13 shows the resulting confusion matrix for the InceptionNet V3, ResNet and
Vanilla3DCNN architecture. The main goal of having the majority of the elements on the
diagonal of the matrix is fulfilled in all cases, whereas the total number of off-diagonal
elements is minimal. Consequently, all classifiers predicted most of the samples correctly
that resulted in a rather high accuracy score and F1 value as aforementioned. The few off-
diagonal elements on which the architectures failed to predict correctly (i.e. false positives
and false negatives), will be elaborated at the end of this section by an explicit failure
analysis on 3D model level.

Finally, one of the most apparent and common ways to get an insight into the training
behaviour of any model and to get an impression about its performance, is to look at
the development of the loss and accuracy for both training and validation data over the
epochs. Corresponding plots for all of the three in-depth investigated architectures is pro-
vided in Figure 14. Within the plot, the x-axis represents the training process in terms
of epochs, while the improvement is indicated as accuracy on the left and as loss on the
right y-axis. Overall, it can be summarized that all architectures can handle the binary
classification problem with a very high final accuracy and low loss value. Moreover, the
development of the curves (see Figure 14) show that there is a continuous improvement
without any sudden or unexpected drop within the given number of epochs. Thus it can
be concluded, that all architectures exhibit a very good fit in order to handle the classifi-
cation task at hand.
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Figure 14: Development of loss & accuracy on the train & validation data depicted for
the first 35 epochs. Top: InceptionNet V3, middle: ResNet, bottom: Vanilla3DCNN.

In order to obtain a more accurate assessment of the AMC dataset quality and the per-
formance of the deep learning architectures, an in detail failure analysis was carried out.
In this part, the focus is on the validation dataset, therein specifically on incorrectly
predicted data samples by InceptionNet V3. The wrongly predicted models were split
according to the different defect types and were visualized. Please note, that due to the
implementation of the DefectorTopDownView algorithm, the defects are not equally dis-
tributed in the AMC dataset. As Table 1 shows, the most incorrectly classified models
have a non-printable defect in the middle of the model.
Examples of these models are visualized in Figure 15. Since this missclassification mostly
happens for large models, a potential reason for this could be that, it is hard to detect
a hole in large models, especially with a hole that has a small radius. Additionally, if
there is already a hole in the model, then the InceptionNet V3 can fail to detect the
non-printable hole (compare to Figure 15 (b)).
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Defect type Count

Non-printable defect in the middle (mm
np) 12

Printable defect in the middle (mm
p ) 5

Non-printable defect at the border (mb
np) 6

No defect 9

Table 1: Incorrectly predicted models by InceptionNet V3, splitted into the different
defect types. The validation dataset, consisting of 1486 randomly selected models, was
used.

It is also interesting to note that nine models that had no defect were incorrectly classified
as non-printable. The first identified source of this is that the used models from the ABC
dataset either already have holes or are just too complex (compare to Figure 15 (c) and
(d)). Therefore, the assumption that all selected models are printable does not hold and
as a consequence the label for these few models are wrongly set. The second potential
source could be that the 3D models contain rounded edges, that could be interpreted as
a part of a hole (compare to Figure 15 (e)).

The missclassified models having a non-printable defect at the border, all have in com-
mon that the border contains barely three voxels. Mostly, there is only one removed voxel
having a distance of three to the border of the model, which of course is really hard to
detect (compare to Figure 15 (f)).

An identified reason for the missclassification of models having a printable defect in the
middle is that a few models contain a difficult 3D structure that the DefectorTopDown-
View can as of right now not detect, since it uses only a 2D representation of the model
to check the defect conditions and label the model accordingly (compare to Figure 15 (g),
where the model is labeled as printable but due to the 3D structure the added hole at the
second layer should be non-printable).

What also has to be noted, is that the InceptionNet V3 fails to classify a few models that
do not show any obvious problems, regarding added defects, the labels and the models
itself (compare to Figure 15 (h) and (i)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Visualizations of missclassified models out of the validation set by the trained
InceptionNet V3 model. (a) Example of a model having a non-printable defect in the
middle. (b) Example of a model having a non-printable defect in the middle and addi-
tionally a printable hole that was already in the model coming from the ABC dataset.
(c) Example of model having a hole that was already in the model coming from the ABC
dataset. (d) Example of a too complex selected model, labeled as printable by the Defec-
torTopDownView. (e) Example of model having a rounded edge that can be interpreted
as part of a removed hole. (f) Example of a model having a non-printable defect at the
border, with a distance of barely three voxels between the border of the model and the
removed voxels. (g) Example of a model having a printable defect according to the as-
sumptions made by the DefectorTopDownView, but due to the shifted layers should be
non-printable. (h) and (i) Examples of a model having no defect and that give no clues
about why the InceptionNet V3 failes to classify it correctly.
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7 Discussion

Starting from mesh models in the format of stl files, we designed a data processing pipeline
with a series of transformations: normalization, alignment, cleaning and voxelization. The
resulting models are considered as 3D printable. To construct the non-printable 3D mod-
els, we developed the DefectorTopDownView algorithm to insert specific defects in the
original models. This algorithm allows us to insert defects in the shape of holes with dif-
ferent radius and border values. Thus, the resulting dataset, referred to as AMC dataset,
consists of the processed original models, the models with a printable defect and the mod-
els with a non-printable defect since the added hole has a too small radius or the hole is
too close to the border of the model. The DefectorTopDownView is implemented such
that the number of printable and non-printable models are equally distributed within the
AMC dataset.

In the deep learning pipeline we implemented and trained four different CNN architec-
tures. The Vanilla3DCNN was our baseline model achieving an accuracy of 95.8% and a
F1-Score of 0.957. The ResNet architecture had a similar performance with an accuracy
of 95.9% and a F1-Score of 0.959. Furthermore, we were able to obtain a performance
increase by using the InceptionNet V3 model with an accuracy of 98.1% and a F1-Score
of 0.980. We think that the reason behind such a good performance is the ability of
InceptionNet to learn the salient features of the 3D input data having large variation in
dimension by using multiple kernel sizes at the same level.

As an extra evaluation method of the deep learning models, it would be highly interesting
to generate an additional test set from another chunk of the ABC dataset or from the
Thingi10K dataset [46]. Also explainable AI techniques can be applied to have a better
understanding of the performances of the deep learning models.
The failure analysis led us to think of some considerations that could further enhance
the quality of the AMC dataset as well as the performances of the deep learning models.
For example by removing 3D models already having a hole and too complex models, f.e.
by using other criteria for the selection such as a compactness measure (see appendix).
Moreover, one could think about extensions of the DefectorTopDownView algorithm, such
as adding defects from another axis-aligned directions and non-axis aligned directions to
the 3D models, using different defect shapes and defect parameters and using more of
the 3D structure of the 3D model to determine the position of the defect f.e. by using
similarity checks for the area where the whole should be added (see appendix).

Since the defector is a deterministic algorithm with limited capabilities as outlined in
the failure analysis, and the results of the deep learning module are highly influenced by
this algorithm, we propose to try the following approaches that do not require a defector
but make use of labeled data by experts. A possible idea is to use self supervision with
an autoencoder as a pretrained model. Also few-shot learning methods can be tested.
Another possible approach is to train generative adversarial networks (GANs) on a dataset
of few complex models that are expert-labeled, and using the GAN to generate new models
with complex defects.
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APPENDIX

Model Selection using Compactness Parameter

The compactness parameter describes another facility how to control the 3D model com-
plexity and thus to subselect data. It can be used in combination with the filesize or
individually. The calculation of the compactness of every 3D model is applied in the
mesh-representation status, where the condition of the mesh being watertight has to be
fulfilled [18]. The mathematical formulation of the compactness calculation can be out-
lined as follows:

compactness =
volume

boundingV olume
(15)

In our current approach, we are not making use of any compactness parameter, as it
empirically turned out that an appropriate file size parameter is sufficient. Nevertheless,
the compactness may have the ability to leverage the data selection in cases of big data
scenarios.
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Data Representations

This section aims for introducing additional 3D data representations which are commonly
used in literature to apply deep learning. The following listing does not claim complete-
ness, it is rather giving an overview of the most usual representations:

Depth images represent the actual physical structure of an object or a scene being
kept by the camera lense. As the pixel values are representing distances instead of color
values, any intensities are not incorporated. Thus, depth images are not affected by the
level of ambient light (e.g sunlight) what may lead to improvements with respect to the
robustness in applying deep learning.

Point clouds are clusters which represent collections of data points in a three-dimensional
space. Therein, each data point is determined by a particular position which is given by
x, y and z values and can be further attributed with RGB colour values. As the points
are not linked among each other in the point cloud representation, high-quality geometric
information of the scene or object can be kept, however also leading to a large degree of
freedom and high- dimensionality.

Voxel grids are a derivative of point clouds. Generally, a voxel can be considered as
an ordinary pixel which is well known from a 2D representation, however in this case in
a three-dimensional space. Moreover, a voxel grid can be regarded as a quantized point
cloud being of fixed size. Therein, voxels usually take values of either zero or one (i.e.
occupancy grid), where the zero means that the voxel does not belong to the object and
one vice-versa accordingly. Nevertheless, there are also other techniques instead of just
being zero or one, used in the domain of voxels.

• Signed Distance Function (SDF) [47]: A signed distance function is a continu-
ous function that, for a given spatial point, outputs the distance of the point to the
closest surface, whose sign encodes whether the point is inside (negative) or outside
(positive) of the watertight surface:

SDF (x) = s : x ∈ R3, s ∈ R (16)

If f (x) represents the signed distance function that maps a value in the 3 dimensional
vector space to a scalar value that represents the distance of the point considered
in the 3D space, we have,

x ∈ R3 =


outside if f(x) > 0

surface if f(x) = 0

inside if f(x) < 0

(17)

Since the signed distance function embeds more information regarding than any
other voxel representations, it is easy to obtain the direction of the surface of the
3D model by looking into the gradients of the normals of the signed distance func-
tion. In the project, mesh to sdf function is used to create an array of N x N x N
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array of SDF values. Marching cubes algorithm is used to reconstruct the mesh from
the SDF values and finally it’s rendered using Pyrender.The cycle of converting a
mesh file into SDF voxel representation is showed in Figure 3.

(a) (b) (c)

Figure 16: (a) Mesh: Stanford bunny (b) Signed Distance Function (SDF) (c) Recon-
structed bunny using marching cubes algorithm.

• Truncated Signed Distance Function (TSDF) [47]: Truncated signed dis-
tance function is similar to the signed distance function discussed above. the only
difference lies in the fact that, this kind of voxel representation is used if the values
near the surface of the object are important. It defines the limited SDF near the
surface and truncates the unsigned distance above a specified threshold.The values
of TSDF lies in the range of -1 to 1 as shown in Figure 4.To achieve this, the SDF
values obtained in the previous section from mesh to sdf module are truncated to be
in the range [-1,1].The mesh is then reconstructed using marching cubes algorithm
and rendered using Pyrender.

Figure 17: TSDF Representation[48]

Polygon meshes are entities that are comprised of edges, vertices and faces which to-
gether define the volume and thus can approximate the shape of a geometric object. Like-
wise the voxel grid representation, also the polygon mesh representation can be regarded
with respect to the point cloud representation. In this case, a mesh can be considered
as a three-dimensional point set, which was sampled from a set of continuous surfaces.
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Furthermore, mesh faces can not only be quadrilateral as depicted below, they can also
be triangular or a convex polygon.

Figure 18: Example: Vertex, edge and face of a cube.

Multi-view representations are as the name already suggests, a collection of two-
dimensional images of an object or scene from multiple perspectives. It is the simplest way
to apply deep learning, as the 3D context is represented in 2D but still allows (restricted)
justifications about the geometric structure.

Figure 19: Overview: Different 3D data representations. Source: [49]
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AMC Dataset Examples

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20: Examples of the AMC dataset. (a), (f) and (i) have a non-printable defect
since it is too close to the border of the 3D model (mb

np). (b), (e) and (h) have a printable
defect (mm

p ). (c) and (d) have a non-printable defect since its radius is too small (mm
np)

and (g) is a model with no defect. Note that all visualized models are also in the AMC
dataset without the defect.
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DefectorExhaustive

The motivation behind this defector is to design an algorithm that given a voxelized 3D
model, decides on a suitable hole to be augmented into the voxelized model. The hole
is augmented by placing a cylinder within the model and removing the voxels within the
cylinder. The cylinder is defined by three parameters, namely:

• radius: size of the cylinder radius

• axis: axis through which the cylinder is defined (X, Y, Z)

• location: location of the cylinder center

To find the three parameters that define the cylinder, the algorithm uses four hyperpa-
rameters:

• dmax: maximum possible size of the cylinder diameter

• trials: number of trials of finding a cylinder center

• voxelsremain: number of voxels that should remain in a 1D side after removing the
voxels

Through experiments on models with dimensionalty of 128x128x128, we set the hyperpa-
rameters to the following values. dmax = 10, trials = 20, and voxelsremain = 30.

The algorithm finds the three cylinder parameters in the same order as stated. The first
parameter is the radius. To determine an optimal radius, each one of the coordinate
axes (X, Y, Z) are tested. Given an axis, to find a suitable cylinder radius the following
procedure is applied:

1. Find the perpendicular 2D plane to the axis being tested

2. Get the length of each 1D side out of the 2D plane

3. Choose the smaller side

4. Starting with a defined maximum cylinder diameter x = dmax:

(a) subtract x from the smaller side

(b) if more than voxelsremain voxels remain, choose this diameter

(c) else, set x = x− 1 and repeat (a)

If the smallest possible diameter (which is 2) can not be used, it is not possible to create
a hole in the given model.

The second parameter is the axis. To determine an optimal axis, each one of the coordinate
axes (X, Y, Z) are tested. For each axis, the following procedure is applied:
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1. Find the radius of the cylinder through that axis using the previously explained
procedure

2. Choose the axis that provides the largest radius

The third parameter is the center location. Given a cylinder radius and axis, to find the
location of the cylinder center the following procedure is applied:

1. Get the voxels out of the occupancy grid

2. For a number of trails defined by the hyperparameter: trials, randomly choose
voxels:

(a) skip a voxel that is too close to the plane boundaries

(b) find the area of the circle defined by the voxel as a center and the radius as
computed previously

3. Choose the voxel that has the maximum area

4. Make sure that the chosen voxel has an area greater than or equal to a full circle

If the chosen voxel has a surrounding area less than a full circle, it is not possible to create
a hole in the given model. Figure 21 shows some samples of the defects added by the
ExhaustiveDefector.

(a) (b)

(c) (d)

Figure 21: Four data example outputs of the ExhaustiveDefector approach.
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DefectorTopDownView Similarity Check Add-on

(a) (b)

Figure 22: (a) Voxel model labeled by algorithm 1 as manufacturable, however on the
second layer the hole is too close to the boarder making this model non-manufacturable
(b) tdv of the model visualized in (a).

A identified drawback of algorithm 1 is that the information given for the tdv could be
misleading. For example, if two layers of voxels are stacked onto each other in the z-
dimension with a slight gap in between but are moved in the (x, y) plane such that a
hole added through the first layer would be printable but a hole through the second layer
would be non-printable, since it lies too close to the border of the second layer. This case
has for example been observed and is visualized in Figure 22 (a).
We therefore developed a global and a local uniformity check for the area that will be
removed by the defect. Both can be added to the if-clause in step 8 of algorithm 1. The
global uniformity check calculates the difference between the maximum and the minimum
of the tdv at the indices that will be removed by the defect at the determined offset and
compares it to a given threshold. The local uniformity check works similar but with
the difference that the difference will be calculated for each given index using its direct
neighbors. The benefit for the local approach would be that small step wise changes in
the z-dimension could still be accepted. Both checks, given the right threshold value, can
prevent the problem described above. However, the cost of using this would be that a
lot of models will be filtered out, if they are not perfectly uniform, and especially since
the difference of the tdv in the critical area for adding the defect to the model visualized
in Figure 22 (a) is only around ten voxels (Figure 22 (b)). Therefore, for the generation
of the AMC dataset, these checks were not included, tolerating the few models that are
potentially wrongly labeled.
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DefectorTopDownView Rotation Add-On

The purpose of this part is to insert rotated holes with random angles as a generalization
of the second method described above. Three approaches were tested:

Rotated holes insertion using Scipy

- The first step is to rotate with random angles φx, φy, φz the object around respectively
x,y and z axes. In order to do that we use the scipy library and more precisely the method
scipy.ndimage.interpolation.rotate.

- After rotating the model we use DefectorTopDownView algorithm to find a suitable
offset defined by the coordinates (xoffset, yoffset) of the voxels.

- Once the offset = (xoffset, yoffset) defined we will select the indices of the cylinder
centred around this offset.

Since there is some information lost after the rotation of the model, we prefer here to only
rotate back the cylinder and remove its indices from the original model.

Unfortunately, this approach couldn’t be used since there was an issue with the rotation
function defined by the scipy library. In fact this function always adds an unknown value
to the indices making the rotation back of the cylinder indices different from the original
ones. Therefore the insertion of the hole was not coherent.

Rotated holes insertion using Rotation Matrices

To overcome the problem from the first approach we define a rotation function based on
rotation matrices. The idea is to multiply the coordinates which here are the indices of
the voxels by the following rotation matrices:

Rx =

1 0 0
0 cos(φx) −sin(φx)
0 sin(φx) cos(φx)

 , Ry =

 cos(φy) 0 sin(φy)
0 1 0

−sin(φy) 0 −cos(φy)



Rz =

cos(φz) −sin(φz) 0
sin(φz) cos(φz) 0

0 0 1


After applying the rotation, the new coordinates are transformed to an occupancy grid.
This occupancy grid is the input of the algorithm DefectorTopDownView that will define
the offset coordinates offset = (xoffset, yoffset). Then we select the coordinates of the
cylinder centered around this offset.
In the last step and similarly to the first approach, we only rotate back the cylinder
coordinates using the rotation matrices. And we remove these coordinates from the
original object.
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Unfortunately the negative values of indices after rotation are hard hard to work with
and the transformation to occupancy doesn’t give the desired results.

Basic holes insertion in rotated model

The idea of this approach is to add a padding to the 3D models before applying the
rotations. For example we add a padding p = 32 from each side for models with a 64
resolution. The following figure shows a model before and after padding:

(a) (b)

Figure 23: (a) 3D model with 64 resolution, (b) 3D model with 128 resolution.

Then the model is rotated randomly around x,y and z axis using the function
scipy.ndimage.interpolation.rotate from scipy library. Afterward, the algorithm Defec-
torTopDownView is used to find a suitable offset. A hole is inserted by removing the
coordinates of a cylinder centered around the defined offset through the z axis. The fol-
lowing hyperparameters were used in the algorithm DefectorTopDownView:

• rp = 6: radius printable

• rnp = 3: radius non-printable

• bp = 2: border printable

• bnp = 5: border non-printable.

The final step is to rotate back the hole model.

Figure 24: 3D model with a randomly rotated hole.
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Detailed Description of the Architectures Used

Vanilla3DCNN

Figure 25: Vanilla3DCNN architecture.

Figure 26: Detailed description of Vanilla3DCNN architecture used in the project.
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ResNet

Figure 27: Basic layout of a residual block showing skip connections [35].

Figure 28: Detailed description of ResNet architecture used in the project.
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InceptionNet V1

Figure 29: InceptionNet V1 block [36].

Figure 30: Detailed description of InceptionNet V1 architecture used in the project.
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InceptionNet V3

Figure 31: InceptionNet V3 block [36].

Figure 32: Detailed description of InceptionNet V3 architecture used in the project.
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