
1

Nouhayla Bouziane | Ahmed Ebid | Aditya Sai Srinivas | Felix Bok | Johannes Kiechle

Technical University Munich

Faculty of Mathematics

22. July 2021

Geometrical Deep Learning on 3D Models: Classification for
Additive Manufacturing

Hard to achieve the right balance:

Additive manufacturing here to transform production processes:

● create design iterations

● enhance quality through cost-effective prototyping

● create specific tooling parts

2

Motivation

Quality Speed Cost

3

Motivation

By 2028 AM industry revenues would hit $12.6 Billion in the automotive Industry

4

Motivation

5

Motivation

Applications of AM in the automotive industry

Requires a lot of human expertise and supervision.
In particular, the process of identifying whether a 3D model is manufacturable by a given
3D printer is a very time-consuming and complex task.

6

Problem Definition & Project Goal

 Automate this process using advanced convolutional neural networks (CNNs)

7

Project Structure LRZ AI System

Data Generation Deep Learning Performance Analysis

Data Generation

8

Infrastructure

Data Lake
(LRZ - Data Science Storage)

Preprocessing:

- Selection
- Cleaning
- Normalization
- Alignment

Voxelization

Defector
Algorithm

“Synthetic
Data Generation”

LRZ AI System

Data Generation

1

2

3

4

5

6

Deep Learning

9

Infrastructure

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

Deep Learning

Neural Network
Architecture AMC(1) Dataset

(1) AMC: Additive Manufacturing Classification

Neural Network Training

1

2

Performance Analysis

10

Infrastructure

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

“Trained”
Neural NetworkValidation Data Results

Accuracy

F1-Score

Confusion Matrix

ROC Curve with AUC

1

2 3

4

11

Holistic Project Overview

● A triangular mesh is a data representation of 3D objects.

● It consists of two main data structures: Vertices and Triangles.

● Vertices is a list of 3D points.

● Triangles is a list of triangles, where a triangle connects 3 vertices.

12

Data Format: Triangular Mesh

Triangular Mesh Representation

13

● dataset contains models of varying complexity

● more triangles are needed in meshes of higher complexity

● more triangles translated to bigger file size

● we applied a cutoff value of 25 KB to select models considered for further

preprocessing steps

14

Data Selection

1 KB mesh file
32 MB mesh file

15

- For a 3D mesh to be 3D-printable, 2 main properties should be satisfied:

- 1. Watertightness: mesh has no holes + normals are facing outwards

16

Cleaning

Stanford Bunny Model Bottom View
Invalid: has holes Valid: normals are facing outwards

https://support.shapeways.com/hc/en-us/articles/360007107674-Tips-for-successful-modeling

https://support.shapeways.com/hc/en-us/articles/360007107674-Tips-for-successful-modeling

- For a 3D mesh to be 3D-printable, 2 main properties should be satisfied

- 2. Manifold geometry: mesh has no edges shared by more than two faces

17

Cleaning

Invalid: edge shared by 4 faces

https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/fix-non-manifold-geometry/

https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/fix-non-manifold-geometry/

- Mesh cleaning functions were utilized from O3D. [1]

- Vertices fixes
- Remove vertices that have identical coordinates ([x1, y1, z1], [x1, y1, z1])
- Remove vertices that are not referenced in any triangle

- Edges fixes
- Remove non-manifold edges

- Triangles fixes
- Remove triangles that reference the same three vertices ([v1, v2, v3], [v2, v1, v3])
- Remove triangles that reference a single vertex multiple times in a single triangle ([v1, v2,

v2])

18

Cleaning

[1] http://www.open3d.org/docs/release/index.html

http://www.open3d.org/docs/release/index.html

19

- Performed to make sure all vertices of different objects lie in the same range

- Step 1: Center the mesh around the origin

- Find the center of the mesh vertices
- Translate the mesh vertices to the origin by subtracting the center from all vertices

- Step 2: Scale the vertices so that they lie in a [-1, 1] range

- Divide the mesh vertices by the difference between the maximum bounding point
and the minimum bounding point.

20

Normalization

Before Normalization After Normalization

21

- Performed to make sure all meshes are presented in the same orientation.

- The axis of the minimum Moment Of Inertia (MOI) of a mesh represents the axis around

which most of the mass of the object is wrapped. [1]

- Aligning the axis of the minimum MOI with one of the coordinate axes will allow meshes

to be presented in the same orientation

- How its done [2] & [3]:

- Step 1: Find the axis of the minimum MOI
- Step 2: Compute a rotation matrix that aligns the axis of the minimum MOI with a

coordinate axis
- Step 3: Apply the rotation matrix on the mesh vertices

22

Alignment

[1] James Dann and James J. Dann. The People’s Physics Book. third edition, 2006.
[2] https://physics.stackexchange.com/questions/426273/how-to-find-the-axis-with-minimum-moment-of-inertia
[3] https://stackoverflow.com/questions/67017134/find-rotation-matrix-to-align-two-vectors

https://physics.stackexchange.com/questions/426273/how-to-find-the-axis-with-minimum-moment-of-inertia
https://stackoverflow.com/questions/67017134/find-rotation-matrix-to-align-two-vectors

23

Alignment

Alignment of min MOI axis and X-axis Alignment of min MOI axis and Y-axis Alignment of min MOI axis and Z-axis

24

● All previous transformations were applied on the triangular mesh representation

● Final preprocessing step is converting the model to a voxelized representation

● What is a voxel representation?

○ A data representation that uses voxels. A voxel can be regarded as a pixel in a
three-dimensional space.

● Why use voxel representation?

○ We hypothesized that SOTA CNNs will offer good performance after replacing
2D convolutions with 3D convolutions

○ It allows for an easy introduction of defects

25

Voxelization

Triangular Mesh Representation Voxelized Representation

26

- Problem: Limited labeled data

- Goal: Synthetically add defects to 3D models in order to generate non-printable models

- Assumption:

- All previous selected models are printable

- Defects are here holes aligned with the z-axis that are added to the 3D model

- Deciding parameters:

- Radius
- radius printable (10 voxels)
- radius non-printable (5 voxels)

- Border
- Border printable (5 voxels)
- Border non-printable (3 voxels)

27

Assumptions & Definitions 1/2

Resulting models:

28

Assumptions & Definitions 2/2

Model non-printable
defect in middle

Model printable defect in
middle

Model non-printable
defect at border

- Main Idea: Transform 3D model data s.t. it can be used to find right offset

→ TopDownView:

- Inspiration: Heatmaps (visualizing 3D data in 2D), common sense

- Project 3D model data onto the (x, y)-grid

29

Idea

Summation over the z-axis TopDownView

30

Defects in the middle 1/2

Offset Preselection (X and
Y direction)

31

Defects in the middle 2/2

x
x

Non-axis direction check

32

Defects at the border 1/2

Offset Preselection (X and
Y direction)

33

Defects at the border 2/2

x
x

Non-axis direction check

→ Additive Manufacturing Classification (AMC) Dataset:

- 7430 3D models

- Balanced in terms of labels (printable / non-printable)

- But: Defects not equally distributed

34

AMC Dataset

Non-printable defect middle Printable defect middle Non-printable defect border

35

Limitations
- Strong assumptions on the input models

→ Selected models already contain holes or are too complex

- Artificial defined defects, i.e. too far away from the real given problem, strong

abstraction

- If models and the defects gets more complex, this approach quickly reaches its

limitations

36

● Type of problem to be solved: Binary Classification

● Architectures examined for feature extraction:

○ Vanilla3DCNN
○ ResNet
○ InceptionNet V1
○ InceptionNet V3

37

Deep Learning Workflow

38

● Number of trainable parameters: 1.8M

● 4 convolution layers with kernel sizes 9, 7, 5 and 3 were used.

● Maxpooling layer to reduce spatial size.

● Batch normalization layers to stabilize the training process.

39

Vanilla3DCNN Architecture

40

● Number of trainable parameters: 9.1M

● Basic residual block contains two 3 x 3 x 3 layers with batch norm layers and

dropout layers.

● Basic residual block repeated twice.

● To avoid sudden reduction of input spatial dimensions, two pooling layers used

at the end.

41

ResNet Architecture

42

● Basic intuition: Let’s go wider.

● Number of trainable parameters: 9.6M

● To capture the salient features having varying dimensions, choosing right kernel size

is difficult.

● Each InceptionNet V1 block has kernel sizes 1,3 and 5 operating at the same level.

● InceptionNet V1 block repeated 4 times.
43

InceptionNet V1 Architecture

● Number of trainable parameters: 17.9M

● Improvement over InceptionNet V1

● Disadvantage of InceptionNet V1: Large reduction in spatial dimension due to kernel

size 5 x 5 x 5. 44

InceptionNet V3 Architecture

1. Activation Function:

○ ReLU[1] activation for all layers except for the final layer.
○ Sigmoid[1] activation for the final layer.

2. Loss Function:

○ Binary cross entropy loss[2] used.

[1] Activation Functions: Comparison of Trends in Practice and Research for Deep Learning

[2] Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels 45

Implementation Details

3. Weight Initialization:

○ Kaiming normal[3] weight initialization with Fan-out mode was used.
○ Weights follow normal distribution as shown below:

4. Optimizer:

○ Momentum based optimization algorithm is the default algorithm for all architectures.
○ Adam optimizer[4] used: Computes adaptive learning rates for each parameter.

4. Dataset:

○ Total data samples: 7430
○ Train/Validation split (random): 80/20, 5944 (train) and 1486 (validation)
○ Law of large numbers: train and validation set are balanced

[3] Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

[4] Adam : A Method for Stochastic Optimization 46

Implementation Details

47

Performance Analysis

48

Results & Performance Analysis

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

“Trained”
Neural NetworkValidation Data Results

Accuracy

F1-Score

Confusion Matrix

ROC Curve with AUC

49

ROC(1) Curve with AUC(2)

(1) ROC: Receiver Operating Characteristic
(2) AUC: Area under the ROC Curve

50

Confusion Matrix

TN

TP

TN FP

FN TP

● Diagonal elements: correct prediction (TN & TP)

● Off-diagonal elements: wrong predictions (FN & FP)

51

Confusion Matrix

TN

TP

TN FP

FN TP

● True Negatives > True Positives (for all classifiers)

● True Negatives: Method of adding defects works pretty well

● True Positives: Assumption of all initial models being printable does not hold

52

Confusion Matrix

TN

TP

TN FP

FN TP

● Very few off-diagonal elements: Good overall performance

● False Negatives > False Positives (for all classifiers)

53

Confusion Matrix

TN

TP

TN FP

FN TP

● Avoid: False Positives (FP) over False Negatives (FP)

● Additive Manufacturing: False Positives waste time & material
False Negatives require manual check by engineer

54

Confirm Results: Accuracy(1) & F1-Score(2)

TN

TP

Accuracy F1-Score

95.8 % 0.957

Accuracy F1-Score

95.9 % 0.959

Accuracy F1-Score

98.1 % 0.980

(1) In this case: balanced accuracy (3) Precision: How often is it correct when a positive is predicted: TP/(FP+TP)
(2) F1-Score ∈ [0, 1]; harmonic mean of precision(3) and recall(4) (4) Recall: How often is a positive predicted when it actually is positive: TP/(FN+TP)

TN

TP

TN FP

FN TP

55

● Good performance of the model using the AMC dataset.

● Limitations:

○ Assumption of printability of the models selected
○ Restricted model selection
○ Failure of the defectors in some specific cases

56

Wrap up

● Generate an additional test set from another chunk of the ABC dataset or from the

Thingi10K dataset

● Explainable AI techniques for better understanding of the performances of the deep

learning models.

57

Improvements: Evaluation methods

● The information given for the tdv could be misleading.

● Global and a local uniformity check for the area that will be removed by the defector.

58

Improvements: DefectorTopDownView Similarity
Check Add-on

 3D model labeled by the defector as manufacturable

Insert rotated holes with random angles as a generalization of DefectorTopDownView

● Add a padding to the 3D models

● Rotate the models randomly throughout the x,y and z axes by the angles

● Insert the hole using DefectorTopDownView

● Rotate back the model

59

Improvements: DefectorTopDownView Rotation
Add-on

3D model augmented by a rotated hole

 The defector is a deterministic algorithm with limited capabilities

60

Potential Future Work

● Use self supervision:
○ Train on original 3D models without artificial defect using an autoencoder
○ Use the encoder as feature extractor and stack final layer for binary classification
○ Train using expert labeled data

● Few-shot learning methods.
● Train generative adversarial networks (GANs) on a dataset of few

complex models that are expert-labeled and generate new models with
complex defects.

61

Thank you for your attention!

62

Additional slides

63

Additional slides
Synthetic Data Generation

64

Limitations examples 1/2

Selected 3D models already contain holes

65

Limitations examples 2/2

Difficult and not detected 3D structure of the model 3D model too complex

66

Additional slides
Deep Learning

67

Detailed description of Vanilla3DCNN

68

Detailed description of ResNet

69

Detailed description of InceptionNet V1

70

Detailed description of InceptionNet V3

71

Additional slides
Results & Performance Analysis

72

False Prediction Analysis(1)

(1) Utilized neural network model: InceptionNet V3

Label Defect Location Count

non-printable border 4

printable middle 6

non-printable middle 9

printable no-defect 10

73

False Prediction Analysis(1)

printable - no defect added

(1) Utilized neural network model: InceptionNet V3

74

False Prediction Analysis(1)

printable - middle

(1) Utilized neural network model: InceptionNet V3

75

False Prediction Analysis(1)

non-printable - middle

(1) Utilized neural network model: InceptionNet V3

76

False Prediction Analysis(1)

non-printable - border

(1) Utilized neural network model: InceptionNet V3

