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Hard to achieve the right balance:

Additive manufacturing here to transform production processes:

● create design iterations

● enhance quality through cost-effective prototyping

● create specific tooling parts
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Motivation

Quality Speed Cost
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Motivation



By 2028 AM industry revenues would hit $12.6 Billion in the automotive Industry
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Motivation
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Motivation

Applications of AM in the automotive industry



Requires a lot of human expertise and supervision.
In particular, the process of identifying whether a 3D model is manufacturable by a given 
3D printer is a very time-consuming and complex task.
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Problem Definition & Project Goal 

 Automate this process using advanced convolutional neural networks (CNNs)



7

Project Structure LRZ AI System

Data Generation Deep Learning Performance Analysis



Data Generation
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Infrastructure

Data Lake
(LRZ - Data Science Storage)

Preprocessing:

- Selection
- Cleaning
- Normalization
- Alignment

Voxelization

Defector
Algorithm

“Synthetic 
Data Generation”

LRZ AI System

Data Generation
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Deep Learning
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Infrastructure

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

Deep Learning

Neural Network 
Architecture AMC(1) Dataset

(1)  AMC: Additive Manufacturing Classification

Neural Network Training
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Performance Analysis
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Infrastructure

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

“Trained” 
Neural NetworkValidation Data Results

Accuracy

F1-Score

Confusion Matrix

ROC Curve with AUC
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Holistic Project Overview



● A triangular mesh is a data representation of 3D objects.

● It consists of two main data structures: Vertices and Triangles.

● Vertices is a list of 3D points.

● Triangles is a list of triangles, where a triangle connects 3 vertices.
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Data Format: Triangular Mesh

Triangular Mesh Representation
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● dataset contains models of varying complexity

● more triangles are needed in meshes of higher complexity

● more triangles translated to bigger file size

● we applied a cutoff value of 25 KB to select models considered for further 

preprocessing steps
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Data Selection

1 KB mesh file
32 MB mesh file
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- For a 3D mesh to be 3D-printable, 2 main properties should be satisfied:

- 1. Watertightness: mesh has no holes + normals are facing outwards
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Cleaning

Stanford Bunny Model Bottom View
Invalid: has holes Valid: normals are facing outwards

https://support.shapeways.com/hc/en-us/articles/360007107674-Tips-for-successful-modeling

https://support.shapeways.com/hc/en-us/articles/360007107674-Tips-for-successful-modeling


- For a 3D mesh to be 3D-printable, 2 main properties should be satisfied

- 2. Manifold geometry: mesh has no edges shared by more than two faces
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Cleaning

Invalid: edge shared by 4 faces

https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/fix-non-manifold-geometry/

https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/fix-non-manifold-geometry/


- Mesh cleaning functions were utilized from O3D. [1]

- Vertices fixes
- Remove vertices that have identical coordinates  ([x1, y1, z1], [x1, y1, z1])
- Remove vertices that are not referenced in any triangle

- Edges fixes
- Remove non-manifold edges

- Triangles fixes
- Remove triangles that reference the same three vertices  ([v1, v2, v3], [v2, v1, v3])
- Remove triangles that reference a single vertex multiple times in a single triangle ([v1, v2, 

v2])

18

Cleaning

[1] http://www.open3d.org/docs/release/index.html

http://www.open3d.org/docs/release/index.html
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- Performed to make sure all vertices of different objects lie in the same range

- Step 1: Center the mesh around the origin

- Find the center of the mesh vertices
- Translate the mesh vertices to the origin by subtracting the center from all vertices

- Step 2: Scale the vertices so that they lie in a [-1, 1] range

- Divide the mesh vertices by the difference between the maximum bounding point 
and the minimum bounding point.
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Normalization

Before Normalization After Normalization
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- Performed to make sure all meshes are presented in the same orientation.

- The axis of the minimum Moment Of Inertia (MOI) of a mesh represents the axis around 

which most of the mass of the object is wrapped. [1]

- Aligning the axis of the minimum MOI with one of the coordinate axes will allow meshes 

to be presented in the same orientation

- How its done [2] & [3]:

- Step 1: Find the axis of the minimum MOI
- Step 2: Compute a rotation matrix that aligns the axis of the minimum MOI with a 

coordinate axis
- Step 3: Apply the rotation matrix on the mesh vertices
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Alignment

[1] James Dann and James J. Dann. The People’s Physics Book. third edition, 2006.
[2] https://physics.stackexchange.com/questions/426273/how-to-find-the-axis-with-minimum-moment-of-inertia
[3] https://stackoverflow.com/questions/67017134/find-rotation-matrix-to-align-two-vectors

https://physics.stackexchange.com/questions/426273/how-to-find-the-axis-with-minimum-moment-of-inertia
https://stackoverflow.com/questions/67017134/find-rotation-matrix-to-align-two-vectors
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Alignment

Alignment of min MOI axis and X-axis Alignment of min MOI axis and Y-axis Alignment of min MOI axis and Z-axis



24



● All previous transformations were applied on the triangular mesh representation

● Final preprocessing step is converting the model to a voxelized representation

● What is a voxel representation?

○ A data representation that uses voxels. A voxel can be regarded as a pixel in a 
three-dimensional space.

● Why use voxel representation?

○ We hypothesized that SOTA CNNs will offer good performance after replacing 
2D convolutions with 3D convolutions

○ It allows for an easy introduction of defects
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Voxelization

Triangular Mesh Representation Voxelized Representation
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- Problem: Limited labeled data

- Goal: Synthetically add defects to 3D models in order to generate non-printable models

- Assumption: 

- All previous selected models are printable

- Defects are here holes aligned with the z-axis that are added to the 3D model

- Deciding parameters:

- Radius
- radius printable (10 voxels)
- radius non-printable (5 voxels)

- Border
- Border printable (5 voxels)
- Border non-printable (3 voxels)
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Assumptions & Definitions 1/2



Resulting models:
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Assumptions & Definitions 2/2

Model non-printable 
defect in middle 

Model printable defect in 
middle 

Model non-printable 
defect at border 



- Main Idea: Transform 3D model data s.t. it can be used to find right offset

→ TopDownView:

- Inspiration: Heatmaps (visualizing 3D data in 2D), common sense

- Project 3D model data onto the (x, y)-grid
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Idea

Summation over the z-axis TopDownView
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Defects in the middle 1/2

Offset Preselection (X and 
Y direction)
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Defects in the middle 2/2

x
x

Non-axis direction check
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Defects at the border 1/2

Offset Preselection (X and 
Y direction)
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Defects at the border 2/2

x
x

Non-axis direction check



→ Additive Manufacturing Classification (AMC) Dataset:

- 7430 3D models

- Balanced in terms of labels (printable / non-printable)

- But: Defects not equally distributed
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AMC Dataset

Non-printable defect middle Printable defect middle Non-printable defect border
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Limitations
- Strong assumptions on the input models

→ Selected models already contain holes or are too complex

- Artificial defined defects, i.e. too far away from the real given problem, strong 

abstraction

- If models and the defects gets more complex, this approach quickly reaches its 

limitations
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● Type of problem to be solved: Binary Classification 

● Architectures examined for feature extraction:

○ Vanilla3DCNN
○ ResNet
○ InceptionNet V1 
○ InceptionNet V3

37

Deep Learning Workflow
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● Number of trainable parameters: 1.8M

● 4 convolution layers with kernel sizes 9, 7, 5 and 3 were used.

● Maxpooling layer to reduce spatial size.

● Batch normalization layers to stabilize the training process.
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Vanilla3DCNN Architecture
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● Number of trainable parameters: 9.1M

● Basic residual block contains two 3 x 3 x 3 layers with batch norm layers and 

dropout layers.

● Basic residual block repeated twice.

● To avoid sudden reduction of input spatial dimensions, two pooling layers used 

at the end.
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ResNet Architecture
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● Basic intuition: Let’s go wider. 

● Number of trainable parameters: 9.6M

● To capture the salient features having varying dimensions, choosing right kernel size 

is difficult.

● Each InceptionNet V1 block has kernel sizes 1,3 and 5 operating at the same level.

●  InceptionNet V1 block repeated 4 times.
43

InceptionNet V1 Architecture



● Number of trainable parameters: 17.9M

● Improvement over InceptionNet V1

● Disadvantage of InceptionNet V1: Large reduction in spatial dimension due to kernel 

size 5 x 5 x 5. 44

InceptionNet V3 Architecture



1. Activation Function:

○ ReLU[1] activation for all layers except for the final layer.
○ Sigmoid[1] activation for the final layer.

2. Loss Function:

○ Binary cross entropy loss[2] used.

 
[1] Activation Functions: Comparison of Trends in Practice and Research for Deep Learning

[2] Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels 45

Implementation Details



3. Weight Initialization:

○ Kaiming normal[3] weight initialization with Fan-out mode was used.
○ Weights follow normal distribution as shown below:

4. Optimizer:

○ Momentum based optimization algorithm is the default algorithm for all architectures.
○ Adam optimizer[4] used: Computes adaptive learning rates for each parameter.

4. Dataset:

○ Total data samples: 7430
○ Train/Validation split (random): 80/20, 5944 (train) and 1486 (validation)
○ Law of large numbers: train and validation set are balanced

[3] Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

[4] Adam : A Method for Stochastic Optimization 46

Implementation Details



47



Performance Analysis
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Results & Performance Analysis

Data Lake
(LRZ - Data Science Storage)

LRZ AI System

“Trained” 
Neural NetworkValidation Data Results

Accuracy

F1-Score

Confusion Matrix

ROC Curve with AUC
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ROC(1) Curve with AUC(2)

(1) ROC: Receiver Operating Characteristic
(2) AUC: Area under the ROC Curve
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Confusion Matrix

TN

TP

TN FP

FN TP

● Diagonal elements: correct prediction (TN & TP)

● Off-diagonal elements: wrong predictions (FN & FP)
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Confusion Matrix

TN

TP

TN FP

FN TP

● True Negatives > True Positives (for all classifiers)

● True Negatives: Method of adding defects works pretty well

● True Positives: Assumption of all initial models being printable does not hold
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Confusion Matrix

TN

TP

TN FP

FN TP

● Very few off-diagonal elements: Good overall performance

● False Negatives > False Positives (for all classifiers)
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Confusion Matrix

TN

TP

TN FP

FN TP

● Avoid: False Positives (FP) over False Negatives (FP)

● Additive Manufacturing: False Positives waste time & material
False Negatives require manual check by engineer



54

Confirm Results: Accuracy(1) & F1-Score(2)

TN

TP

Accuracy F1-Score

95.8 % 0.957

Accuracy F1-Score

95.9 % 0.959

Accuracy F1-Score

98.1 % 0.980

(1) In this case: balanced accuracy     (3) Precision: How often is it correct when a positive is predicted: TP/(FP+TP)
(2) F1-Score ∈  [0, 1]; harmonic mean of precision(3) and recall(4)     (4) Recall: How often is a positive predicted when it actually is positive: TP/(FN+TP)

TN

TP

TN FP

FN TP
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● Good performance of the model using the AMC dataset.

● Limitations:

○ Assumption of printability of the models selected
○ Restricted model selection
○ Failure of the defectors in some specific cases
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Wrap up



● Generate an additional test set from another chunk of the ABC dataset or from the 

Thingi10K dataset

● Explainable AI techniques for better understanding of the performances of the deep 

learning models.
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Improvements: Evaluation methods



● The information given for the tdv could be misleading.

● Global and a local uniformity check for the area that will be removed by the defector.
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Improvements: DefectorTopDownView Similarity 
Check Add-on

 3D model labeled by the defector as manufacturable



Insert rotated holes with random angles as a generalization of DefectorTopDownView

● Add a padding to the 3D models

● Rotate the models randomly throughout the x,y and z axes by the angles

● Insert the hole using DefectorTopDownView

● Rotate back the model
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Improvements: DefectorTopDownView Rotation 
Add-on

3D model augmented by a rotated hole  



 The defector is a deterministic algorithm with limited capabilities
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Potential Future Work

● Use self supervision:
○ Train on original 3D models without artificial defect using an autoencoder
○ Use the encoder as feature extractor and stack final layer for binary classification
○ Train using expert labeled data

● Few-shot learning methods.
● Train generative adversarial networks (GANs) on a dataset of few 

complex models that are expert-labeled and generate new models with 
complex defects.
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Thank you for your attention!
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Additional slides
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Additional slides
Synthetic Data Generation
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Limitations examples 1/2

Selected 3D models already contain holes



65

Limitations examples 2/2

Difficult and not detected 3D structure of the model 3D model too complex
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Additional slides
Deep Learning
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Detailed description of Vanilla3DCNN
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Detailed description of ResNet
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Detailed description of InceptionNet V1
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Detailed description of InceptionNet V3
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Additional slides
Results & Performance Analysis
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False Prediction Analysis(1)

(1) Utilized neural network model: InceptionNet V3

Label Defect Location Count

non-printable border 4

printable middle 6

non-printable middle 9

printable no-defect 10
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False Prediction Analysis(1)

printable - no defect added

(1) Utilized neural network model: InceptionNet V3
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False Prediction Analysis(1)

printable - middle

(1) Utilized neural network model: InceptionNet V3
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False Prediction Analysis(1)

non-printable - middle

(1) Utilized neural network model: InceptionNet V3
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False Prediction Analysis(1)

non-printable - border

(1) Utilized neural network model: InceptionNet V3


