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Introduction & Objectives

For a lot of simple architectural tasks a person is needed

One reason: Used data in the form of rasterized floorplan 4L [
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Introduction & Objectives

For a lot of simple architectural tasks a person is needed

One reason: Used data in the form of rasterized floorplan
images

Goal of this Project: To place icons (furniture, facilities) on
an "empty" floorplan

Sebastian Schlegel
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Related work — Liu et al. 2017

A multi-step process using a convolutional neural network (CNN) for automatically parsing
rasterized floorplan images

Approach:
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Related work — Liu et al. 2017

A multi-step process using a convolutional neural network (CNN) for automatically parsing
rasterized floorplan images

Approach:
« Extracting geometric and semantic information independently
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Related work — Liu et al. 2017

A multi-step process using a convolutional neural network (CNN) for automatically parsing
rasterized floorplan images

Approach:
« Extracting geometric and semantic information independently
* Merging both rule-based using Integer Programming
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Related work — Liu et al. 2017

Geometric information is represented through "junction points"

» 4 different junctions for "openings" (windows, doors):

Sebastian Schlegel
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Related work — Liu et al. 2017

Geometric information is represented through "junction points"

» 4 different junctions for "openings" (windows, doors):

» 4 different junctions for icons:
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Related work — Liu et al. 2017

Geometric information is represented through "junction points"

|
» 4 different junctions for "openings" (windows, doors): -> < v
1
» 4 different junctions for icons: r -1
= =
« 13 different junctions for walls: | A— -L+
-r
i '1’ T

In total: 21 different junction types
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Related work — Liu et al. 2017

Network (modified ResNet 152) output:
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Geometric information: ;
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TUT
Related work — Liu et al. 2017

Network (modified ResNet 152) output:

Undefin

Garage

Geometric information:
* 21 heatmaps — one regressed for every junction type

Storage

Railing

Entry

Bath

Semantic information:
* One per-pixel classification for room types

Bed Roc
Living R
Kitchen
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Outdoor

Backgre
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TUT

Related work — Liu et al. 2017

Network (modified ResNet 152) output:

Undefin

Garage

Geometric information:
* 21 heatmaps — one regressed for every junction type

Storage

Railing

Entry

Bath

Semantic information:
* One per-pixel classification for room types
« One per-pixel classification for icons, windows & doors

Bed Roc
Living R
Kitchen

IIIVVaH

Outdoor

Backgre

Sebastian Schlegel 13



Related work — Kalervo et al. 2019 ("CubiCasa")

Modifying the approach of Liu et al.

Differences:
« Applying automatic weighting to the multi-task CNN of Liu et al.

» Instead of Integer Programming a heuristic is used for merging
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TUT
Related work — Kalervo et al. 2019 ("CubiCasa")

Merging geometric and semantic information

Undefin:

Split floorplan in a grid of rectangular cells using triplets  — Garage

of Junction points Storage
Railing
Entry
Bath
Bed Roc
Living R

Kitchen

lWa[]

Outdoor

Backgro
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TUT
Related work — Kalervo et al. 2019 ("CubiCasa")

Merging geometric and semantic information

Undefin:

« Split floorplan in a grid of rectangular cells using triplets  — Garage
of Junction points Storage
‘ Railing
« Label cells applying pixel-wise maximum voting ‘ Bty
Bath
Bed Roc
Living R

Kitchen

lWa[]

Outdoor

Backgro
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TUT
Related work — Kalervo et al. 2019 ("CubiCasa")

Merging geometric and semantic information

Undefin:

« Split floorplan in a grid of rectangular cells using triplets ‘ Garage
of Junction points Storage
‘ Railing

Entry

« Label cells applying pixel-wise maximum voting

Bath

Bed Roc

* Merge cells with the same label if no separating wall is
in between

Living R

Kitchen

lWa[]

Outdoor

Backgro
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CubiCasa Dataset
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CubiCasa input

Vladimir Yugay
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CubiCasa model generalization
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CubiCasa model evaluation
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2019-11-08
2019-11-08
2019-11-08
2019-11-08
2019-11-08
2019-11-08
2019-11-08

15:16:43,358
15:16:43,358
15:16:43,358
15:16:43,358
15:16:43,358
15:16:43,358
15:16:43,359
15:16:43,359
15:16:43,359
15:16:43,359
15:16:43,359
15:16:43,359
15:16:43,359
A5£116:43,359

Vladimir Yugay

eval
eval
eval
eval
eval
eval
eval
eval
eval
eval
eval
eval
eval

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO -
INFO
INFO
INFO
INFO
INFO

- IoU & Acc

- Background & 88.9 & 95.6 \\ \hline
- Outdoor & 56.2 & 74.0 \\ \hline

- Wall & 65.5 & 72.9 \\ \hline

2019-11-08 15:05:33,043 - eval - INFO - IoU & Acc

) 2019-11-08 15:05:33,043 - eval - INFO - Background & 80.3 & 95.8 \\ \hline

2019-11-08 15:05:33,043 - eval - INFO - Outdoor & 50.3 & 66.0 \\ \hline
2019-11-08 15:05:33,043 - eval - INFO - Wall & 64.0 & 72.0 \\ \hline

Kitchen & 63.9 & 85.5 \\ \hline

Living Room & 73.1 & 84.8 \\ \hline

33 2019-11-08 15:05:33,044 - eval - INFO - Living Room & 24.8 & 28.4 \\ \hlin

= Bedroom & 76:2 & B93.5 \\ \nline
Bath & 56.8 & 63.7 \\ \hline

- Hallway & 57.6 & 75.0@ \\ \hline

- Railing & 13.3 & 13.9 \\ \hline

- Storage & 53.4 & 57.2 \\ \hline

- Garage & 0.0 & 0.0 \\ \hline

- Other rooms & 49.7 & 64.4 \\ \hline

) 2019-11-08 15:05:33,043 - eval - INFO - Kitchen & 50.6 & 68.8 \\ \hline J

2010-11-08 15:05:33,042 - eval - INTO - Bedroom & 37.0 & 25.8 \\ \nNline

2019-11-08
2019-11-08
2019-11-08
2019-11-08

39 2019-11-08

2019-11-08
2019-11-08

15:05:33,044 - eval - INFO -
15:05:33,044 - eval - INFO -
15:05:33,044 - eval - INFO -
15:05:33,044 - eval - INFO -
15:05:33,044 - eval - INFO -
15:05:33,044 - eval - INFO -
15:05:33,044

Bath & 8.4 & 9.0 \\ \hline

Hallway & 21.2 & 23.8 \\ \hline
Railing & 12.1 & 12.9 \\ \hline
Storage & 5.3 & 5.3 \\ \hline
Garage & 0.0 & 0.0 \\ \hline

Other rooms & 33.3 & 64.8 \\ \hline
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CubiCasa label

Vladimir Yugay
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Input generation
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Label generation

Vladimir Yugay
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Input generation

Vladimir Yugay
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Input generation
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Dataset randomization

« Each image has a random texture
- Each text annotation has a random font size, weight and family

« Each text annotation is rotated from 0 to 11 degrees

Vladimir Yugay
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Dataset statistics

Number of room types were reduced from 65 to 8
Only rooms with kitchen and bathroom were kept

In total 1881 images split in 1281/300/300 as train/validation/test

Vladimir Yugay
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Feature Vector Approach — Reusing Trained Model

Geometrical features (i.e. walls) are invariant to
text removal

Detect Rooms, and Find their types using walls.

Marsil Zakour
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Feature Vector Approach — Building a Graph

Marsil Zakour
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Feature Vector Approach — Features

* What Set of nodes makes a room.
 Wall Features:
« Geometrical
« Relational
« Room Features:
» Aggregation/summary of walls features.
* Or better use Graph Convolutions

Marsil Zakour

Wall features

height
width

# rooms

# walls
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Feature Vector Approach - Stop

Why we Stopped:
* Rooms are not only cycles
More support for segmentation than for GCNs

Marsil Zakour
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Solution

Kitchen

Undef

Vladimir Yugay

Room type
segmentation

Room
polygons

Openings
information
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Segmentation network details

U-Net architecture
ResNet as a backbone
25 millions of parameters

Dice loss

Vladimir Yugay
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Segmentation network

UningRosp

b

|

L U

itchel

Segmentation
Network

Vladimir Yugay

Prediction
tensor

Label
tensor

37



Room type segmentation
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Openings segmentation

Input image

Vladimir Yugay

Predicted image

Label image
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Room Proposals — New Formulation

ﬂ _Joo

Input Proposals

Marsil Zakour



Room Proposals - Training

F1-score

tag: Val/F1-score

0.98
0.94

0.9
0.86
0.82
0.78

0.74

Marsil Zakour
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Room Proposals — Qualitative Results

Labels T:I &% ”;L%I;l EQEI

Predictions
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Room Proposal Qualitative Results
Marsil Zakour 42



Predictions Fusion - Input

Marsil Zakour

Room Proposal

Room Type
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Predictions Fusion - Voting and Inpaint

Align Vote

Marsil Zakour

Inpaint
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Predictions Fusion - Extract Polygons

Extract Polygons

Marsil Zakour

Polygons types
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Predictions Fusion - Extract Polygon cont.

(0,0)

Marsil Zakour
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Predictions Fusion - Example
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Algorithm for placing icons

The task of placing icons is

rule-based: |
* "don't place an icon in front of a door" - ‘ z
Bed-

« "place a bath tube in a bath" Living room ‘
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Algorithm for placing icons

The task of placing icons is

rule-based:
* "don't place an icon in front of a door"
* "place a bath tube in a bath"

"creative" (inconclusive):

« There is not one optimal solution

« Multiple constellations are possible

» "Best choice" can depend on "taste" of a person

Sebastian Schlegel
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Algorithm for placing icons

Information used for placing icons:
* Geometry of a room

* Type of a room
e Location of windows and doors

Sebastian Schlegel
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Algorithm for placing icons

Information used for placing icons:

« Distance from wall
* If pixel in corner

* Dist. From window
* Dist. from door

Sebastian Schlegel

[ ]
]

51



Algorithm for placing icons

Information used for placing icons:

 Distance from wall ]
* If pixel in corner
* Dist. from window

) ]
* Dist. from door

» Dist. from icon — long side
« Dist. from icon — short side
» eucl. Dist. from icon edge

[ ]
]

Sebastian Schlegel
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Algorithm for placing icons

Information used for placing icons:

 Distance from wall ]

* If pixel in corner

* Dist. from window ]

* Dist. from door
» Dist. from icon — long side

« Dist. from icon — short side
» eucl. Dist. from icon edge

Sebastian Schlegel

[ ]
]

One distance vector for every pixel
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Algorithm for placing icons

Rules for placing icons:

Implemented through a weighting vector
« Weights can be positive (minimize dist.)
* Or negative (maximize dist.)
<

weighting vector

Sebastian Schlegel
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Algorithm for placing icons

Rules for placing icons:

Implemented through a weighting vector
« Weights can be positive (minimize dist.)
* Or negative (maximize dist.)
<

weighting vector

Sebastian Schlegel
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Algorithm for placing icons

Rules for placing icons:

-
Implemented through a weighting vector
« Weights can be positive (minimize dist.)
* Or negative (maximize dist.)
<
~

Wivall
Weorner
Wwindow
Waoor

Wiconi-s
Wicon1-1
Wicon1-eu
Wicon2-s
Wicon2-1

Wiconz-eu

S

J

weighting vector

Sebastian Schlegel
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Algorithm for placing icons

Rules for placing icons:
Implemented through a weighting vector

* Weights can be positive (minimize dist.)
* Or negative (maximize dist.)

+ Additional conditions e.g.:

» Placing "dummies" between icons allows for more
complex constellations

If dyay == 20:value+= 5

Sebastian Schlegel

57



Algorithm for placing icons

Searching for best icon spots:

Grid search over every possible icon spot
* An area value is calculated for every spot

Sebastian Schlegel
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Algorithm for placing icons

Searching for best icon spots:

Grid search over every possible icon spot
* An area value is calculated for every spot

Sebastian Schlegel
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Algorithm for placing icons
Searching for best icon spots:
Grid search over every possible icon spot

* An area value is calculated for every spot
» Repeated for icon being rotated by 90 degrees

Sebastian Schlegel
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Algorithm for placing icons

Searching for best icon spots:
Grid search over every possible icon spot

« An area value is calculated for every spot
» Repeated for icon being rotated by 90 degrees

Sebastian Schlegel

11
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Algorithm for placing icons

Searching for best icon spots:

Grid search over every possible icon spot
« An area value is calculated for every spot
» Repeated for icon being rotated by 90 degrees

Random factor for higher variability

« Small random value for every area to randomly pick
one of the optimal spots

Sebastian Schlegel

]
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Algorithm for placing icons

Searching for best icon spots:

Grid search over every possible icon spot
* An area value is calculated for every spot
» Repeated for icon being rotated by 90 degrees

Random factor for higher variability

« Small random value for every area to randomly pick
one of the optimal spots

« Order in which icons are placed is randomly, taking
rules into account (e.g. place chair after table)

Sebastian Schlegel
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TUT

Algorithm for placing icons

"Learning of rules" = vindow
0 door
toilet
. brath tube
* Rules were first set due to common sense __ singlebed
I . 0 table
chair
* Rules were fine-tuned according to feedback | == Kitchen fcilty
-
* Outlook: learn user preferences in a loop of human- .

machine-interactions

Sebastian Schlegel 64



Results

Sebastian Schlegel
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Conclusion & Limitations

Initial goals were met

Limitations:

 Room segmentation can't tolerate text rotated by 90 degrees

* Room proposal heavily depends on good proposals segmentation

« Icon placing faces problems when dealing with complex room shapes

Sebastian Schlegel
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Backup
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Related work — early approaches

Computer-based processing of floorplan images is well researched in pattern regocnition
Early approaches mainly rely on low-level image processing heuristics:
» Separating textual data from graphical

« Detecting and grouping lines
« Overcoming gaps through polygonal approximation or edge-linking

To increase performance, recent works applied deep convolutional neural networks (CNNs)

Dr. rer. nat. Erika Mustermann (TUM) | kann beliebig erweitert werden | Infos mit Strich trennen
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Related work — Liu et al. 2017

Merging geometric and semantic information applying predefined constraints
5 different constraints

* e.g. loop constraint
— High level: exterior boundary of a room must form a closed loop

— Enforced locally: For each pair of walls the room type must be the same

Constraints are applied using Integer programming

Result: performance — especially for geometries — increases
significantly

Dr. rer. nat. Erika Mustermann (TUM) | kann beliebig erweitert werden | Infos mit Strich trennen
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Related work — Liu et al.

Performance

Method Junction Opening Icon Room
acc |[recall [acc |recall [ace |recall |[acc |[recall

[13] 70.7 [95.1 |[67.9 (914 |223 |[77.4 |80.9 |78.5

[13] + IP 94.7 (91.7 (91.9 |90.2 |84.0 |74.6 |84.5 |884

Sebastian Schlegel



Related work — Kalervo et al.

Performance
Junction enin con oom
Aetiod acc |:‘ecall aci‘)p |recill acc ! |recall accR |recall
Ours 824 1920 |82.3 (933 (346 |88.3 [90.0 |87.6
Ours (TTA) 90.2 191.9 [89.6 |93.9 [46.1 |88.0 |91.5 |88.0
Ours + IP 04.1 [89.6 (93.2 926 |929 |8R7.7 |91.7 |90.8
Ours (TTA) + IP 95.0 |89.7 194.5 (929 [93.6 [87.3 [(92.2 [90.2

Sebastian

val

Overall Ace

test

Mean Acc

val

test

Mean loU

val

test

Rooms |84.5

82.7

72.3

69.8

61.0

57.5

Roomp [79.0

77.3

64.2

61.6

524

49.3

[cons |[97.8

97.6

62.8

61.5

56.5

55.7

[consp [97.0

96.7

094.8

45.3

43.7

41.6
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Rotated Input

Marsil Zakour
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Graph Convolutional Networks (GCNSs)

Al s S Rl
.

(image from https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-

network-part-i/)

Marsil Zakour
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https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/
https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/
https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/

F1-loss

F o 2 —9 precision - recall
b recall ™! + precision ! ~ 7 precision + recall
Precision = —— Recall =

Dr. rer. nat. Erika Mustermann (TUM) | kann beliebig erweitert werden | Infos mit Strich trennen
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Voting

Marsil Zakour
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U-Net
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Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.
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ResNet

Vladimir Yugay

X
A
weight layer
f(x) I relu =
weight layer identity
F(x)+x &

relu

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image recognition, 2015.
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Dice Loss

Vladimir Yugay
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