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For a lot of simple architectural tasks a person is needed 

One reason: Used data in the form of rasterized floorplan 
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For a lot of simple architectural tasks a person is needed 

One reason: Used data in the form of rasterized floorplan 
images 

Goal of this Project: To place icons (furniture, facilities) on 
an "empty" floorplan
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Related work – Liu et al. 2017
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A multi-step process using a convolutional neural network (CNN) for automatically parsing 
rasterized floorplan images 

Approach: 
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Related work – Liu et al. 2017

7

A multi-step process using a convolutional neural network (CNN) for automatically parsing 
rasterized floorplan images 

Approach:  
• Extracting geometric and semantic information independently  
• Merging both rule-based using Integer Programming 
• M

geometries

semantics
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Geometric information is represented through "junction points" 

• 4 different junctions for "openings" (windows, doors):

Related work – Liu et al. 2017



Sebastian Schlegel 9

Geometric information is represented through "junction points" 
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Geometric information is represented through "junction points" 

• 4 different junctions for "openings" (windows, doors): 

• 4 different junctions for icons: 

• 13 different junctions for walls: 

In total: 21 different junction types

Related work – Liu et al. 2017
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Network (modified ResNet 152) output: 

Geometric information:  
• 21 heatmaps – one regressed for every junction type

Related work – Liu et al. 2017
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Related work – Liu et al. 2017
Network (modified ResNet 152) output: 

Geometric information:  
• 21 heatmaps – one regressed for every junction type 

Semantic information:  
• One per-pixel classification for room types
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Related work – Liu et al. 2017
Network (modified ResNet 152) output: 

Geometric information:  
• 21 heatmaps – one regressed for every junction type 

Semantic information:  
• One per-pixel classification for room types 
• One per-pixel classification for icons, windows & doors
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Related work – Kalervo et al. 2019 ("CubiCasa")
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Modifying the approach of Liu et al. 

Differences:  
• Applying automatic weighting to the multi-task CNN of Liu et al. 
• Instead of Integer Programming a heuristic is used for merging 

geometries

semantics
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Related work – Kalervo et al. 2019 ("CubiCasa")
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Merging geometric and semantic information 

• Split floorplan in a grid of rectangular cells using triplets 
of Junction points
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Merging geometric and semantic information 

• Split floorplan in a grid of rectangular cells using triplets 
of Junction points 

• Label cells applying pixel-wise maximum voting
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Related work – Kalervo et al. 2019 ("CubiCasa")
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Merging geometric and semantic information 

• Split floorplan in a grid of rectangular cells using triplets 
of Junction points 

• Label cells applying pixel-wise maximum voting 

• Merge cells with the same label if no separating wall is 
in between
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CubiCasa Dataset
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CubiCasa input
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CubiCasa model generalization
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CubiCasa model evaluation
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CubiCasa label
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Input generation 
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Label generation 
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Input generation 
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Input generation 
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Dataset randomization
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• Each image has a random texture 

• Each text annotation has a random font size, weight and family  

• Each text annotation is rotated from 0 to 11 degrees
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Dataset statistics
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• Number of room types were reduced from 65 to 8 

• Only rooms with kitchen and bathroom were kept 

• In total 1881 images split in 1281/300/300 as train/validation/test
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• Geometrical features (i.e. walls) are invariant to 
text removal 

• Detect Rooms, and Find their types using walls.

Feature Vector Approach – Reusing Trained Model
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 Type IOU (Text) IOU (No Text)

Wall 65.5% 64%
Kitchen 63.9% 50.6%
Living Room 73.1% 24.8%
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Feature Vector Approach – Building a Graph
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• What Set of nodes makes a room. 
• Wall Features: 

• Geometrical 
• Relational 

• Room Features: 
• Aggregation/summary of walls features. 
• Or better use Graph Convolutions

Feature Vector Approach – Features

32

Wall features
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Why we Stopped: 
• Rooms are not only cycles 
• More support for segmentation than for GCNs 

Feature Vector Approach - Stop
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Solution
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Segmentation network details
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• U-Net architecture 

• ResNet as a backbone  

• 25 millions of parameters  

• Dice loss 



Vladimir Yugay

Segmentation network
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Segmentation  
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Room type segmentation

38

      Input image       Predicted image       Label image
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Openings segmentation
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      Input image    Predicted image       Label image
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Room Proposals – New Formulation
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Input Proposals
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Room Proposals - Training
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Room Proposals – Qualitative Results
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Room Proposal Qualitative Results
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Predictions Fusion - Input
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input Room Proposal Room Type
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Predictions Fusion - Voting and Inpaint
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Align Vote Inpaint
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Predictions Fusion - Extract Polygons
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Extract Polygons Polygons types
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Predictions Fusion - Extract Polygon cont.
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Predictions Fusion - Example
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Algorithm for placing icons
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The task of placing icons is 

rule-based: 
• "don´t place an icon in front of a door" 
• "place a bath tube in a bath" 
• …
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Algorithm for placing icons
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Kitchen

Living room Bed-
room

Bath

The task of placing icons is 

rule-based: 
• "don´t place an icon in front of a door" 
• "place a bath tube in a bath" 
• … 

"creative" (inconclusive): 
• There is not one optimal solution 
• Multiple constellations are possible 
• "Best choice" can depend on "taste" of a person
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Algorithm for placing icons
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Information used for placing icons: 

• Geometry of a room 
• Type of a room 
• Location of windows and doors

bed

bedside table

window

door
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Algorithm for placing icons
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Information used for placing icons: 

• Distance from wall  
• If pixel in corner 
• Dist. From window 
• Dist. from door
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Information used for placing icons: 

• Distance from wall  
• If pixel in corner 
• Dist. from window 
• Dist. from door 

• Dist. from icon – long side 
• Dist. from icon – short side 
• eucl. Dist. from icon edge     
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Algorithm for placing icons
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Information used for placing icons: 

• Distance from wall  
• If pixel in corner 
• Dist. from window 
• Dist. from door 

• Dist. from icon – long side 
• Dist. from icon – short side 
• eucl. Dist. from icon edge     

One distance vector for every pixel 
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Algorithm for placing icons
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Rules for placing icons: 

Implemented through a weighting vector 

• Weights can be positive (minimize dist.) 
• Or negative (maximize dist.) 

    weighting vector 
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Rules for placing icons: 

Implemented through a weighting vector 

• Weights can be positive (minimize dist.) 
• Or negative (maximize dist.) 

    distance vector weighting vector 
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Rules for placing icons: 

Implemented through a weighting vector 

• Weights can be positive (minimize dist.) 
• Or negative (maximize dist.) 

    distance vector weighting vector 

Value for 
each pixel
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Algorithm for placing icons
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Rules for placing icons: 

Implemented through a weighting vector 

• Weights can be positive (minimize dist.) 
• Or negative (maximize dist.) 

• Additional conditions e.g.: 

• Placing "dummies" between icons allows for more 
complex constellations    

    distance vector weighting vector 

Value for 
each pixel
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Algorithm for placing icons
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Searching for best icon spots: 

Grid search over every possible icon spot 
• An area value is calculated for every spot
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Algorithm for placing icons
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Searching for best icon spots: 

Grid search over every possible icon spot 
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Algorithm for placing icons
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Searching for best icon spots: 

Grid search over every possible icon spot 
• An area value is calculated for every spot 
• Repeated for icon being rotated by 90 degrees
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Searching for best icon spots: 

Grid search over every possible icon spot 
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Algorithm for placing icons
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Searching for best icon spots: 

Grid search over every possible icon spot 
• An area value is calculated for every spot 
• Repeated for icon being rotated by 90 degrees 

Random factor for higher variability 
• Small random value for every area to randomly pick 

one of the optimal spots
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Algorithm for placing icons
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Searching for best icon spots: 

Grid search over every possible icon spot 
• An area value is calculated for every spot 
• Repeated for icon being rotated by 90 degrees 

Random factor for higher variability 
• Small random value for every area to randomly pick 

one of the optimal spots 
• Order in which icons are placed is randomly, taking 

rules into account (e.g. place chair after table)
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Algorithm for placing icons
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"Learning of rules": 

• Rules were first set due to common sense 

• Rules were fine-tuned according to feedback 

• Outlook: learn user preferences in a loop of human-
machine-interactions
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Results
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Conclusion & Limitations

66

Initial goals were met 

Limitations: 
• Room segmentation can´t tolerate text rotated by 90 degrees 
• Room proposal heavily depends on good proposals segmentation 
• Icon placing faces problems when dealing with complex room shapes
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Dr. rer. nat. Erika Mustermann (TUM) | kann beliebig erweitert werden | Infos mit Strich trennen

Computer-based processing of floorplan images is well researched in pattern regocnition 

Early approaches mainly rely on low-level image processing heuristics: 
• Separating textual data from graphical 
• Detecting and grouping lines 
• Overcoming gaps through polygonal approximation or edge-linking 

To increase performance, recent works applied deep convolutional neural networks (CNNs)

68

Related work – early approaches 
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Merging geometric and semantic information applying predefined constraints  

5 different constraints 
• e.g. loop constraint 
− High level: exterior boundary of a room must form a closed loop 
− Enforced locally: For each pair of walls the room type must be the same 

Constraints are applied using Integer programming 

Result: performance – especially for geometries – increases 
significantly

Related work – Liu et al. 2017
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Performance
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Related work – Liu et al. 
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Related work – Kalervo et al. 
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Rotated Input 
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(image from https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-
network-part-i/) 

Graph Convolutional Networks (GCNs)
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https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/
https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/
https://datawarrior.wordpress.com/2018/08/08/graph-convolutional-neural-network-part-i/
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F1-loss
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Voting
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U-Net 
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Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015. 
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ResNet 
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. 



Vladimir Yugay

Dice Loss
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Dice loss 


