
Digital snow melt - Automated forecasting from snow

parameters

Florian Donhauser, Fabienne Greier, Md. Forhad Hossain,

Robin Mittas, Wudamu

Technical University of Munich & ThinkOutside

Munich Data Science Institute (MDSI)

TUM Data Innovation Lab (TUM-DI-LAB)

Munich, 25th of February 2022

Team members

Robin,

Mathematics in

Data Sciene

Florian,

Informatics

Forhad,

Data Engineering

and Analytics

Fabienne,

Robotics, Cognition,

Intelligence

Wudamu,

Electrical and

Computer

Engineering

Overview

❑ Researching

related work

❑ Developing the DataLoader

Filling in the missing values in

the downloaded data​

Time resolution of the data

❑ Model architecture​

Improving the code quality,

flexibility and readability​

Creating building blocks to remove

code duplicates​

Creating config files​

Combat overfitting

❑ Testing

Yearly forecasts​

Monthly forecasts​

Weekly forecasts​

Sum over all stations

❑ Automatic

hyperparameter

tuning

Related work

Long-term Reservoir Inflow Forecasts: Enhanced Water Supply and

Inflow Volume Accuracy Using Deep Learning (Herbert, Z. et al.)

Data preprocessing

1. Data source

2. Data acquisition

3. Data cleaning

DataLoader

Image source: https://www.wninfotech.com/data-processing

NVE Data

source: https://sildre.nve.no/map

Data source

Name:

• Norwegian Water Resources

and Energy Directorate (NVE)

First data source:

Measurements:

• Water equivalent of snow

• Snow depth

• Air temperature

• Snow depth

• ...

What we used:

• Download the

measurements of the

stations which include

water equivalent of snow

• Includes 15 stations

Data source

What we used:

• All 18 stations

Name:

• Inflow-glomma

Second data source:

Measurements:

• Inflow data of the station

Data acquisition

source: https://sildre.nve.no/map

NVE Data download_data.py

source: https://pixabay.com/vectors/box-data-download-icon-save-1292866/

Name of

the

stations

Measurements/

Features

Start time:

• 01/12/2001

End time:

• 30/11/2021

config file

Example of downloaded data

Missing a lot of data:

For example:

• Missing 35.0% data in 2005,

• Missing 100% data in 2015,

• Missing 52.2% data in 2017,

• …

Downloading the original data from NVE

Data cleaning for NVE data

Downloaded data
Missing rate

for all years

> threshold

Yes

Drop out

No Missing rate

for one year

> threshold

No

Fill the missing value

based on average mean

value from other years

Yes

Linear or polynomial

interpolation

Set in config file

Example of the cleaned NVE data

Fill Null values according to

average data from other years

Linear interpolation

Inflow values of Norwegian reservoir lake "Aursunden" with different

resampling methods

Water inflow data

Water inflow data is provided by

"Think Outside " and it is an Excel file

which contains 18 stations over 40

years

Existing architecture by Herbert et al.

Code duplicates in their code

Existing architecture

• Hard-coded values, no configuration file:

• No real code structure, complete code in one big file

• No main function

• Dependencies without version number, partly outdated libraries

• Insufficient documentation/comments in the code

Existing architecture – further problems

Our model architecture

• Remove code duplicates by creating a “block”

• Structure of each residual CNN block

• Move hyperparameters into config file (config.yaml)

• Add TensorBoard logging

• Dropout

• For LSTM layers and between dense layers

• Dropout probability in config file

• Batch Normalization

• Output of 1D convolutions

• Can be turned on or off

• L2 Regularization (weight decay)

• Applied to weights of 1D convolutions and LSTM layers

• Regularization factor in config file

Techniques to combat overfitting

𝑦 = 𝛾𝑦𝑛𝑜𝑟𝑚 + 𝛽

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 +
𝜆

2
𝑤 2

Hyperparameter optimization

• Two types of parameters: model parameters and hyperparameters

• Model parameters: learned Hyperparameters: set by the developers

batch_size n_timesteps

epochs n_nodes

filter

kernel_size

learning_rate

dropout

weight_regularizer

Momentumtotal_hidden_layer

pooling_size

patience

activation_function

Hyperparameter optimization

Categories of hyperparameters

Optimizer

• Learning rate

• Mini-batch size

• Early stopping (patience)

Model

• Size of layers

• Dropout probability

• Number of layers

Data and others

• Input length

• Preprocessing

Why hyperparameter tuning /

optimization?

Types of hyperparameter optimization

• Grid search

• Random search

• More advanced algorithms

Manual hyperparameter optimization

Automatic hyperparameter optimization

Features of Optuna

• Automatization

• Easy to use and good documentation

• Different strategies are implemented (Tree-structured Parzen Estimator)

• Support for different data types and distributions

• suggest_categorical()

• suggest_int()

• suggest_uniform()

• suggest_loguniform()

• …

How to use Optuna?

Why Optuna?

Validation Loss Distribution for 1 week forecasting Trial # Val loss

178 0,45

134 0,51

164 0,52

126 0,54

136 0,56

129 0,57

130 0,57

181 0,58

61 0,58

88 0,58

How data is passed to the model

36

Input of model (downloaded data: SWE, temperature...)

Target data (Inflow)

Model settings

Model configurations:

• Loss function: MSE

• Optimizer: Adam

• Validation split: 0.2

• Repeats: 3

2 different sources for our target

data (inflow time series):

• Time series containing 18 reservoirs

• Time series containing 1 reservoir

For "real" future forecasts no test set

• Inflow (today) = reservoir volume (tomorrow) - reservoir volume (today) + outflow (today)

• Errors in measurement of the inflow inflow often small compared to outflow and changes in reservoir volume relatively small

errors and inaccuracies in water level or outflow can result in large errors in calculated inflow

Data quality

38

Without hyperparamter tuning With hyperparamter tuning
(predicting 52 weeks based on the previous 40 weeks) (predicting 52 weeks based on the previous 98 weeks)

Yearly forecasts 2020

39

Without hyperparamter tuning With hyperparamter tuning
(predicting 49 weeks based on the previous 40 weeks) (predicting 49 weeks based on the previous 98 weeks)

Yearly forecasts 2021

40
Note: Inflow time series ends in November 2021

Bad station – with hyperparamter tuning

41

• Negative values (also in

previous years)

• Many ups and downs

Hard to make accurate

predictions

Without hyperparameter tuning With hyperparameter tuning

Performance on annual forecasts 2021 over all 18 stations

42

Metric Average Median

Mean Absolute Error

(%) 72.32 73.95

Root Mean Sqaured

Error (%) 112.17 112.15

Median Absolute

Error (%) 41.67 47.03

Explained Variance 0.35 0.3

Metric Average Median

Mean Absolute Error

(%) 66.85 62.62

Root Mean Sqaured

Error (%) 100.21 101.95

Median Absolute

Error (%) 41.13 36.77

Explained Variance 0.48 0.45

Monthly forecasts – with hyperparameter tuning

Again station Øyangen

Performance on monthly forecasts over all 18 stations

44

Metric Average

Mean Absolute Error

(%) 75.41

Root Mean Sqaured

Error (%) 84.79

Median Absolute

Error (%) 70.07

Explained Variance -1.37

Weekly forecasts – with hyperparameter tuning

Negative values and mean of actual values close to 0

Performance on weekly forecasts over all 18 stations

46

Metric Average

Mean Absolute Error

(%) 199.24

Root Mean Sqaured

Error (%) 236.12

Median Absolute

Error (%) 209.02

Explained Variance -1.15

Weaker performance on weekly forecasts?

47

• Data quality:

1. More noise in the data (Not resampled to weekly averages)

2. More fluctuations

3. More negative values Normalized metrics = divided by mean of actual values (which might be

close to 0 due to negative values) "Worse" accuracy based on metric same holds for monthly

forecasts (mean closer to 0)

1W-average: 3W-average:

Other resampling methods

48
Remove noise through coarser resampling methods

Columns summed up - region view

Second datasource (reservoir Sula)

Learnings
• Tensorflow and also improved coding

knowledge in general in Python

• Real-world data is not always nice how to

get most value out of it (imputing methods)

• ML tools

• Learned how to work on a coding project

• Use of GitLab

• Structure and building blocks of a ML model

• Data visualization

• Combat overfitting

• Real project using Tensorflow

• Working on multi-disciplinary project

• Automatic hyperparameter tuning: Optuna

• Using requests model to download data from

website

• Real world data is not always perfect

• Data preprocessing is very important to train a

model

• The real world is not Kaggle

• Good code quality is important

• Use the features of GitLab/GitHub

Conclusion

❑ Researching

related work

❑ Developing the DataLoader

Filling in the missing values in

the downloaded data​

Time resolution of the data

❑ Model architecture​

Improving the code quality,

flexibility and readability​

Creating building blocks to remove

code duplicates​

Creating config files​

Combat overfitting

❑ Testing

Yearly forecasts​

Monthly forecasts​

Weekly forecasts​

Sum over all stations

❑ Automatic

hyperparameter

tuning

• Norwegian data was more challenging

• We did not expect this many missing values

• Code quality was greatly improved

• Forecast for different time resolutions and lengths possible

• Flexible and easy to use

• Positive feedback from all team members and our mentor Dr. Juliane Sigl

Conclusion

Thank you for your attention

We are looking forward to your questions

Robin FlorianForhad Fabienne Wudamu

