Digital snow melt - Automated forecasting from snow parameters

Florian Donhauser, Fabienne Greier, Md. Forhad Hossain,

Robin Mittas, Wudamu

Technical University of Munich & ThinkOutside

Munich Data Science Institute (MDSI)

TUM Data Innovation Lab (TUM-DI-LAB)

Munich, 25th of February 2022

Team members

Robin, Mathematics in Data Sciene Forhad, Data Engineering and Analytics

Florian, Informatics Fabienne, Robotics, Cognition, Intelligence Wudamu, Electrical and Computer Engineering

THINK OUTSIDE

Related work

Long-term Reservoir Inflow Forecasts: Enhanced Water Supply and Inflow Volume Accuracy Using Deep Learning (Herbert, Z. et al.)

Data preprocessing

DataLoader

- 1. Data source
- 2. Data acquisition
- 3. Data cleaning

Data source

First data source:

Name:

 Norwegian Water Resources and Energy Directorate (NVE)

Measurements:

- Water equivalent of snow
- Snow depth
- Air temperature
- Snow depth
- ...

What we used:

- Download the measurements of the stations which include water equivalent of snow
- Includes 15 stations

source: https://sildre.nve.no/map

Data source

Second data source:

Name:

Inflow-glomma

Measurements:

• Inflow data of the station

What we used:

All 18 stations

source: https://sildre.nve.no/map

source: https://pixabay.com/vectors/box-data-download-icon-save-1292866/

Downloading the original data from NVE

Data cleaning for NVE data

Example of the cleaned NVE data

Water inflow data

Water inflow data is provided by "Think Outside " and it is an Excel file which contains 18 stations over 40 years

Inflow values of Norwegian reservoir lake "Aursunden" with different resampling methods

Time-Series Sliding Window Output

Existing architecture by Herbert et al.

Existing architecture

Code duplicates in their code

Existing architecture – further problems

- Hard-coded values, no configuration file:
- 259 # Declare model input parameters
- 260 input_length, output_length, repeats, year = 20, 15, 30, 2019
- No real code structure, complete code in one big file
- No main function
- Dependencies without version number, partly outdated libraries
- Insufficient documentation/comments in the code

Dependencies

- Python 3
- Climata
- Tensorflow
- Matplotlib
- Sklearn
- Seaborn
- Datetime
- Pandas
- Numpy

→ Forecast

Our model architecture

Remove code duplicates by creating a "block" ٠

Flatten Repeat Vector 4 LSTM layers

Structure of each residual CNN block •

Convolutional 1D ReLU Convolutional 1D Add ReLU Convolutional 1D ReLU Convolutional 1D Add Max Pooling 1D

- Move hyperparameters into config file (config.yaml) ٠
- n timesteps: 40

Time Series Window

Input Matrix

- n outputs: 52 23
- Add TensorBoard logging ٠

n timestamps length of input window, 40 weeks (in case resampling method=1W) # n outputs how many weeks we want to predict (in case resampling method=1W)

TimeDistributed

Dense

TimeDistributed

Dense

Techniques to combat overfitting

- Dropout
 - For LSTM layers and between dense layers
 - Dropout probability in config file
- Batch Normalization
 - Output of 1D convolutions
 - Can be turned on or off
- L2 Regularization (weight decay)
 - Applied to weights of 1D convolutions and LSTM layers
 - Regularization factor in config file

 $y = \gamma y_{norm} + \beta$

 $L_{total} = L + \frac{\lambda}{2} \|w\|^2$

Hyperparameter optimization

- Two types of parameters: model parameters and hyperparameters
- Model parameters: learned

Hyperparameters: set by the developers

Hyperparameter optimization

Categories of hyperparameters

Model

- Size of layers
- Dropout probability
- Number of layers

Optimizer

- Learning rate
- Mini-batch size
- Early stopping (patience)

Data and others

- Input length
- Preprocessing

Why hyperparameter tuning /

optimization?

Types of hyperparameter optimization

• Grid search

٠

Random search

More advanced algorithms

Unimportant parameter

Grid Layout

Important parameter

Important parameter

Manual hyperparameter optimization

Epochs	Loss	Batch size	Optimizer	Repeats	MAE	RMSE
50	MSE	32	Adam	5	18.78	26,06
50	MSE	32	Adam	2	19.26	25.07
30	MSE	32	Adam	20	23.56	29,85
100	MSE	32	Adam	2	25.15	34.31
40	MSE	64	Adam	3	27.86	38.33
20	MSE	64	Adam	20	31.88	42.92
100	MSE	32	Adam	5	35,157	49,662

Automatic hyperparameter optimization

Features of Optuna

- Automatization
- Easy to use and good documentation
- Different strategies are implemented (Tree-structured Parzen Estimator)
- Support for different data types and distributions
 - suggest_categorical()
 - suggest_int()
 - suggest_uniform()
 - suggest_loguniform()
 - •

. . .

How to use Optuna?

<pre>config["n_timesteps"] = trial.suggest_int('n_timesteps', 8, 102)</pre>
<pre>config["batch_size"] = trial.suggest_categorical('batch_size', [64, 128])</pre>
<pre>config["epochs"] = trial.suggest_int("epochs", 25, 100)</pre>
<pre>config["n_nodes1"] = trial.suggest_int("n_nodes1", 4, 128)</pre>
<pre>config["n_nodes2"] = trial.suggest_int("n_nodes2", 4, 64)</pre>
<pre>config["filter1"] = trial.suggest_int("filter1", 2, 128)</pre>
<pre>config["filter2"] = trial.suggest_int("filter2", 2, 64)</pre>
<pre>config["kernel_size"] = trial.suggest_int("kernel_size", 3, 9)</pre>
<pre>config["learning_rate"] = trial.suggest_loguniform('learning_rate', 1e-5, 1e-3)</pre>
<pre>config["dropout_probability"] = trial.suggest_float('dropout_probability', 0, 0.5)</pre>
<pre>config["use_batch_normalization"] = trial.suggest_categorical('use_batch_normalization', [True, False])</pre>
<pre>config["patience"] = trial.suggest_int("patience", 5, 50)</pre>
<pre>config["weight_regularizer"] = trial.suggest_loguniform("weight_regularizer", 1e-9, 1e-5)</pre>

Why Optuna?

	Valio	dation I	Loss D	istribut	tion for	1 wee	k forec	asting			Trial #	Val loss
		58									178	0,45
		-									134	0,51
											164	0,52
	40		39								126	0,54
				32							136	0,56
											129	0,57
											130	0,57
	1				12						181	0,58
8						5	2	2		1	61	0,58
[0,45, 0,58]	(0,58, 0,71]	(0,71, 0,84]	(0,84, 0,97]	(0,97, 1,10]	(1,10, 1,23]	(1,23, 1,36]	(1,36, 1,49]	(1,49, 1,62]	(1,62, 1,75]	(1,75, 1,88]	88	0,58

Target data (Inflow)

How	data	is	passed	to	the	mode	ì

	Øvre Leirbotn/ swe	Øvre Leirbotn/ temperatur	ØVERBYGD II/ swe	ØVERBYGD II/ temi
2010-01-10T00:00:00.000000000	0.38617	0.15537	0.56620	0.54211
2010-01-17T00:00:00.000000000	0.39339	0.35696	0.58043	0.69832
2010-01-24T00:00:00.000000000	0.39531	0.33020	0.60512	0.66109
2010-01-31T00:00:00.000000000	0.39609	0.19727	0.62484	0.61714
2010-02-07T00:00:00.000000000	0.39683	0.29920	0.63303	0.64318
2010-02-14T00:00:00.000000000	0.40387	0.27508	0.64842	0.57799
2010-02-21T00:00:00.000000000	0.41083	0.00000	0.66178	0.59543
2010-02-28T00:00:00.000000000	0.41294	0.07971	0.67325	0.54873
2010-03-07T00:00:00.000000000	0.41479	0.23351	0.68709	0.57728
2010-03-14T00:00:00.000000000	0.43359	0.30457	0.72078	0.67190
2010-03-21T00:00:00.000000000	0.44455	0.19223	0.73443	0.60287
2010-03-28T00:00:00.000000000	0.45390	0.35224	0.75189	0.67221
2010-04-04T00:00:00.000000000	0.45431	0.48973	0.76755	0.75088
2010-04-11T00:00:00.000000000	0.44692	0.55830	0.76432	0.76569
2010-04-18T00:00:00.000000000	0.44761	0.52236	0.77809	0.76301
2010-04-25T00:00:00.000000000	0.44214	0.48323	0.76255	0.76249
2010-05-02T00:00:00.000000000	0.44633	0.52595	0.77350	0.75641
2010-05-09T00:00:00.000000000	0.45348	0.57230	0.75549	0.79128
2010-05-16T00:00:00.000000000	0.44258	0.65878	0.71057	0.86028
2010-05-23T00:00:00.000000000	0.39338	0.70584	0.53504	0.86291

Input of model (downloaded data: SWE, temperature...)

	0.13301	
	0.38160	
2010-06-06T00:00:00.00000000	0.29442	
2010-06-13T00:00:00.00000000	0.26628	
	0.28875	
2010-06-27T00:00:00.00000000	0.19065	
	0.19365	
2010-07-11T00:00:00.00000000	0.11728	
	0.09063	
	0.06513	
2010-08-01T00:00:00.00000000	0.06140	
2010-08-08T00:00:00.00000000		
2010-08-15T00:00:00.000000000	0.05141	

I			Aursunden
	2010-05-23T00:00:00.000000000	0.91384	
I	2010-05-30T00:00:00.000000000	0.38160	
I	2010-06-06T00:00:00.000000000	0.29442	
	2010-06-13T00:00:00.000000000	0.26628	
	2010-06-20T00:00:00.000000000	0.28875	
	2010-06-27T00:00:00.000000000	0.19065	
	2010-07-04T00:00:00.000000000	0.19365	
	2010-07-11T00:00:00.000000000	0.11728	
	2010-07-18T00:00:00.000000000	0.09063	
	2010-07-25T00:00:00.000000000	0.06513	
	2010-08-01T00:00:00.000000000	0.06140	
I	2010-08-08T00:00:00.000000000	0.07032	
	2010-08-15T00:00:00.000000000	0.05141	
	2010-08-22T00:00:00.000000000	0.02757	
l	2010-08-29T00:00:00.000000000	0.03402	

Model settings

Model configurations:

- Loss function: MSE
- Optimizer: Adam
- Validation split: 0.2
- Repeats: 3

2 different sources for our target data (inflow time series):

- Time series containing 18 reservoirs
- Time series containing 1 reservoir

For "real" future forecasts no test set

Data quality

- Inflow (today) = reservoir volume (tomorrow) reservoir volume (today) + outflow (today)
- Errors in measurement of the inflow inflow often small compared to outflow and changes in reservoir volume relatively small errors and inaccuracies in water level or outflow can result in large errors in calculated inflow

Yearly forecasts 2020

Without hyperparamter tuning

(⇒ predicting 52 weeks based on the previous 40 weeks)

With hyperparamter tuning

(⇒predicting 52 weeks based on the previous 98 weeks)

Yearly forecasts 2021

Without hyperparamter tuning

(⇒predicting 49 weeks based on the previous 40 weeks)

With hyperparamter tuning

(⇒predicting 49 weeks based on the previous 98 weeks)

Bad station – with hyperparamter tuning

- Negative values (also in previous years)
- Many ups and downs
 Hard to make accurate predictions

Performance on annual forecasts 2021 over all 18 stations

Without hyperpara	ameter tuning		With hyperparameter tuning		
Metric	Average	Median	Metric	Average	Median
Mean Absolute Error (%)	72.32	73.95	Mean Absolute Error (%)	66.85	62.62
Root Mean Sqaured Error (%)	112.17	112.15	Root Mean Sqaured Error (%)	100.21	101.95
Median Absolute Error (%)	41.67	47.03	Median Absolute Error (%)	41.13	36.77
Explained Variance	0.35	0.3	Explained Variance	0.48	0.45

➡Again station Øyangen

Performance on monthly forecasts over all 18 stations

Metric	Average
Mean Absolute Error (%)	75.41
Root Mean Sqaured Error (%)	84.79
Median Absolute Error (%)	70.07
Explained Variance	-1.37

→Negative values and mean of actual values close to 0

Performance on weekly forecasts over all 18 stations

Metric	Average
Mean Absolute Error (%)	199.24
Root Mean Sqaured Error (%)	236.12
Median Absolute Error (%)	209.02
Explained Variance	-1.15

Weaker performance on weekly forecasts?

- Data quality:
 - 1. More noise in the data (Not resampled to weekly averages)
 - 2. More fluctuations
 - 3. More negative values → Normalized metrics = divided by mean of actual values (which might be close to 0 due to negative values) → "Worse" accuracy based on metric → same holds for monthly forecasts (mean closer to 0)

→Remove noise through coarser resampling methods

Second datasource (reservoir Sula) Forecast for Sula Forecast for Sula 95% Confidence Interval 95% Confidence Interval Actual - Actual Forecasted - Forecasted Stats Stats 54.578 Mean Absolute Error (%) Mean Absolute Error (%) 49.639 Root Mean Squared Error (%) 102.252 Root Mean Squared Error (%) 66.034 Inflow in m^3/s Median Absolute Error (%) 11.543 Median Absolute Error (%) 46.677 0.563 Explained Variance 0.764 Explained Variance 1200 01-10 -03-21 -03-21 -04-01 -04-11 -04-12 -05-02 -05-02 -05-16 -05-16 -05-23 10-

Learnings

- Tensorflow and also improved coding knowledge in general in Python
- Real-world data is not always nice
 how to get most value out of it (imputing methods)
- ML tools

- Learned how to work on a coding project
- Use of GitLab
- Structure and building blocks of a ML model
- Data visualization
- Combat overfitting

- Real project using Tensorflow
- Working on multi-disciplinary project
- Automatic hyperparameter tuning: Optuna

- Using requests model to download data from website
- Real world data is not always perfect
- Data preprocessing is very important to train a model

- The real world is not Kaggle
- Good code quality is important
- Use the features of GitLab/GitHub

Conclusion

- Norwegian data was more challenging
- We did not expect this many missing values
- Code quality was greatly improved
- Forecast for different time resolutions and lengths possible
- Flexible and easy to use
- Positive feedback from all team members and our mentor Dr. Juliane Sigl

Thank you for your attention We are looking forward to your questions

Robin

Forhad

Florian

Fabienne

Wudamu