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Abstract

In Information Retrieval, we are given a query and want to retrieve
the according relevant information. Cross-Lingual Semantic Search deals
with retrieving information from more than one language. In this work,
we focus on retrieving relevant documents for a query that can be either
written in English or German. The retrieved documents are also not
restricted to one language. Therefore we compare the state-of-the-art
methods, that are based on exact matching, with a neural approach. We
evaluate our methods on the publicly available Cranfield dataset, which is
a collection of abstracts from areodynamic academic papers. Our goal is to
improve the results from Balabel (1), using popular information retrieval
baselines such as boolean search, TF, IDF, TF-IDF, etc. Additionally,
we deal with Natural Language Processing in order to figure out how
preprocessing contributes to the information retrieval results. Moreover,
we try to solve the task via Topic Modelling, which provides a semantic
point of view for tackling the problem.
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1 Introduction

1.1 Background

The main goal of our project is to build an advanced information retrieval
system for the Cranfield collection. This collection contains documents solely in
English. Additionally, we translate the corpus to german. A user can formulate
question to the system in both language, so one of the requirements to the
system is that it is able to handle cross-lingual retrieval. Further challenges
include retrieving semantically relevant documents even if the words in query
and answer do not match exactly and prioritizing documents about queried
topic over those that only mention the topic. The first attempt to build such
a system was done in the master thesis of Balabel (1). Cross-lingual Engine
for Informed Semantic Search engine in the Technical Domain (CLEISST) was
developed, which implements standard retrieval techniques such as the boolean
model, different variants of TF-IDF as well as a dual embedding space model
(DESM). Based on the results achieved in the thesis we will further develop the
system, propose new retrieval approaches and compare results achieved by our
models with the results of the thesis.

1.2 Dataset Description

Our research is based on the Cranfield Collection. As we do not have documents
written in German, we generate a parallel German version by performing ma-
chine translation. For the corpus, we take 80 percent of the data as our training
set and ten percent of the data as our validation set. The rest ten percent
becomes our test set, which we use to evaluate our model in the end.

The Cranfield Collection is a corpus used for information retrieval exper-
iments. It contains 1400 abstracts of aerodynamics journal articles from the
collection of academic papers of the college. The whole corpus consists of
three components: the queries, the documents and the relevance score of every
document-query match.

At first we explore the corpus by performing simple statistical analyzation of
the raw data. There are 1400 queries and documents in total. We try to analyze
the co-occurrence of “theme words” in both sets. So as a necessary preprocessing
step, we removed the punctuations, the stop words and other signs that don’t
have any semantical significance. We also do the tokenization and lemmatization
on the original raw data. The table below shows the number of terms and the
size of vocabulary in both query set and document set respectively.

Query set Document set
Vocabulary size 811 8263

Number of terms 2193 120791

Table 1: Statistics about Cranfield dataset.
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Furthermore, it is straightforward to think that the words in the query are
very likely to occur in its relevant documents, especially when most of the
documents are of the same topic. To prove this, we calculate the most frequent
50 words in query and document set and come to the fact that 27 out of 50
words are overlapping.

’flow’, ’number’, ’pressure’, ’result’, ’boundary’, ’effect’, ’method’, ’theory’,
’layer’, ’solution’, ’equation’, ’body’, ’wing’, ’surface’, ’distribution’, ’problem’,
’condition’, ’heat’, ’plate’, ’made’, ’experimental’, ’speed’, ’laminar’, ’analysis’,

’cylinder’, ’hypersonic’, ’transfer’

For each document, the proportion of the words that also occur in the query
is averagely 0.0718, weighted by its relevance scale. Among all documents with
relevance score, 596 out of 816 documents have overlapping vocabulary with
its corresponding query. These statistics gives us hints that focusing on the
semantic relation of the common words in the query and the documents might
contribute to the performance of information retrieval techniques.

1.3 Current Implementation

In this section, we present the status of the Master Thesis CLEISST of Balabel
(1). The thesis deals with the question “whether retrofitting word vectors with
knowledge from lexical resources can improve the performance of a search en-
gine” (1). Therefore, Balabel implemented a few models and applied retrofitted
words to some of them. In the following, we describe the models in detail and
introduce the technique retrofitting in the later part of the section. Afterwards,
we briefly mention the evaluation metrics used for the models.

1.3.1 Models

Boolean Model This model categorizes a document either as relevant, indi-
cated with 1, or irrelevant, indicated as 0. This is chosen regarding the existence
of words from the query in the document. Besides its simplicity, it is impossible
to determine how relevant the document is based on the static categories given.
In addition to that, cross-lingual relevance cannot be represented by this model
as it only deals with word occurrence. (1)

TF-IDF Another popular ranking method is the Term Frequency-Inverse doc-
ument frequency, also known as TF-IDF. For each word in the query, we count
the occurences in a single document and the occurrence document wide. These
results are multiplied and represent the overall relevance of a word throughout
the documents. This model approaches the difficulties of the Boolean Model
and can be extended with weights on the documents (1).

Continuous models: DESM More advanced techniques can be found in the
Neural information retrieval (NIR) techniques that can be also called continu-
ous models. Contrary to the presented techniques, continuous models focus on
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semantic similarity rather than simple count methods. Therefore, both input
query and documents are represented by word embeddings that we will face in
the later part of this section. Balabel (1) implemented a simplified Dual Embed-
ding Space Model (DESM) proposed by (8). In this model, we represent both
query and document as normalized unit vectors whose dot product indicates the
document relevance for a query. In the original model, we have two matrices:
one for context words and one for center words, which we also call OUT and
IN. In CLEISST, the model considers solely the IN matrix for simplification (1).

Combined Models In practise, continuous models are often combined with
traditional models. An example that was proposed by (8) is the combination of
DESM with TF-IDF. Moreover, (1) presented the DESM to work the best in
this combination. The combination score is the following

s(q, d) = s1(q, d) + (1−)s2(q, d)

with 0 < α < 1 and s1 and s2 being the scores of the TF-IDF model and the
continuous model.

1.3.2 Retrofitting

In this section, we want to gain more semantic information in a raw query with
the help of lexical relation. In retrofitting, we have a word vector and a lexicon
as input and get a refined vector as output (9). Balabel (1) stated that the tech-
nique is especially beneficial in the cross-lingual retrieval after testing it on the
TF-IDF and the continuous model. Therefore, monolingual and cross-lingual
word embeddings were trained. In the following, we introduce the first one in
more detail. Furthermore, the ranking is improved when using the combined
model. On the other hand, we take loss in string-based retrieval. As retrofitting
focuses on semantic similarity only, we can conclude that the technique overall
improve the output of the model.

Skipgram Technique A well-known technique for generating monolingual
word embeddings is the skip-gram technique of word2vec (2). Thus, we con-
sider a word w and try to predict probabilities for words surround w. Therefore,
we distinguish between context words, that should return high probability, and
the contrary negative words, whose probability we want to minimize. In the
following, we represent w as a one hot vector and use it as an input for the
skip-gram neural network. This network predicts the probability of every word
in the vocabulary to occur near to w. The input layer on the left represents the
target word as a one hot vector, i.e. one entry in the vector is 1, the others are
set to 0, thus it is V -dimensional. It is passed through an N -dimensional hidden
layer and produces scores for specific words. These scores are transformed to
probabilities in the output layer, respectively called the softmax layer (2). In
case we have several contexts C, this layer has dimension CV as we want to
predict more than one word near our input word (10). Figure 1 depicts the
architecture of the skip-gram technique.
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Figure 1: Skip gram architecture (2)

Lexical Semantic Resources In addition to the query, another input for
the retrofitting technique are lexical semantic resources. Balabel (1) included
Beolingus, FrameNet and Paraphrase Database.

Retrofitting technique For retrofitting, the embedding first needs to be ini-
tialized considering different languages. In addition to that, we have and English
and German vocabulary, represented in word vector set, as well as an ontology.
For the initialization, we differentiate between three cases described in (1):

Case 1. Given a word that is in the ontology solely: Vector initialization is
random.
Case 2. Given a word that is found in both English and German vocabulary:
Vector initialization based on the average of English and German vectors.
Case 3. Given a word that is found in one vocabulary solely: Vector initializa-
tion based on language mapping and average of the languages. Optionally, it
follows the optimization after the initialization step. The thesis introduced an
update method that relies on the number of adjacent nodes and the weights of
the edges in the ontology.

1.3.3 Evaluation

Balabel’s evaluation (1) considers the metrics precision, recall, F1 for tradi-
tional methods. The Mean Average Precision (MAP) and R-precision served as
an indicator for the ranking of the documents. Additionally, a modified Mean

4



Reciprocal Rank (MRR) evaluated placement of documents in a list. In sec-
tion 5, we present the metrics in more detail. For now, it is sufficient to know
that the higher the metric value, the better the ranking was. The metrics are
ranging in the interval [0, 1]. On Table 2, Balabel’s results for the evaluation
on the Cranfield dataset are listed. MAP has a quite low value of 0.131 where
we see high potential in improvement. MRR has a value of 0.396 that we also
increase in this project.

MAP MRR
0.131 0.396

Table 2: Evaluation metrics on the Cranfield dataset from (1)

2 Preprocessing

We perform text cleaning in every document pieces. After that we do the trans-
lation and remove stop words in English and German document sets respectively.
The whole process pipeline is demonstrated as a flowchart in Figure 2.

Figure 2: Pipeline of preprocessing

We want every token in our input text to be terms that of semantic meanings.
Observing the original text in Technical Documents corpora, there are many
symbols and strings which do not contain any semantic meaning, such as we-
blinks, number of orders, some typesetting symbols and serial numbers. Our
solution is to use regular expression to detect and remove these strings.

After that, we can build the vocabulary of the corpus. However, some words,
such as “the”, “a”, “and” and so on, have high word frequency throughout the
whole corpus. These stop words appears in almost every document. As we want
to analyses the topic of the document based on word frequency in the following
steps, these stop words might hinder the accuracy of the topic detection. So we
remove them based on a online stop words list provided by gensim(11).

3 Natural Language Processing

Currently, we use raw queries for the input of the retrofitting technique. Of-
ten, some words do not contain necessary information for information retrieval,
e.g. stop words such as a or the. These words decrease the performance of
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retrieval techniques. In order to find the right chapters relating to a query, the
whole documents are scanned. This is computationally expensive. This section
suggests methods to extract information from queries by disregarding irrelevant
words. Furthermore, it introduces interaction-based networks that focus only
on relevant parts of a document instead of the whole document.

3.1 Information Extraction

This section suggests improvements regarding word embeddings and information
extraction on queries. In CLEISST (1), the skip-gram technique is used to
generate word embeddings. In the skip-gram model, word embeddings are built
by predicting the nearby words of a center word (2). Therefore, scores are passed
through the neural net and finally use a softmax function. The drawback of this
method relies on the tremendous number of weights in the neural net that have
to be updated with every new training sample. As the softmax layer contains all
words in the vocabulary, training the net causes high computation that is not
always necessary. Some probabilities, such as for stop words, do not urgently
have to be updated as they play no significant role in the query. Mikolov et
al. suggested improvements of the word2vec’s skip-gram model in their second
paper (2). In the following, some of the approaches are introduced. You find
the implementation of the approaches as a fork in (12) that is written in C.

3.1.1 Word pairs and phrases

In natural language, we often come across words that belong together, e.g.
”Scrum Master”. This bigram has a different context and meaning than the
unigrams ”Scrum” and ”Master”. Therefore, treating ”Scrum Master” as a
single word makes more sense for our use case than tokenizing them. Mikolov
et al. addressed this issue and implemented a tool that follows a simple data-
driven approach (2): A phrase with words w1 and w2 is assigned a score based
on the frequency of the unigrams and the bigram

score(w1, w2) = count(w1,w2)−d
count(w1)·count(w2)

The coefficient d reduces the score for phrases containing too infrequent words.
Additionally, Mikolov et al. defined a threshold that a score has to reach in
order to add the phrase w1w2 to the vocabulary (2). If the occurrence of the
phrase w1w2 is approximately as high as the occurrences of the single words w1

and w2, then we have a high score. Frequent stop words words might occur more
often as single words rather than in phrases and therefore would increase the
denominator. This results in a low score. After the first iteration, the phrase
consisting of two words is treated just as a single word. In order to extend
phrases, the authors of the paper iterated the dataset in their tool typically up
to two until four times. This can extend our bigram to a trigram like ”Scrum
Master Seminar”.
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Especially in the aerospace domain, we find lots of phrases, such as ”heat trans-
fer” or ”stagnation point”. These have a completely different meaning when
they appear in the single context. Keeping them as a phrase, i.e. a single token,
we believe in better information retrieval results.

3.1.2 Word2vec’s vocabulary

In addition to the word phrase detection, Mikolov et al. introduced subsampling
of frequent words, a technique to disregard frequent words that do not infer high
information (2). The authors trained the techniques on over 100 billion words
of a Google News Dataset resulting on a dataset of up to three million words.
Each word vector contains 300 features. You can find the vocabulary at (13). It
is split into 30 text files each listing 100,000 words in single lines. These words
are sorted in the original order. In the description, we can assume that stop
words such as “a” are disregarded, while some like “the” can be found in the
vocabulary. You can find phrases consisting of two or more single words as well.

3.1.3 Negative Sampling

In section 1.3, the architecture of the skip-gram model was presented. With each
new training sample arrived, we have to go through a high number of weights
in the output layer. One drawback of this technique is the consideration of the
full vocabulary with each input vector crossing through. Skip gram requires an
update of every weight in the softmax layer. This can be costly in performance.
In order to approach these difficulties, negative sampling was introduced in (2).
The word negative refers to words that occur frequently, e.g. stop words. Often,
these words are not rich in information and can be disregarded. In comparison
to that, positive words can conclude meaning that we can use for information
retrieval. We then define k negative samples to update the weights for our neu-
ral net. Mikolov et al. suggested k to be between five and 20 for small training
datasets, while it can be significantly smaller for big datasets (2).

Negative Sampling plays an important role referring performance enhancement.
Instead of updating the weights for all possible words in the vocabulary, we re-
duce this step by still updating all positive, but only k negative words. As we do
not extract information from the whole set of frequent words, it can be valuable
improvement for retrofitting. Nevertheless, we do not have a high number of
documents and a big vocabulary so that negative sampling could improve our
model in a valuable manner. Therefore, negative sampling is low prioritised for
the project.

3.2 Interaction-based networks

Until now, we have iterated through the whole documents in order to find simi-
larity to our input query. Balabel (1) suggests to use retrofitting in interaction-
based networks that iterates only on parts of both query and documents. The
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interaction-based network was introduced from Lu and Li (14). The idea is that
a convolutional neural network (CNN) is used for sliding over query and docu-
ment. We can make use of Topic Modelling here, analyzing the most probable
topic similarity of query and document parts. Finally, the results are aggregated
and the relevance is calculated (1). Figure 3 shows this process.

Figure 3: Interaction-based network (3)

Retrofitting in interaction-based network can be beneficial regarding perfor-
mance. The training needs large datasets for this approach in order to train
the CNN. Unfortunately, the project does not have enough queries and docu-
ments to train this model. Therefore, we do not see a valuable gain with this
approach. The model then iterates through the document from high level, such
as the title, to low level, i.e. single paragraphs. We see this as sufficient in order
to accelerate the document search.

4 Information Retrieval Techniques

This section introduces the information retrieval techniques theoretically. There-
fore, this section is divided into three parts: In section 4.1 and 4.2, we discuss
information retrieval with topic modelling. This way, documents can be rep-
resented by topics and retrieved accordingly. First, we introduce into the well
known LDA Topic Model that extracts the topics of the dataset with a pre-
defined number of topics. Afterwards, we present the HDP model, that is an
unsupervised model learning the number of topics from text. In the second part
of this section, we discuss Exact Matching Methods. Section 4.3 introduces
Terrier, a platform that provides state-of-the-art models. A well known method
is BM25 that we discuss more in detail. Finally, we elaborate a neural network
approach in section 4.4 in order to compare the exact matching methods to
neural approaches.
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4.1 LDA Topic Model

Most technical documents are related to specific topics in a technical domain.
Therefore we introduce topic modeling technique to facilitate our information
retrieval process. A standard approach is to use LDA (i.e. Latent Dirichlet
Allocation) (15) to implement the topic model. In this section, we will briefly
introduce the mechanism of the LDA topic model and how it can contribute to
our information retrieval techniques.

4.1.1 Introduction to LDA Topic model

Topic modelling is based on the assumption that documents are a mixture of
latent topics, where topics can be represented as a distribution of words in that
document. As the training goes, theme words and topics iteratively defines each
other, like the formula shows below.

P (wi) =

T∑
j=1

P (wi|zi = j)P (zi = j)

In this formula, T indicates the number of topics, wi is the i-th word in a par-
ticular document. P (zi = j) is the probability that j-th topic was sampled for
the i-th word token while P (wi|zi = j) is the probability of the i-th word under
the topic j. These two probability terms can be modeled as multinomial dis-
tributions. LDA is the conjugate prior for the multinomial distributions, which
means that it provides a prior estimate of the parameters in our likelihood obser-
vation among all documents. Our observation on the corpus consist of two parts:
topic-word distribution, indicating the probability of a word being assigned to a
specific topic; topic-document distribution, indicating the probability of a doc-
ument being assigned to a specific topic. These two observations are performed
in a alternative optimization fashion and update the hyper-parameters of the
multinomial distribution and the prior.

The LDA topic model is a generative model. It is based on the bag of words
assumption, in which the position of each word is insignificant to the result. First
we randomly assign k topics to all M documents. Then for every document, we
calculate the probability of each word being assigned to this topic, and decide
the overall probability of this document being assigned to every particular topic.
For each topic, we also calculate the probability of each word that belongs to
this topic in parallel.

As stated before in the preprocessing part2, topic modeling will categorize
our documents and make the query more accurate and efficient. It is also mean-
ingful to train topic model for the corpus we use. As the topic model evolves,
the words under a specific topic will be more and more particular instead of
general topic words. Some trivial words in the query, which may indicate some
subtopics that are hard to recognize by similarity matching, will be catched and
directed by our topic model and better target the probable document sets which
may contain the answer.
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4.1.2 Intrinsic Evaluation

Perplexity and coherence are two important metrics used to evaluate LDA topic
model as well as other text classification tasks. In the information theory, per-
plexity is a measurement of how well a probability distribution or probability
model predicts a sample. In our case, as we assume that documents are a mix-
ture of different topic distributions, we want the perplexity in each topic be as
low as possible.

Perplexity = 2H(p) = 2−
∑

x
p(x) log2 p(x)

Obviously in the formula, high entropy entails high perplexity. As the goal
of LDA is to categorize documents given a number of topics, we want the docu-
ments in each topic to be as similar to each other as possible. So that the entropy
in documents assigned to the same topic should be low. And the perplexity is
therefore minimized.

Another important metric is coherence. A good model will generate coherent
topics, which means that the tokens in this topic are strongly correlated to each
other. Here we use intrinsic measure of coherence UMass to evaluate our LDA
Model.

scoreUMASS(wi, wj) = log
D(wi, wj) + 1

D(wi)

Here wi and wj are arbitrary tokens under the same topic. D(wj , wj) means
the number of documents under this topic containing both wj and wj . Likewise
D(wi) is the number of documents under this topic containing token wi, which
is a normalizing term. A Laplace smoothing is used to smooth those rare token
pairs and ensuring numerical stability.

Obviously, high coherence score indicates good topic model, as the tokens
within the same topic should be coherent.

4.1.3 Query-document Relevance Score

With a trained LDA model at hand, we can get topic frequency matrix for
both query and document. To find the relevant document for a specific query,
the most straightforward approach is simply returning the documents that are
assigned to the same topic as the query by LDA model. However, the draw-
backs are obvious. Intuitively, rigid grouping and matching is too general for
each specific query-document pair, especially when the number of topics we are
modeling the LDA is low. To prove this, we design an experiment and draw
some conclusions from the results to show that is approach does not work. The
details and analysis of the experiment are in section 6.3.1.

As LDA model generates document-topic frequency matrix as a result, we
can use this result to map either documents or queries into a n-dimensional fea-
ture space with n corresponding to the number of topics in our model. Then we
choose distance measure to calculate the distance between each query-document
pair, based on which the ranking of relevant documents for a query is derived.
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One possibility with regard to the distance measure is Jensen Shannon Diver-
gence. The Jensen Shannon Divergence is a way of measuring the dissimilarity
between two probability distributions.

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M)

where D is a Kullback-Leibler Divergence and

M =
1

2
(P +Q)

This distance measure utilizes all information provided by LDA model and
yields high information entropy, which is beneficial to our classification task. For
each query, we iterate through all documents and feed in the topic frequency q ∈
RT for query as well as for documents d ∈ RT into Jensen Shannon Divergence
measure and therefore derive a dissimilarity score, where T is the number of
topics in the LDA topic model. In order to make compatible with the evaluation
program trec eval (16), which uses the similarity as the measure, we take the
inverse of Jensen Shannon Divergence as the similarity score in the final results.

Likewise, other distance measures like Euclidean distance might have com-
parable performance as Jensen Shannon Divergence, as they take all topic dis-
tribution of a document into account.

4.2 Hierarchical Dirichlet Process

So far, we introduced the LDA Topic Model in order to specify topics from doc-
uments. A main drawback of this method is the pre-definition of the number
of topics. In lots of use cases, this information is not available before train-
ing the model. Therefore, we consider the Hierarchical Dirichlet Process
(HDP) topic model, an unsupervised model that learns the number of topics
from the text. This implies the possibility of an infinite number of components.
In this section, we describe the HDP topic model from Wang et al. (17). The
HDP model is mostly used in probabilistic topic modelling, allowing mixed-
membership. With the help of posterior inference, the HDP model extracts the
number of topics. It defines a Dirichlet process for each group and a global
Dirichlet process as a base distribution. The HDP model has the disadvantage
that, learning with posterior inference, the dataset has to be passed multiple
times which slows down the performance. Therefore, Wang et al. (17) pro-
posed an online version of the HDP model that is applicable for massive data
and that we are going to consider in the following. The authors optimized the
posterior inference with stochastic approximation, called online variational in-
ference. This way, the HDP model is scalable referring to posterior inference.

In order to evaluate the quality of the information retrieval, we can transform
the HDP Model to an LDA model with the extracted number of topics. This
way, we use, again, the Jensen Shannon Divergence in order to measure the
similarity as described in section 4.1.3.
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4.3 Exact Matching methods

In order to find a suitable information retrieval technique, recent papers on in-
formation retrieval used state-of-the-art baselines. Figure 4 presents the results
on GOV2 collection for different information retrieval techniques evaluated in
(4). GOV2 is a large collection of documents (25M) used in many Text Re-
trieval Conferences (TRECs). The evaluation metrics used in the example will
be discussed in section 5. For now, it is important to know, that higher values
mean better performance and each value must be in a range between 0 and 1.
The results show that the Exact Matching Baselines perform comparable to the
Semantic Matching Baselines. Referring the GOV2 collection, the state-of-the-
art methods even show better results than semantic methods for all metrics.
Two of the strongest exact matching baselines are the BM25 and SDM models
that are described in detail in section 4.3.2 and 4.3.3.

Figure 4: Exact and semantic Matching baselines on different collections (4)

4.3.1 Terrier

Terrier is a platform that offers implementations of state-of-the-art IR models.
Ounis et al. (5) introduce the retrieval process that is depicted on Figure 5.
In the step Query process, Terrier takes care of standard Natural Language
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Processing (NLP) such as stop-word removal, stemming and tokenization. In
this project, we mainly take advantage of the built in NLP steps from Terrier
as they show better results than the own approaches. After the query was
processed, the Matching step selects the retrieval approach. In addition to
BM25, we processed 15 other models listed in section 4.3.4. Finally, Terrier
outputs the retrieval in a result file in the appropriate format. For evaluation,
we made use of Trec Eval (16), an evaluation tool for ad-hoc retrieval. Given
the retrieval results and the gold standard, Trec Eval computes measurements
such as MAP, MRR, NDCG and precision. These metrics are the main metrics
we focus on for the evaluation. In section 5 we introduce the evaluation metrics
in detail.

Figure 5: Overview of Terrier’s retrieval process (5)

4.3.2 BM25

The BM25 (Best Match) weighting scheme, which is also called Okapi weighting
(Okapi BM25) is a probabilistic retrieval model sensitive to term frequency and
document length, which can be seen as an instance of TF-IDF retrieval model.
BM25 is a not a single function, but rather a family of scoring functions, which
have different parameters and components. One of the most popular among
these functions is the following:

score(D,Q) =

n∑
i=1

IDF (qi) ·
TF (qi, D) · (k1 + 1)

TF (qi, D) + k1(1− b+ b |D|avgdl )
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whereD andQ are the sets of document and query words respectively. TF (qi, D)
is the term frequency in document D. |D| is the number of words in document
D and avgdl is the average number of words in a document. IDF (qi) is the
inverse document frequency weight of the query term which is computed as
follows

IDF (qi) = log
N − n(qi) + 0.5

n(qi) + 0.5

where N is the total number of documents in the collection, and n(qi) is the
number of documents that contain qi. BM25 has two free parameters k1 and b,
which have to be chosen in advance. Usual values for k1 are contained in inter-
val [1.2, 2.0], and b is set to 0.75. The main advantages of the BM25 retrieval
model are its efficiency, the ability to perform well even on small datasets and
we do not need to train the model.

Okapi BM25 is the most promising approach for technical documents collection,
as it is too small for advanced approaches based on neural networks, which can
perform better than BM25. There exists also an extension called BM25F, which
takes a document structure and anchor text into account, which may further
improve the results. This extension requires additional text preprocessing to
identify the structure of the document. One possible approach was discussed in
previous section on natural language processing.

4.3.3 Markov random field model

Another strong exact matching baseline is SDM model, which is state-of-the-
art language model addressing term dependence using Markov random fields
(MRF). MRF is used to model a joint distribution PΛ(Q,D) of query words set
Q and document D, parametrized by Λ. In general, MRF is constructed from
the graph G, in which nodes represent random variables, and the edges define
the independence semantics between random variables. In our case nodes can
represent documents or query words. There are three variants of the MRF model
with different dependence assumptions on words in a query. The full indepen-
dence model assumes that there is no dependence between query terms given
some document D. The sequential dependence model assumes that only neigh-
boring query terms are dependent, while in full dependence variant all query
terms in some way are dependent of each other. One of the main problems of
this model in our setting is that it requires training to learn the parameters,
which is only possible if we have enough relevance-annotated query-document
pairs.

Exact matching approaches based on bag-of-words assumption suffer from the
query document mismatch drawback. Such mismatch occurs, when the searcher
and author use different terms (representations) to describe the same concept.
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4.3.4 Other Terrier models

In addition to BM25, Terrier offers a wide range of other exact matching meth-
ods. For this project, we included the following models in the evaluation: BB2,
DFR BM25, DLH, DLH13, DPH, DFRee, Hiemstra LM, IFB2, In expB2, In
expC2, InL2, TF-IDF, Lemur TF-IDF, LGD and PL2. The models are all pub-
licly available on Terrier. You can find their definitions on the Terrier Website
(18).

4.4 Adversarial Discriminative Domain Adaption

After evaluating classical approaches to information retrieval such as exact
matching and topic modelling using LDA we decided to experiment with ad-
vanced deep learning approaches to ”learning to rank” problem. It is known,
that in order to successfully apply neural networks, one has to collect large
amounts of data. But our Cranfield dataset is very small and thus not suitable
for training.

In order to deal with this limitation we decided to use transfer learning
approach. The model is trained on one dataset and applied to another one.
Such approach can work well only in the case when training domain and test
domain are the same or at least very similar. Unfortunately, we were not able
to find any open-source dataset, that discussed the same topics as Cranfield.

Neural networks for information retrieval expect raw text of query and doc-
ument as input and output relevance score of such pair, i.e. how well query and
document content match. Architecture of such neural networks is designed to
extract some hidden features from query and document, that are used for rele-
vance prediction. These features are bound to specific word distribution of the
dataset used for training. Authors in (6) proposed to adjust the architecture of
NN for relevance matching, such that the features learned by the model should
strive to be as dataset invariant as possible. We implemented and tested this
approach on Cranfield dataset.

4.4.1 Domain Adaptation Approach

Figure 6: Relevance matching model with adversarial discriminator (6)

The main motivation of applying cross domain regularization approach de-
scribed in (6) is to force a neural network to learn content features for relevance
prediction, that are domain invariant, i.e. do not depend on dataset. This can be
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achieved by introducing adversarial agent: discriminator neural network, con-
structed of dense layers with softmax output layer, that predicts the domain,
from which query-document pair comes from. As input adversarial agent takes
outputs of intermediate layers of the ranking model (neural network, which pre-
dicts relevance for query-document pair). This approach can be represented as
a joint loss function:

L = Lrel(q, docr, docnr, θD, θrel)+λ(Ladv(q, docr, θD)+Ladv(q, docnr, θD)) (1)

where Lrel is the loss function for relevance output of neural network and
Ladv is the loss function for output of adversarial discriminator. q is the query,
docr and docnr are relevant and irrelevant documents, respectively. θrel repre-
sents the parameters of neural network used for relevance prediction, while θD
stands for parameters of adversarial agent. λ is used to determine the strength
of influence of adversarial discriminator on relevance model. Both Lrel and Ladv
are standard cross-entropy loss functions. The learning of dataset invariant fea-
tures happens due to the shift of model parameters in the opposite direction to
domain specific spaces on manifold. This effect is achieved by utilizing gradient
reversal layer, which transforms the standard gradient, δLadv

δθ to its additive in-

verse − δLadv

δθ . The visualization of cross domain regularization is presented in
Figure 6.

4.4.2 Neural Network Architecture

There are a lot of various neural network architectures for relevance prediction
of query-document pair. For our approach we selected Duet distributed model
(7). It is composed of two separate neural networks: one for matching query and
document using local representation, another using distributed representation.
These two branches of single neural network are trained jointly. The architecture
of Duet model is shown in Figure 7.

4.4.3 Datasets

For this approach, we consider two datasets mentioned in (19) in order to train
the neural network: WebAP, insuranceQA and Yahoo L4. In the following we
will present the datasets in detail.

WebAP WebAP dataset (20) is derived from the 2004 TREC Terabyte Track
Gov2 collection and contains manual annotations of answer paragraphs of can-
didate documents for each query. It is constructed of 8027 answer passages to
82 TREC queries. The average number of passages per query is 97. Each pas-
sage can be annotated with various degrees of relevance: ”perfect”, ”excellent”,
”good”, ”fair”, ”irrelevant”. The average length of the passage is 45 words.

InsuranceQA In 2015, Feng et al. (21) released an insurance question-answering
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Figure 7: Duet Model Architecture (7)

dataset that is, to their knowledge, the first question-answering dataset pub-
lished for that domain. The data was collected from an Insurance Library
website and contains questions, answers and an answer pool for each question.
Note that the questions were stated from real users with domain knowledge.
On Github (22), you can find in total, 16,889 questions and 27,413 answers.
There are two versions available that differentiate in the poll: in version one,
the poll was generated randomly. The poll in version two was generated by
Apache SOLR. Apache SOLR is an open source search platform that offers
full-text search being well known for scalability (23). Therefore, the answers
in version two are semantically related to the question. This does not mean
that the ground truth is also included in the poll. As we deal with semantically
related answers, we use version two of the insuranceQA dataset.
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Yahoo L4 Yahoo published 33 language datasets, out of which the L4 dataset
contains Answer Manner Questions (24). The data is a dump from the Ya-
hoo! Answers platform (25) of 10/25/2007. In total, we have 142,627 questions
and their answers. Every question is marked with a best answer and several
other answers that are ranked on the relevance. In average, a question has 5.74
answers. This dataset is the biggest among the three mentioned and also the
richest. It was cleaned so that every questions contains at least four words with
at least one noun and one verb. In addition to question and answer, the dataset
also holds information about the question category and subcategory as well as
a context. The dataset is only available for research purposes and had to be
requested from (24).

5 Evaluation Metrics

In this section we are going to introduce the evaluation metrics that we used
to evaluate the information retrieval methods in section 6. Therefore, we recap
some metrics from Balabel (1) and introduce a new metric.

Precision
This metric considers the relevant documents and all retrieved documents inde-
pendent from their position. Therefore, it considers the intersection between the
relevant and the retrieved documents and divides it to all retrieved documents:

precision =
|{relevant documents} ∩ {retrieved documents}|

{retrieved documents}

In the later sections, we consider Precision for the first five and ten retrieved
documents, denoted as P@5 and P@10 accordingly.

Mean Average Precision
In order to consider the ranked list, we introduce the parameter k that repre-
sents the number of top results of the retrieved document list. Let precisioni
be the precision that only takes the first i retrieved documents into account and
rel(di) is the binary relevance of document di.

AP =
1

|relevant documents|

k∑
i=1

precisioni · rel(di)

The average over all queries is equivalent to the average of all AP scores, re-
spectively called the Mean Average Precision (MAP):

MAP =
1

Q

Q∑
q=1

AP (q)

Mean Reciprocal Rank
The Reciprocal Rank (RR) considers the rank of the most relevant document.
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Given a query, it divides 1 by the rank of the most important document. If
that document takes the highest rank, it results in an RR of 1 and if it takes
the second highest rank, the RR is 1

2 etc. That means, the higher the RR, the
better is the ranking. If we take the average over all queries, we get the Mean
Reciprocal Rank (MRR):

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Dicsounted Cumulative Gain
The DCG considers the relevance of a document as well as its position. There-
fore, the DCG can only be applied for a ranked list. The idea is that highly
relevant documents that are low ranked, are penalized:

DCGp =

p∑
i=1

reli
log2(i+ 1)

In our case, we have binary relevance for each document and query. Therefore,
the fraction results in 0 when the document was not relevant for the query. In
the opposite case, the fraction is smaller equal 1, that is the value for the highest
relevant document occurring in the first position. The higher the DCG value,
the better the ranking is. In the following, we consider the normalized DCG,
that computes an DCG in the range between 0 and 1. Let IDCG be the ideal
DCG at position p, the nDCG is computed as follows:

nDCGp =
DCGp
IDCGp

The evaluation of the methods in section 6 is going to consider the nCDG for five
and ten retrieved documents, denoted as NDCG@5 and NDCG@10 accordingly.

6 Implementation and Experiments

In this section we present the implementation and results of the information
retrieval techniques, state-of-the-art baselines as well as a neural network ap-
proach. Therefore, we first introduce the evaluation Tool Trec Eval in section 6.1
that compares the gold standard with the retrieval results based on a handful of
metrics. Further, we briefly discuss Natural Language Processing methods that
include our own approaches and the built in implementation of Terrier. In the
following sections, we demonstrate the information retrieval technique, starting
with Topic modelling in section 6.3. In section 6.4, the exact matching models
are presented, followed by the phrase detection from Word2vec in section 6.5.
Finally, we show the results of the neural network approach in section 6.6 and
compare them to the state-of-the-art methods.

19



6.1 Trec Eval

For all the following information retrieval techniques, we use the evaluation
tool of the Text Retrieval Conference (TREC), called Trec Eval. Given a the
RelDocs and DocRank file, Trec Eval computes the metrics Precision, Recall,
MRR, MAP, nDCG and many more. RelDocs is a file that contains the follow-
ing columns: query id, iter, doc id, rank. The column, called iter is always set
to zero and has no particular meaning.
The DocRank file is generated by the retrieval method with the following columns:
query id, iter, doc id, rank, sim, run id. The column iter is again a constant,
this time with the value Q0 and is disregarded by Trec Eval. Sim denotes
the similarity of query and document for the predefined model and Run id the
model’s name. DocRank is compared to the RelDocs file in order to compute
the quality of the information retrieval.

Note that we worked with binary ranks solely for the normalized DCG met-
ric. Therefore, we map the relevance value −1 to 0, the values 1 and 2 to 1 and
all other relevance values above 2 to 0.

6.2 Natural Language Processing

As shown in Figure 5, in the original terrier pipeline there is a built-in pre-
processing module handling all kinds of natural language processing stuff. We
want to tweak this process and see how each part of natural language processing
contributes to the final results. So we implement our own preprocessing pipeline
with nltk(26) and experiment on it.

In Figure 2, the preprocessing pipeline of Cranfield dataset consists of three
parts - tokenization, stop words removal and lemmatization. In this section, we
will see how different preprocessing pipeline influence the training results. By
enabling and disabling each part of preprocessing, we use BM25 from terrier
as a fixed information retrieval technique to see how the outcome changes. In
our project we use open source library nltk(26) to handle all natural language
processing tasks: tokenization, stopwords removal and lemmatization.

Tokenization The most fundamental part of preprocessing is tokenization.
Tokenization is the task of splitting text into small pieces of word units, which
we call it tokens. Without doing so, any natural language processing tasks
cannot be proceed.

Stopwords removal Some words are overwhelmingly common in the text,
such as ”the”, ”a”, ”and” and so on in English. These stopwords are only
used for grammatical purpose. In other words, they contributes little semantic
significance to the topic of the text. Our research is mostly based on the term
frequency. Therefore it is meaningful to remove those ”stopwords” in the text,
so that their extremely high frequency won’t dominate others and hinder the
information retrieval.
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Lemmatization Lemmatization is the morphological analysis of words. Some-
times we don’t care about the exact word forms, but the lemma of the word,
in which the word entered in the dictionary. For example, the lemma ”go” has
a variety of word forms like ”went”, ”goes”, ”gone”. However, in most infor-
mation retrieval tasks, what we care about is the lemma instead of word forms.
So we do lemmatization to map these word forms back to their lemma, so that
every different word forms won’t be treated as different words.

In Table 3, you can see how the number of tokens and vocabulary size differ
when different preprocessing is applied.

Number of Tokens Vocabulary
tokenization 145337 6452

tokenization and
stopwords removal

133043 5913

tokenization,
stopwords removal
and lemmatization

126027 5888

Table 3: Statistics of Cranfield dataset with different preprocessing

After tokenization, stopwords removal and lemmatization, the scale of the
corpus significantly decrease.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
tokenization

only
0.2148 0.2906 0.1307 0.0884 0.2336 0.263

tokenization
and

stopwords
removal

0.216 0.2909 0.1324 0.0876 0.2356 0.2632

tokenization,
stopwords

removal and
lemmatiza-

tion

0.2113 0.2853 0.1307 0.0884 0.2304 0.2604

Table 4: Trec eval results for different preprocessing on Cranfield dataset

We apply these preprocessing on cranfield dataset and train on BM25 model
from terrier, then evaluate by trec eval and giving results in Table 4. In most
metrics, preprocessing with tokennization and stopwords removal performs the
best, while tokenization only and all three preprocessing process come out sim-
ilar results. Overall, the difference in results are not significant. However, we
can still conclude that lemmatization might be over-killed for this information
retrieval tasks or for this specific dataset. The variety of word forms might also
contribute to the matching of documents, for example, the tense.
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6.3 Topic Modelling

In this section, we try some semantic approaches to solve the information re-
trieval task on Cranfield. Topic modelling is prevailing in many text classifi-
cation tasks. We use LDA topic model as well as the its hierarchical variant -
HDP topic model to develop our information retrieval techiniques.

6.3.1 LDA Topic Modelling

Gensim(11) is an open source library written in python, providing implemen-
tations of any topic models. With the implemented LDA model at hand, we
still need to tune the hyper-parameters to ensure that the LDA model fits our
dataset. In our case, the only hyperparameter is the number of topics we want
to model. The number of topics is a latent variable which is unknown. We don’t
know how many topics can best categorize these documents. Therefore, we need
to search for the optimal number of topics so that the LDA model performs the
best. Here we use the intrinsic metrics mentioned in section 4.1.2 - perplexity
and coherence - to guide us tuning the number of topics.

Hyperparameter tuning We search for the best number of topics in a range
of integers from 5 to 30 and plot the perplexity and coherence, as Figure 8 shows.

Figure 8: Tuning the Coherence and Perplexity of LDA Topic Model

As you can see in the picture, the coherence score peaks at 12 while the
perplexity reaches the minimum at 23. As these two measure don’t make con-
sensus on the number of topics, we need to trade off between perplexity and
coherence. However, the scale of coherence is substantially larger than the scale
of perplexity, which means a difference in coherence is more significant than a
difference in perplexity. Therefore, the coherence score dominants the hyper
parameter selection. We choose 12 as our optimal number of topics.

Figure 9 shows a visualization by pyLDAvis(27) library of LDA model with
12 latent topics on our cranfield dataset. This interactive visualization allows
you to hover on the circle on the left-hand side. The bar chart on the right will
shows the most relevant terms in this topic correspondingly.
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Each circle in the two-dimensional space on the left represents a topic. The
radius of the circle indicates the number of relevant terms in this topic, indicat-
ing the amount of contents in the dataset that are covered by this topic. As the
representation of the topic is multidimensional, a Principal component analysis
is applied - the horizontal axis and vertical axis are two most significant prin-
cipal components named as PC1 and PC2. This is how a inter-topic distance
map is structured. If two circles are isolated with each other, there are little
coherence between these two topics. In the contrary, if two circles are close or
even overlapping with each other, they might have high cohesion. That is to
say, relevant terms under these two topics usually occur in the same context.
In general, the ideal distribution of the topics in the inter-topic distance map is
that circles are spread across this space and isolated with each other. Because
we want the topics distinct with each other, which is interpreted by the graph
as little overlaps between the circles. We achieve this to some extends with the
optimal latent number of topics. As you can see in this graph, topic 1 covers
the topic 8 which is bad and partially overlaps with topic 7 and topic 3, except
which other topics are desirably isolated.

On the right-hand side, the bar chart simply shows the term frequency of
the relevant terms under the selected topic. You can apparently compare the
overall term frequency and the estimated term frequency within the selected
topic. The variable λ is used to balance the saliency and the relevance. In our
case, we want the terms within the selected topic to be specific to this topic, so
we set λ close to 1 to weight relevance over saliency.

Figure 9: Visualization of LDA Model

Our experiments are all based on the LDA model with 12 as the number of
latent topics. We use the document-topic-frequency matrix generated by LDA
model to yield relevance score of query document pairs. Two approaches were
purposed: one is document clustering; another one is divergence based similar
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document search.

Document clustering Here we use the concatenated document-topic-frequency
of queries and documents as the input, and generate clusters to match them.
One approach is intuitive. We take the topic of highest frequency as the pre-
dicted topic of the selected document, and group documents of the same pre-
dicted topics together. In this case, we must set the number of latent topics in
our LDA topic model to be the number of queries in our dataset. By doing so,
our model will generate 225 topics. This is based on the assumption that each
query is a topic per se. But in the reality it is usually not the case.

Another approach is using the traditional clustering algorithm - KMeans.
The topic frequencies are treated as features in KMeans model. In our 12-
topic LDA model, it will generate clusters within 12-dimensional feature space.
Similarly, based on the assumption stated above, we want the number of cluster
be the same as the number of queries in the dataset. So we specify the number
of clusters as 225 in the KMeans model and generate the following results.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
most frequent 0.0139 0.0277 0.0053 0.0116 0.0071 0.0206

KMeans 0.0014 0.0059 0.0027 0.0013 0.0031 0.0003

Table 5: LDA Document clustering results

As you can see in this results. The performance of this approach is worse
than the baseline.

For the most frequent approach, one probable reason is that when we leave
out the topic frequency and squeeze them into either 1 or zero, we loose the
information. In a numerically way, the information entropy goes down during
this process. With less information in our model, we cannot distinguish docu-
ments perfectly, resulting in bad matches to the query. Furthermore, assuming
the Cartesian product of queries and documents within the same topic as rele-
vant is just too general. We cannot expect much performance with such large
granularity similarity measure.

For the Kmeans approach, as we use the optimal model with 12 topics, the
dimension of feature space is restricted to 12. If we increase the dimension,
we have to accordingly increase the number of latent topics in our LDA model.
This will definitely ruin the model.

Divergence based approach The experiment above is to prove that the
divergence based approach is better. The statistical assumption of LDA topic
model (28) says that documents are arising from multiple topics, where a topic
is dened to be a distribution over a xed vocabulary of terms. Given topics are
probability distributions, we can treat the topic frequencies as a joint distri-
bution among all latent topics. Based on which, the dissimilarity between two
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documents can be measured by divergence metrics, such as Jensen Shannon
Divergence.

In our Experiment, we calculate the Jensen Shannon Divergence of each
query-document pairs, taking the topic frequency as the input vector. And
then sort the inverse of the results to derive a rank of candidates of relevant
documents. As a comparison, we also try euclidean distance as the distance
measure to see that how distance measure matters. The results are as follows.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
LDA JSD 0.5097 0.5518 0.304 0.2004 0.5333 0.5863
LDA EUD 0.4768 0.4931 0.2942 0.1991 0.494 0.5568

Table 6: LDA Topic model results on Cranfield dataset

The scores of each evaluation metrics are way better than any other models.
Moreover, Jensen Shannon divergence is better than euclidean distance as we
expected.

6.3.2 HDP Topic Modelling

The implementation of the HDP Model was adapted from (17). With the gen-
sim toolkit of python, we solely need the corpus as a parameter for the model.
The preprocessing is similar to the preprocessing for the LDA topic modelling.
The output of the HDP model shows the number of topics as well as the most
probable words in that topics including their probabilities. Surprisingly, the
model returns 150 topics, way more than we have set for the LDA Topic Mod-
elling. On the left of Figure 10 we can see the distribution of the topics as well
as their overlaps. We recognize three big topics among our 1400 abstracts and
several small topics among which some are included in other topics. The right
side of the figure shows the most probable words for topic two with their overall
(red) and estimated (blue) term frequency.

After setting up the HDP model, we transferred it to an LDA model in
order to use the Jenson Shannon Divergence again. Table 7 shows the result
according to the metrics MAP, MRR, Precision and NDCG.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
HDP JSD 0.4096 0.4142 0.2963 0.1938 0.4255 0.5013
LDA JSD 0.5097 0.5518 0.304 0.2004 0.5333 0.5863

Table 7: Trec eval results for the HDP Model and LDA Model

In the first row of the table we see the results for the metrics according to the
HDP model. The second row of the table recaps the result mentioned in the
previous section. Both models are using the Jenson Shannon Divergence to
calculate the relevance scores. Unfortunately, for all metrics, the HDP model
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Figure 10: Visualization of the HDP Model

shows worse results than the LDA model. In the previous section, we stated
that our goal was to achieve as less overlaps between the topics as possible.
Figure 10 depicts a high number of overlaps and inclusions of topic. All in all,
it turns out that the HDP Model does not seem appropriate for our use case of
information retrieval.

6.3.3 Conclusion

In this section, we see how LDA and HDP topic model perform on our document-
query matching task. Generally, LDA model yields satisfying results regarding
to all evaluation metrics. From the statistic point of view, the document topic
frequency matrix generated by LDA topic model captures well enough semantic
features of the corpus. With the help of distance measure like Jensen Shannon
Divergence, we can easily exploit these feature and perform accurate matching.
The HDP topic model offer an alternative solution to topic modelling, as it
look into the hierarchical structure of the clusters. However, there are still
some drawbacks from these topic models. One thing is that the text length
is not sufficiently long for a perfect modeling. Most texts in Cranfield dataset
has only around 200 words. LDA always performs better with longer texts.
Another drawback is that the number of topics is hard to tune. As you can see
the experiments on both LDA topic model and HDP topic model, we do a lot
of trade-offs to find the best parameter. Nevertheless, the number of topics is
either too general or prone to overfit the dataset.
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6.4 Terrier

6.4.1 Data Preparation

Terrier defines the queries as topics and supposes them in the following XML
format (18):

<TOP>

<NUM>1</NUM>

<TITLE>query</TITLE>

</TOP>

Analogously, the documents are also transformed in XML format as follows:

<DOC>

<DOCNO>1</DOCNO>

document text

</DOC>

Afterwards, we index the documents and specify the following properties before
batch retrieving

• trec.topics: The path to the queries

• trec.model: The retrieval model’s name according to (18)

Note that, after batchretrieve, the Terrier models rank way more documents
for a single query than in the ground truth file. The ground truth file contains
ranking in an interval of r ∈ {1, 2, 3, 4, 5}. In contrary, the ranks produced by
BM25 are consecutive numbered not limited. Based on this setting, Trec Eval
produces bad results as in the retrieved document, there exists many ranked
documents for a given query that are non existent in the gold standard file.
Therefore, we need to merge the ground truth results with the results of the
according Terrier method on query id and doc ID. This way, for every query,
we have the same number of retrieved documents.

6.4.2 Results

After the data is prepared, we specify the Trec topics and the Trec model. First,
we retrieve English documents for English queries. On Table 8, the results of all
methods described in section 4.3.4 are listed. The columns show the four metrics
MAP, MRR, Precision and nDCG. For Precision and nDCG we consider only
the first five and ten retrieved documents as this is sufficient for our setting. The
rows indicate the models that are available on the Terrier platform. If we look at
the MAP values, we assume that the results of all exact-matching baselines are
quite similar ranging in the interval of MAP ∈ [0.443, 0.4544]. Analogously, the
other metrics show similar results across all methods as well. In comparison to
the presented results in section 1.3.3, the Terrier methods increase the metrics
MAP and MRR significantly. While in (1) the MAP has the value 0.131, the
model DLH produced the best MAP value of 0.4529. We also improved the
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MRR metric from the master thesis that has a value of 0.396. Hiemstra LM
produced the best value for MRR with 0.4796. In expC2 is the best model
referring P@10. Finally, the model PL2 outperforms all the other methods in
P@5 (0.2871), nDCG@5 (0.4825) and nDCG@10 (0.5415).

MAP MRR P@5 P@10 NDCG@5 NDCG@10
BM25 0.4445 0.466 0.2836 0.1973 0.4706 0.5354
BB2 0.4503 0.4758 0.2809 0.1964 0.474 0.5402

DFR BM25 0.443 0.4651 0.2836 0.1969 0.4693 0.5336
DLH 0.4529 0.4773 0.2853 0.1964 0.4774 0.5409

DLH13 0.4475 0.4747 0.2809 0.1964 0.4702 0.5375
DPH 0.4478 0.4763 0.2862 0.1956 0.4772 0.5364

DFRee 0.4479 0.4727 0.2782 0.1951 0.4702 0.5356
Hiemstra LM 0.4518 0.4796 0.2836 0.1964 0.4751 0.5412

IFB2 0.443 0.4646 0.28 0.1969 0.4661 0.5339
In expB2 0.4445 0.4724 0.2836 0.1978 0.4718 0.5374
In expC2 0.4427 0.4685 0.2844 0.1937 0.4718 0.5352

InL2 0.4473 0.4757 0.2809 0.196 0.4719 0.5364
Lemur TF-IDF 0.4473 0.4705 0.2836 0.1969 0.4724 0.5377

LGD 0.4478 0.4767 0.2764 0.1956 0.4673 0.5364
PL2 0.4544 0.4812 0.2871 0.196 0.4825 0.5415

TF-IDF 0.4464 0.477 0.28 0.1951 0.4706 0.5354

Table 8: Trec eval results for Terrier on the English dataset

After processing the English dataset, we apply all methods on the translated
Cranfield collection. The results are listed on Table 9. Not surprisingly, with
the model BM25 we get the best MAP value of 0.4353. Lemur’s TF-IDF model
outperforms referring MRR with a value of 0.4873. Precision with the first ten
retrieved documents reaches its best value off 0.1987 when we apply the model
LGD. Analogously to the English dataset, PL2, again, outperforms all methods
in P@5 (0.2889), nDCG@5 (0.4784) and nDCG@10 (0.5420).
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MAP MRR P@5 P@10 NDCG@5 NDCG@10
BM25 0.4353 0.4623 0.2836 0.196 0.4604 0.526
BB2 0.4523 0.4870 0.2818 0.196 0.4742 0.4403

DFR BM25 0.4343 0.4609 0.2827 0.196 0.4587 0.5252
DLH 0.4323 0.4767 0.2853 0.1982 0.4634 0.5302

DLH13 0.4414 0.4819 0.2844 0.1978 0.4662 0.5344
DPH 0.4412 0.4744 0.2844 0.1973 0.467 0.5322

DFRee 0.4447 0.4789 0.288 0.1982 0.4729 0.5357
Hiemstra LM 0.4449 0.4806 0.2862 0.1973 0.4696 0.5357

IFB2 0.4297 0.4486 0.2738 0.1929 0.4495 0.5198
In expB2 0.4472 0.4782 0.2836 0.1969 0.471 0.5351
In expC2 0.4477 0.4803 0.2836 0.1964 0.4709 0.5353

InL2 0.4489 0.4859 0.2844 0.1964 0.4736 0.5365
Lemur TF-IDF 0.4476 0.4873 0.2827 0.1964 0.4717 0.5362

LGD 0.4488 0.4834 0.2853 0.1987 0.4754 0.5398
PL2 0.4514 0.4857 0.2889 0.1982 0.4784 0.5420

TF-IDF 0.4464 0.477 0.28 0.1951 0.4706 0.5354

Table 9: Trec eval results for Terrier on the German dataset

Both the metrics for the English as well as for the German dataset outperform
the metrics MAP and MRR from the master thesis. The highest German metrics
results, except P@10, are slightly higher than the highest English metrics results.
Precision for ten retrieved documents solely is better on the English dataset.
Nevertheless, the results are all quite high.

6.4.3 Conclusion

In this section we introduced the results of the exact matching methods that
were available on the platform Terrier. We noticed that all metrics resulted
from all these methods outperformed the metrics results from the master thesis
presented in section 1.3.3. On the English dataset, the models DLH13, Hiemstra
LM, IN expC2 and PL2 performed the best. Surprisingly, BM25 is not included
among the models on the English dataset. For the German dataset, the models
BM25, Lemur’s TF-IDF, LGD and again PL2 show the highest results. In
addition to that, in four of five metrics, the German results are higher than
the English ones. Solely in Precision for the first ten documents, the English
metric shows a slightly higher value. In conclusion, the methods from Terrier
show for both English and German dataset high metric results even though they
are exact matching methods. We compare these results in section 6.6 where a
neural approach is introduced.
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6.5 Word2vec Phrase detection

6.5.1 Model description

Word2vec published a C code that detects phrases as described in section 3.1.1.
The commented and unaltered code was taken from Github (12) in order to train
it on the queries and documents. The model takes as an input the following
two parameter: a raw text, i.e. the query, and a threshold. Last mentioned is
set to 100 as default. The higher the threshold, the less phrases are built. This
is relevant for short text as they might contain phrases that do not occur often
in general natural language. The output of the model is the text with phrases
marked with an underscore between the words. As an example we consider the
phrase ”heat transfer” as one parameter. In the output text, the model would
then, if the phrase score is higher than the threshold, return the words as a
single one: ”heat transfer”. We used the word2phrase.c code in order to detect
the phrases.

6.5.2 Preprocessing

Before we add the phrases to our vocabulary, we first remove stop words and
lemmatize as well as tokenize the queries and documents. With nltk, we can
tokenize and lemmatize the English dataset. Additionally, the toolkit provides a
set of stop words for English and German. When it comes to the lemmatization
and tokenization of the German dataset, we use the open source library spaCy
as nltk does not provide both for German. For both datasets we evaluated once
on the raw dataset and once on the lemmatized and tokenized dataset where
stop words are removed.

6.5.3 Parameters

In section 4, we introduced some Terrier methods in order to retrieve the docu-
ments. As these methods are count-based, we use word2vec’s phrase detection
model on both sides, the queries and the documents. Referring the parameters,
we tried out several thresholds for queries and documents.

Train The training data

Output The output file

min-count This parameter sets a default limit of 5. every word that appears less than
this limit is discarded.

threshold Varies according to the train data. In total, we have 255 queries that are
mostly one sentence long. Lots of questions start with a question word and
a verb such as What is or Can a that should not be detected as a phrase.
With both limitations, we cannot set the threshold very high. Therefore,
we tried to set the threshold to 20, 30, 40 and 50. With a threshold of
50, the model detects no phrases in the queries. Lastly, the information
retrieval techniques show the best results with a threshold of 40 for the
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queries.
As the documents dataset is larger, we can set the threshold higher than
for the queries. Our experiments relied on the thresholds 80, 150 and
300. The best results with the chosen information retrieval techniques are
based on a threshold of 150 for the documents.

debug Shows more information during training. The default of 2 works well for
our case.

6.5.4 Results

Referring the information retrieval methods, we chose to process the best Terrier
methods for the according language mentioned in section 6.4.2. Since precision
does not consider the rank, we focus on the models that performed the best for
MAP, MRR and nDCG. For the English dataset, these are the methods DLH,
Hiemstra LM and BM25. As the methods did not prove to have significantly
different result on the original dataset, we depict the results of the lemmatized
and tokenized dataset where stop words are removed. In Table 10 you can see
the results in respect to the metrics introduced in section 5. The results of the
documents and queries with phrases do not differ a lot the original results that
were applied on the dataset without phrases. All metrics slightly decreased or
remained the same in their values. An exception is the metric Precision for the
first five retrieved documents. The model PL2 shows a small increase for this
metric with the highest value for P@5 so far: 0.2989. The strongest models in
this section are Hiemstra LM and the PL2 outperforming DLH in MAP, MRR
and nDCG. This was not the case with the original dataset. Unfortunately,
adding phrases to both queries and documents does not return more relevant
document as expected. Therefore we conclude that phrase detection does not
improve the information retrieval results for the English dataset.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
DLH 0.4392 0.4628 0.2853 0.1964 0.4676 0.5307

Hiemstra LM 0.4457 0.4759 0.2836 0.1956 0.4721 0.5363
PL2 0.4458 0.4666 0.2898 0.1942 0.4761 0.5328

Table 10: Trec eval results with word2vec’s phrase detection on the English
dataset (with lemmatization, stop words removal and tokenization)

For the german dataset, we went through the same process, but used the Ter-
rier methods BM25, DLH and PL2 as they performed the best on the original
dataset. Below, you can find the evaluation for these models. Table 11 shows
the results for the methods on the raw dataset, that means without lemmti-
zation and stop words removal. We can clearly see that PL2 outperforms the
other methods with the highest values in MRR, P@5 and NDCG. Furthermore,
on Table 12 we listed the results for the lemmatized dataset where stop words
are removed. Comparing the two tables, we can see that in MAP, MRR and
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nDCG@10, the lemmatized dataset always has better results. For precision
and nDCG@5 some metrics show slighty lower values. As we do not focus on
precision, we can say that overall the phrase detection is advantageous if we
lemmatize the data and remove its stop words first. In the following, we com-
pare Table 12 with the original results of Table 9. In contrast to the English
results, the German phrase detection sometimes show an increase in the metric
values. For example BM25 always outperforms the original BM25 results except
for precision. Unfortunately, for the Lemur’s version of TF-IDF we always have
slightly lower values except for precision and nDCG@10. PL2 solely shows for
MAP and precision at five documents higher metric values. With phrase detec-
tion, BM25 clearly outperforms the other two methods for the German dataset.
This is contrary to the original results where BM25 solely outperformed for
MAP, Lemur’s TF IDF is the best in regard to MRR and then PL2 taking the
third place among the methods.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
BM25 0.4554 0.466 0.2836 0.1973 0.4706 0.5353

Lemur TF-IDF 0.4473 0.4705 0.2836 0.1969 0.4724 0.5377
PL2 0.4544 0.4812 0.2871 0.196 0.4825 0.5415

Table 11: Trec eval results with word2vec’s phrase detection on the German
dataset (without lemmatization and stop word removal)

MAP MRR P@5 P@10 NDCG@5 NDCG@10
BM25 0.4607 0.4888 0.2818 0.1956 0.479 0.544

Lemur TF-IDF 0.455 0.4855 0.2844 0.1956 0.4772 0.54
PL2 0.4599 0.4858 0.28 0.1969 0.4763 0.5438

Table 12: Trec eval results with word2vec’s phrase detection on the German
dataset (with lemmatization)

6.5.5 Conclusion

Applying the phrase detection from word2vec for the English dataset, we did not
gain benefits to the information retrieval results, i.e. the metrics remain about
the same. In contrast, the results for the German dataset the metrics showed
slightly higher values. We expected that state-of-the-art methods may improve
by including brigram search. Contrary to our expectations, we solely achieved
small improvements. This may reasons on the limited size of the Cranfield
dataset. On the one hand, the documents are relatively short and on the other
hand, the dataset does not provide enough documents in order conclude if the
phrase detection could improve information retrieval. With a bigger dataset,
running count-based methods on bigrams may be more advantegous and can
even be extended to trigrams.

32



There is one drawback of exact matching methods when dealing with phrases:
Humans do not annotate phrases uniformly. This way, some phrases are marked
with a line and some are not marked at all, having a space between the phrasal
words. Consider the phrase ”boundary layer”. Word2vec’s annotation for this
bigram would be ”boundary layer”. After investigation, we noticed that this
phrase is sometimes separated through a space or a line, e.g. ”boundary-layer”.
Exact matching methods would then not match the word2vec bigram to that
phrase even though they contains the same words. Having a uniform represen-
tation of a phrase would simplify the information retrieval.

6.6 Transfer Learning

We experiment with two different settings of transfer learning. In the first
setting we train plain Duet model without adversarial discriminator on each of
three datasets separately and test it on Cranfield dataset. In the second setting
we combine all three datasets to one big shuffled dataset and train Duet model
with adversarial discriminator applied to it.

6.6.1 Preprocessing

As datasets used for training are in different formats we have to preprocess them,
so that all queries are of the same length, which is required for the Duet model.
Queries, that are shorter than maximum length are padded with a dummy word.
The same padding is applied to documents analogously. Moreover, each of the
datasets has its specific preprocessing steps that are listed below.

After preprocessing, the desired dataframe have these columns: query id,
document id, and their binary relevance. As we use a convolutional network,
the batch input data would have the same length. Therefore we need to truncate
the length of queries and documents to the 95% quantile of the corresponding
length in the target dataset - Cranfield, which is 25 for the queries and 720 for
the documents respectively.

WebAP The candidate documents in WebAP dataset do not contain rele-
vance annotations (only paragraphs of these documents were annotated). Hence
we split all documents into paragraphs and treat them as query-paragraph pairs
for training. Moreover, WebAP dataset contains non-binary relevances for para-
graphs. As our Duet model of adversarial domain adaptation method works
with binary relevances only, we had to come up with conversion strategy. All
paragraphs of WebAP dataset, which were labelled as ”irrelevant” were set to
relevance 0, all others were marked as relevant and got relevance value 1.

InsuranceQA The insuranceQA(22) corpus provides questions and answers
of different insurance domains. In total, there are 27,413 answers with 3,065,492
running words of answers. For each question, there is a ground truth answer.
Irrelevant answers of a question are sampled from a pool given the pool size.
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In our case, we choose the pool size of 100 with in total more than 2000000
question answer pairs, which is already large enough for our training purpose.

Yahoo L4 The Yahoo dataset contains questions, answers, category informa-
tion and a context. As the dataset is formatted in XML the answer texts can
include html tags, e.g. fat marked text, that are not necessary for our use case.
We converted the XML file to dataframe where each question, answer pair is
modeled in one row. There are no specific relevance annotations in the dataset
but the ranked answers. Therefore, In order to assign binary relevance to the
answers, we map the best answer of a question to a relevance of 1. As we only
have 5.74 ranked answers per question in average, we map all other answers to
a relevance of 0.

6.6.2 Results

The results of transfer learning approach are presented in Table 13. We trained
every dataset on one epoch as the resulting difference to five epochs is not
significant. We can see that, for the approach without adversarial discriminator,
the best results were achieved with the Yahoo L4 dataset. The model trained
on Yahoo L4 is stronger than other models on all metrics except for precision
at 10, where the insuranceQA dataset was stronger. Training on the dataset
WebAP shows the lowest results. This can be reasoned on the small siize of the
dataset.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
WebAP 0.4047 0.4259 0.2587 0.1920 0.4191 0.4994

InsuranceQA 0.4062 0.4411 0.2622 0.1929 0.4259 0.5043
Yahoo L4 0.4198 0.4564 0.2649 0.1889 0.439 0.5099

Table 13: Transfer learning results on Duet Model

In Table 14, the results of the adversarial discriminator and the best scores of
the separate training are listed. The training dataset is now the stacked dataset
of WebAP, insuranceQA and Yahoo L4. Comparing the results on the single
datasets with the adversarial discriminator results, we can see that the Duet
model with domain regularization significantly outperformed other models on
all metrics. The strongest difference was achieved on MAP, MRR and NDCG.
This means that adversarial training is more effective for transfer learning on
completely different domain.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
Duet adversarial
network

0.4403 0.4831 0.2658 0.1951 0.4537 0.5308

Best scores in
separate train-
ing

0.4198 0.4654 0.2649 0.1929 0.4139 0.5099
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Table 14: Adversarial learning results on the stacked dataset

6.6.3 Comparison to exact matching methods

After retrieving the results from the duet adversarial network, we want to com-
pare the neural approach with the exact matching models. On Table 15 you find
the results of the two best exact matching models DLH and Hiemstra LM. As
our focus referring the state-of-the-art baseline was originally the model BM25,
the result for this retrieval method is listed as well. Additionally, you find the
results of the duet adversarial network in order to directly compare the two
baselines. Generally, the metrics show overall similar results for both the exact
matching and the neural method. Nevertheless, the neural approach only shows
better values with one metric that is the MRR of 0.4831. In all other metrics
one of the three exact matching baselines outperformed the duet adversarial
network. The DLH method clearly show the best results for MAP (0.4529),
P@5 (0.2853) and nDCG@5 (0.4774). DLH and Hiemstra LM have both the
best results for precision at ten documents with a value of 0.1964. Hiemstra
LM also outperforms all other models in the metric nDCG@10 with a value
of 0.5412. Surprisingly, BM25 turns out to be the weakest model in regard
to its low metric values among the four listed on Table 15. In conclusion we
can say that the exact matching baselines are definitely comparable to a neural
approach and even outperform in most cases.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
DLH 0.4529 0.4773 0.2853 0.1964 0.4774 0.5409
Hiemstra LM 0.4518 0.4796 0.2836 0.1964 0.4751 0.5412
BM25 0.4445 0.466 0.2836 0.1937 0.4706 0.5354
Duet adversarial
network

0.4403 0.4831 0.2658 0.1951 0.4537 0.5308

Table 15: Results of the best exact matching methods and the duet adversarial
network

6.6.4 Conclusion

Based on the results we can conclude, that adversarial discriminative domain
adaptation approach is successful in learning domain invariant features and
achieves better results compared to transfer learning without adversarial dis-
criminator. Comparing neural network approaches for transfer learning with
exact matching and topic modelling we observe, that deep learning outper-
formed other models only on MRR (0.4831 vs. 0.4796), which means, that it
was better at finding most relevant document. The biggest disadvantage of this
approach is the need for time-consuming and expensive training, while exact
matching models require no training and are extremely fast.
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6.7 Comparison of all information retrieval techniques

In summary, Table 16 lists the results of the information retrieval techniques on
the Cranfield dataset that we introduced in this report. All of our approaches
exceeded the baseline model in all evaluation metrics, among which the LDA
topic model performs the best. The exact matching approach with the Ter-
rier models is some of the state-of-the art information retrieval model. They
achieved substantial improvement to the baseline model on MAP and MRR. The
duet adversarial network also achieves comparable results with those off-the-
shelf models, improving the baseline model by 0.31 on MAP and 0.09 on MRR
respectively. However, the neural network approach still have potential to im-
prove, if we incorporate sophisticated feature engineering and hyper-parameter
searching methods.

MAP MRR P@5 P@10 NDCG@5 NDCG@10
DLH 0.4529 0.4773 0.2853 0.1964 0.4774 0.5409
Hiemstra LM 0.4518 0.4796 0.2836 0.1964 0.4751 0.5412
BM25 0.4445 0.466 0.2836 0.1937 0.4706 0.5354
LDA JSD 0.5097 0.5518 0.304 0.2004 0.5333 0.5863
Duet adversarial
network

0.4403 0.4831 0.2658 0.1951 0.4537 0.5308

Baseline model 0.131 0.396 / / / /

Table 16: Results of the all information retrieval techniques

7 Future work

In this work, we have seen exact based matching models as well as a neural
approach for the cross lingual semantic search. Both approaches show similar
results and are comparable regarding the metrics MAP and MRR and nDCG.
We improved the MAP and MRR results of Balabel (1) for both approaches.
Nevertheless, the resulting documents are different in exact based models and
in the neural ranking, e.g. figure 17 gives an overview of top-5 results for the
first query. For more informative comparison we evaluate the relevance of top
results using original non-binary relevance in Cranfield dataset. The documents
with highest relevance have score 5, with lowest -1. As it can be seen from the
figure, only one same document was selected in top-5 for both of the models.
Similar situation happens for all other queries.

Rank BB2 doc id True relevance Duet doc id True relevance
1 13 4 462 4
2 486 -1 184 2
3 56 3 30 3
4 142 4 66 3
5 184 2 121 3
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Table 17: Comparison of top-5 predictions for exact matching and neural net-
work model

Therefore, it could potentially be interesting to apply a mixed approach that
combines the advantages of the exact matching methods and the neural model.
Simple linear combination with equal weights does not bring any improvement,
so more sophisticated combination methods are to be developed.

In addition to that, we dealt with the phrase detection tool of Word2Vec (2).
As the Cranfield dataset is quite small, we solely considered bigrams. Unfortu-
nately, the bigram detection did not result in high improvements as we expected.
In the future, given a bigger dataset, one can detect longer phrases such as tri-
grams in order to increase exact matching results.

Another approach is to have a deeper look at the document structure, given
a larger document set. We can develop a hierarchical data structure to preserve
this document tree with following reasons.

First, The title of a chapter might be an abstraction of the text under its
domain. This is beneficial to information retrieval because we can give weights
to the word with regard to their document level. That means, a word that
appears in the title of a chapter is more likely to relate to the topic than its
equivalence in a single paragraph.

Second, this tree structure can accelerate searching. When we search for
text related to a specific topic, we do not need to scan the document from the
very beginning. Instead, we search the higher level of the document. Those
texts in higher document level might contain more conclusive words which may
help to narrow down the search area. The search algorithm can therefore unfold
the sub-documents based on similarities between the query and the text in high
level. As we iteratively perform beam search, we will finally go down to several
paragraphs that might contain the information we want.

Third, this structure also allows a user to specify the granularity of the
search result. We can stop Breadth First Searching at whatever document level
and return either the whole document or a single page or simply one paragraph.

In section 4, we introduced BM25 and the Terrier IR Platform. Terrier also
provides a BM25 extension called BM25F which is a per-field normalization
model based on BM25. The idea of field-based weighting model is similar to
our conception. For instance,if a query term occurs once in the body of the
document, there is only a small chance that the document is really related to
that term. However, if the term occurs in the title of the document, this chance
is greatly increased. This structure might facilitate the analysis.
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