TECHNICAL UNIVERSITY MUNICH

TUM Data Innovation Lab

A Network Analytical take on the European Parliament

Authors: Abinav Ravi Venkatakrishnan
Niklas Schmidt
Mentor:
Dr. Mirco Schönfeld (Professorship for Computational Social Science \& Big Data)
Co-Mentor: Laure Vuaille (Department of Mathematics)
Project Lead: Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor: Prof. Dr. Massimo Fornasier (Department of Mathematics)

Motivation

Find Hidden Agendas

Motivation

Motivation

Hidden Agenda

Following goal in non-obvious manner

Hidden Coalition

Collaboration not appparent by direct work

Gathering Data

	date	speechnr	agenda	name	nationality	party	euparty	text
0	1999-07-21	en.19990721.1.3-001	Address by the President	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	Ladies and gentlemen; once again; I should lik...
1	1999-07-21	en.19990721.1.3-003	Address by the President	Nicole Fontaine	France	Union pour la democratie française	Group of the European People's Party (Christia...	I thank the President-in-Office of the Council.
2	1999-07-21	en.19990721.1.3-005	Address by the President	Nicole Fontaine	France	Union pour la démocratie françalse	Group of the European People's Party (Christla...	I am truly grateful; Mr Commissioner Marín.
3	1999-07-21	en.19990721.2.3-006	Approval of the Minutes	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	The Minutes of the last silting have been dist...
4	1999-07-21	en.19990721.2.3-007	Approval of the Minutes	Marie-Hélène Gillig	France	Parti socialiste	Group of the Party of European Socialists	(FR) Madam President; with regard to the Minut...

http://linkedpolitics.ops.few.vu.nl

Preprocessing

	date	speechnr	agenda	name	nationality	party	euparty	text
0	1999-07-21	en.19990721.1.3-001	Address by the President	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	[address, convey, heartfelt, trust, show, elec...
1	1999-07-21	en.19990721.1.3-003	Address by the President	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	[address, presidentinoffic]
2	1999-07-21	en.19990721.1.3-005	Address by the President	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	[address, trull, grate, marn]
3	1999-07-21	en.19990721.2.3-006	Approval of the Minutes	Nicole Fontaine	France	Union pour la démocratie française	Group of the European People's Party (Christia...	[approv, last, distribut, comment
4	1999-07-21	en.19990721.2.3-007	Approval of the Minutes	Marie-Hélène Glllig	France	Parti socialiste	Group of the Party of European Socialists	[approv, regard, yesterday, provid, inform, re...

Topic Modelling

- Latent Dirichlet allocation (LDA)
- Idea: Find topics in texts by assigning word probabilities to topics

Figure:
https://upload.wikimedia.org/wikipedia/commons/4/4d/Smoothed_LDA.png

Optimal Number of Topics

Topic Visualisation

Top-30 Most Relevant Terms for Topic 14 (1.8\% of tokens)

Example

Figure: Danielle Auroi

Madam President, President
Prodi, ladies and gentlemen, after hearing Mr Prodi's proposals, I am utterly astounded by the position of the PPE and the PSE on food safety. Perhaps they do not feel capable of putting forward concrete proposals today, but we do. That is why we wished to propose a resolution for, throughout Europe, the series of scandals which have occurred means that, today, the citizens and consumers no longer have any confidence in their farmers. The quibbling involved in stating that the Committee ...

Inferred Topics

LDA result

(0, '0.475*"strategi" $+0.152^{*}$ "lisbon" $+0.055^{*}$ "object" $+0.030 *$ "implement" $+0.029 *$ "competit"')
(1, '0.153*"indian" $+0.130 *$ "threeyear" $+0.094 *$ "empir" $+0.066 *$ "disintegr" $+0.053^{*}$ "overshadow" $)$
(2, '0.028*"develop" + 0.020*"econom" + 0.018*"area" + 0.017*"support" + 0.011*"increas"')

(4, '0.307*"polish" $+0.239 *$ "domest" $+0.093^{*}$ "beekeep" $+0.091^{*}$ "gross" $+0.069 *$ "default"')
(5, '0.503*"medium" $+0.085 *$ "televis" $+0.069 *$ "broadcast" $+0.040 *$ audiovisu" $+0.036^{*}$ "guinea")
($6, ~ ' 0.202^{*}$ "marginalis" $+0.154^{* " w o r s e n " ~}+0.105^{* " a n t i d i s c r i m i n " ~}+0.066 *$ "perpetu" $+0.062^{* " m i c h e l " ') ~}$

(8, '0.161*"hamper" + 0.148*"smallscal" + 0.091*"anticorrupt" + 0.083*"bolster" + 0.077*"adr"')

Inference

name date topic
0 Marie-Noëlle Lienemann 1999-07-01 [(23, 0.05672398), (38, 0.016829032$),(73,0.0 \ldots$
1 Gerhard Schmid 1999-07-01 [(141, 0.07714286), (242, 0.5914885), (257, 0....
2 Hanja Maij-Weggen 1999-07-01 [(36, 0.019324558), (109, 0.020725463), (111, ...
3 Ingo Friedrich 1999-07-01 [(60, 0.08798485), (110, 0.022743504), (144, 0...
4 Hans-Peter Martin 1999-07-01 [(146, 0.28848597), (238, 0.023322258), (242, \ldots

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	$1999-07-01$	$[(0,0.7),(1,0.3)]$
B	$1999-07-01$	$[(0,0.7),(1,0.3)]$
C	$1999-07-01$	$[(1,0.7),(2,0.3)]$
D	$1999-07-01$	$[(2,1.0)]$
A	$1999-08-01$	$[(0,0.5),(1,0.5)]$
B	$1999-08-01$	$[(0,0.3),(1,0.2),(2,0.5)]$
C	$1999-08-01$	$[(1,0.5),(2,0.5)]$
A	$1999-09-01$	$[(0,0.8),(1,0.2)]$

Network modelling

name	date	topic
A	1999-07-01	[(0,0.7), (1,0.3)]
B	1999-07-01	$[(0,0.7),(1,0.3)]$
C	1999-07-01	[(1,0.7), (2,0.3)]
D	1999-07-01	[(2,1.0)]
A	1999-08-01	[(0,0.5), (1,0.5)]
B	1999-08-01	[(0,0.3), (1,0.2), (2,0.5)]
C	1999-08-01	[(1,0.5), (2,0.5)]
A	1999-09-01	[(0,0.8), (1,0.2)]
$\left[\begin{array}{c}0 \\ 1.2 \\ 0.8\end{array}\right]$ C $\left[\begin{array}{c}2.0 \\ 1.0 \\ 0\end{array}\right] \mathrm{A}$		

Network modelling

Community Detection

Community Detection

$$
Q=\frac{1}{2 m} \sum_{v, u \in V}\left(a_{v u}-\frac{k_{v} k_{u}}{2 m}\right) \delta\left(c_{v}, c_{u}\right)
$$

Outlier Detection

Outlier

- Girvan-Newman algorithm
- High topic overlap \Leftrightarrow Large edge weight
- Missmatching data

Topic Distribution

Topic Distribution

Topic Distribution

Outlier vs. Community

Outlier vs. Community

Outlier vs. Community

Outlier vs. Neighbours

Results Hidden Agenda

Results Hidden Agenda

Results Hidden Agenda

Hidden Community Detection

Figure: From K.He et.al, Hidden Community Detection in Social Networks, 2017

HiCoDe Algorithm

- Apply the base algorithm - Louvain Algorithm
- Calculate the modularity
- Weaken the structure by using refinement algorithms such as remove edge or reduce edge
- Repeat until appropriate layers

Number of Layers

- Calculate the modularity for dominant community Q_{0}
- Perform T iterations of refinement and calculate modularity for each iteration Q_{T}
- Calculate average improvement ratio of modularity per iteration. as $R_{T}=\frac{\sum_{t=1}^{T} Q_{T}}{Q_{0} T}$
- Choose layer which has highest R_{T}

Hidden Community Detection

One Hidden Community

Results Hidden Coalition

Results Hidden Coalition

Outlook

- Translation
- Metadata
- Hollistic Community Outlier

Thank you and Questions?

