
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

Chair of Robotics, Artificial Intelligence and
Real-time Systems

School of Computation, Information and Technology

Technical University of Munich

Final report of project:
Data Simulation for Improving Autonomous Driving

Authors Xinyue Dai, Raphael Feigl, Hao Liu,
Danyang Long, Haoyang Sun, Jiaoyang Sun

Mentor Zhou Liguo, M.Sc.
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Prof. Dr.-Ing. habil. Alois Knoll

Jul 2023

1

Abstract

To train autonomous driving algorithms, a simulation environment where the agent can
collect training data and verify its functionality and safety is very important. This sim-
ulation environment should include realistic details and reflect cases in the real world.
We as a team, decoded our semester into building a digital simulation environment of
real-world cities. We learned and used tools including Unity and Mathworks Roadrunner
to build up the environment. We looked up the road-building regulations so that the
road details would be realistic and correct. We extracted geographical information from
online databases about the region to aid us in building up the simulation. We also did
field research to add extra details to our simulation. Despite our huge effort, we were
not able to complete the simulation environment because of the large volume of work.
However, we have documented our methods and resources so that any future work based
on our work could have much more efficient and smoother progress. Furthermore, one
of our teammates analyzed a machine learning algorithm that can be trained using the
Roadrunner HD maps and applied to a self-driving vehicle within the simulation environ-
ment. The analysis includes studying both the input and output data of the algorithm,
as well as examining the structure of the neural network. These findings will serve as a
solid foundation for future implementations.

CONTENTS 2

Contents

Abstract 1

1 Introduction 4
1.1 Background . 4
1.2 Motivation . 4
1.3 Tools Selection . 4
1.4 Resources and Materials . 4

1.4.1 Geographical Information . 5
1.4.2 Instructions on the Tools . 5
1.4.3 Reference of Building Roads . 5

2 Problems and Solution 5
2.1 Team Effort Coordination . 5
2.2 Geographical Information . 6
2.3 Unity . 6
2.4 Large File Processing . 6
2.5 Workload Allocation among Team Members 6

3 Complementary Tools 7
3.1 Plastic SCM for Team Coordination . 7
3.2 QGIS for Geographical Data . 7

4 RoadRunner 9
4.1 Draw Road . 9
4.2 Edit Road . 9
4.3 Junction Section . 10
4.4 Addition of Roads . 10

4.4.1 Lane Marking . 10
4.4.2 Area Isolation . 11
4.4.3 Traffic Plates and Traffic Lights . 12

4.5 Create Road Style . 12

5 Unity 12
5.1 Asset . 12

5.1.1 Predispose . 12
5.1.2 Create folders according to the hierarchical type of the model . . . 12
5.1.3 Modify . 13

5.2 Import the Road Runner model into the Unity 13
5.3 Restore the road details in Unity . 13

6 Garching 3D Scene 14
6.1 Map modeling . 14
6.2 Road Generation . 15
6.3 Buildings and Landmarks . 15
6.4 Lane markings and traffic rules . 15

CONTENTS 3

6.5 Lighting and Weather Conditions . 16
6.6 Dynamic and static objects . 16

7 Result Demonstration 17
7.1 Case 1 Traffic circle simulation . 17
7.2 Case 2 Simulation of intersections near attractions 17

8 Learning Algorithm 18
8.1 Introduction . 18
8.2 Architecture . 18

8.2.1 Inputs and Outputs . 18
8.2.2 Neural Network . 19
8.2.3 Object Detection . 20
8.2.4 Practical Implementation of Urban-Driver 20

8.3 Outlook . 20

1 INTRODUCTION 4

1 Introduction

Our team, consisting of Xinyue Dai, Raphael Feigl, Hao Liu, Danyang Long, Haoyang
Sun, and Jiaoyang Sun, devoted our semester to creating a digital simulation environment
for training and testing autonomous driving algorithms.

1.1 Background

Our simulation environment should have factors and details that are close to real-life
scenes. To achieve this goal, we selected three cities to construct their digital twins,
which are Garching, Oberschleissheim, and Unterschleissheim. We have encountered a lot
of problems during our implementation and the creation of a digital city takes time and
effort beyond our ability. Thus, we decided to summarize our working procedures and
solutions to the problems, so that groups could follow our work to fill in the blanks of our
project.

1.2 Motivation

Autonomous driving depends heavily on a large amount of training data for training.
Autonomous driving algorithms also need a digital environment to be tested before being
deployed to real-world environments. As the concept of digital twins has become popular,
we think a digital twin of a city is a very good choice for gathering training data and
providing a testing environment for autonomous driving algorithms. We chose to create
the cities of Unterschleissheim, Oberschleissheim, and Garching because these cities are
very close to the Technical University of Munich and are very convenient for verifying the
algorithms in field testing.

1.3 Tools Selection

Our supervisor provided us with two tools for us to choose from: MathWorks Roadrun-
ner [1] and Unity [2]. Unity has a tool called 3D city generator, which generates a rough
city model using geographic information. Despite its convenience, it has limitations in
adding more details. Thus we decided to switch to the Mathworks RoadRunner. Road-
Runner is very powerful and convenient in road creation. We exported the created roads
from Roadrunner to Unity to add more details. However, this implies that we need to
draw all the roads and details by hand. The workload is huge and we did not expect to
complete the workload. We decided to explore the tools and try out methods to add more
details to the model and record these methods as guidance for future improvements to
our model.

1.4 Resources and Materials

We have used materials and resources from multiple sources. These materials and re-
sources include Unity Assets for road building, geographical information for example
aerial images of the city, regulations and rules for roads in Germany, and instructions for
tools used like Unity, Roadrunner, and so on. This valuable information and resources

2 PROBLEMS AND SOLUTION 5

take us huge efforts and a long time to gather. Thus these could become useful and
valuable for future teams working on this project.

1.4.1 Geographical Information

We used QGIS for acquiring aerial images, the detailed procedure will be described in
the report. For information about road signs and stencils, we conducted field research
and took a lot of pictures in the corresponding cities. In the later stage of the project,
we found the database called BayernAtlas [3] that could be very useful for reconstructing
the cities in Bavaria. This database includes simplified 3D models of all the architecture
in the cities of Bavaria. Unfortunately, we found this database too late and did not have
time to integrate the information into our project. However, this could become a valuable
hint for the later works which will simplify the digital reconstruction of the architectures
to a very large extent.

1.4.2 Instructions on the Tools

In our project, different tools were used. The main tools include Unity and Mathworks
RoadRunner and other tools, for example, Plastic SCM and QGIS were also used as
compliments. None of us were familiar with these tools before this project but we have
learned along the process of this project. The learning material includes the Unity Learn
Platform [4] and the documentation from the Mathworks website.

1.4.3 Reference of Building Roads

Based on the official instructions provided by Mathworks VectorZero youtube channel [5],
we learned the operations of RoadRunner. For road specification, we borrowed the
Richtlinien für die Anlage von Landstraßen [6] from the library and found the Guide-
lines for the Design of Motorways [7] published by the German Road and Transportation
Research Association (Forschungsgesellschaft für Straßen und Verkehrswesen - FGSV) to
know the standard of roads and to specify details about building the road.

2 Problems and Solution

We encountered many problems during the project. In this chapter, we will demonstrate
the solutions and, if the problem has not been resolved, our advice and attempts.

2.1 Team Effort Coordination

When we tried out the tools of City Generator in Unity, it became clear that team
coordination and version control are a problem. A city model is huge, usually several
dozens of gigabytes. Git does not support projects of this scale. Furthermore, Unity
projects always include files and metadata that are globally relevant. This makes merging
two parts of the model into a larger model difficult because they will overwrite each other’s
metadata and make the project messy and error-prone. We found that Unity provides its
tools for version control and team coordination. The tool is Plastic SCM. We successfully

2 PROBLEMS AND SOLUTION 6

implemented the version control using Plastic SCM. The detailed procedure is recorded
in the Procedure chapter.

2.2 Geographical Information

Because the City Generator tool in Unity is not able to generate detailed city models and
is not compatible with further changes, we had to switch to the Mathworks RoadRunner
tool. However, RoadRunner does not provide tools for grabbing geographical information
and we had to find the geographical information of Unterschleissheim, Oberschleissheim,
and Garching ourselves. Some large databases for geographical information only provided
information about cities in the United States, so at one point this became a serious
problem for us. After some struggles, we found that we could extract aerial images
of the three cities using QGIS. The detailed procedure for this solution is recorded in
the Procedure chapter. We also made efforts to find elevation maps of the three cities.
However, we did not succeed. We decided to proceed without the elevation information
of the three cities because of the limited time.

2.3 Unity

In the process of the Unity part, we encountered several problems. The first one is the
challenges in precise modeling. Accurate measurements and modeling are required for
building restoration, how to locate the buildings is a really hard question. The map
does not show the exact dimensions of each building, as well as the distance and relative
position to each other. What we can do is Advanced modeling techniques and specialized
tools may be necessary for precise restoration. At a later stage, on the website [3] found
by Haoyang Sun, the digital position of each building is recorded. We suppose that, if we
can import this information into the unity, the simulation would be much more accurate.

2.4 Large File Processing

As the project proceeded, the city model became very large and each load of the project
required a long time to load into the Unity and the Roadrunner. As an example, an
aerial image of Oberschleissheim with intermediate resolution occupies 5GBs of data and
requires more than ten minutes to load into the Roadrunner. The complexity of the city
model also leads to the Unity Engine becoming laggy and hard to operate. It would
be better if we could split the city into different parts and implement them one by one.
In this way, the complexity of each load would be largely reduced and would boost our
efficiency. However, we did not explore this option because of time constraints.

2.5 Workload Allocation among Team Members

We also encountered problems when allocating workloads among team members. Because
none of us had any experience in building a digital city, we could not estimate the workload
of each mission. For example, we split the team into two groups, one group was in charge
of drawing roads on an existing aerial image using Roadrunner, and the other group was
in charge of adding details to the road model exported from the Roadrunner using Unity.

3 COMPLEMENTARY TOOLS 7

However, much more effort was required to draw decent roads using Roadrunner which
made the pipeline very burdensome for the members drawing the road. This was because a
real-life road includes many details for example lines, stencils, different widths in different
sections when merging, pathways for pedestrians and bikes, and roads having different
widths and styles in different parts of the city. The country road only has a single lane
and no pedestrian pathway while the roads Constructing a digital road to fit the real-life
truth requires much more effort.

3 Complementary Tools

Besides the main tools, we have used complementary tools as assistance and resources in
our project. Working out how to use these tools is a valuable experience and took us huge
efforts. Thus, we found it meaningful to have the methods recorded in our report.

3.1 Plastic SCM for Team Coordination

To be able to coordinate with each other on a large Unity project, we need to have a Unity
Account and also install Plastic SCM on our computer [8]. First, create a Unity account,
and go to my account. Then, go to the Organizations page. Create a new organization.
Go to the Unity Dashboard. Go to the DevOps page. Go to Seats on the DevOps page.
Click on “manage” in the Assignable Seats. Click on the “edit” icon in the manage
window. If the group has under 3 members, it is free. However, if the group exceeds 3
members, you need to pay for additional seats. To save money, we advise the team to
have 3 members. After ensuring that there are enough seats available, you need to assign
the seats to the Unity Account of other team members. These steps are demonstrated in
Figure 1. In this way, you have gathered your team in the same organization. What is
left is to install Plastic SCM, sign in, and create a new repository for your project. The
rest works as Git and we will not illustrate this.

(a) Creating a new organiza-
tion in Unity.

(b) Extending the seats in
the organization.

(c) Inviting other team mem-
bers to the organization.

Figure 1: Demonstration of Unity Version control and team collaboration.

3.2 QGIS for Geographical Data

Even though geographical information, like aerial images, seems to be easy to acquire
from Google Maps, However, to make it suitable to import into a project, the geograph-
ical projection information needs to be embedded in the image file. Images with these
functionalities are hard to acquire. There are a lot of databases providing geographical

3 COMPLEMENTARY TOOLS 8

information to download, but all of them only focus on cities in the United States and
do not provide data for European cities. After attempts, we have found that it is pos-
sible to extract aerial images from a tool named QGIS [9]. With an extra plugin called
QuickMapService, QGIS can extract aerial images from the Google Earth database and
also produce projection information, which enables the import of the image into Road-
Runner. The images in this database are not of the best quality, but they are sufficient
for our project. The instructions for extracting the images from QGIS are demonstrated
in Figure 2. To extract the aerial image, you need to follow the following steps.

1. Download the QGIS from the website. Install the QuickMapServices in the plugins.
Click on the Web Option and then in the QuickMapServices select Google, and then
Google Satellite and Google Hybrid. Find the area of interest on the map.

2. In the Processing Tool Box, select Raster Tools and then select Convert Map to
Raster. Draw on the canvas to include the region of interest.

3. We advise setting the Map Units per Pixel to 0.1. This value has a range of 0 to 1,
the smaller this value, the higher the resolution of the aerial image. Even though
0.01 will yield a better resolution, but the file will become too huge (4 GBs for a
single block) and too slow to process.

4. In the layers to render, only select the Google Satellite layer, because the Hybrid
layer contains textual data. In the end, select a location in the output layer and run
the process. Drag the generated file to the Roadrunner project to import the file.

(a) Import QuickMapSer-
vices plugin in QGIS.

(b) Load the Google Hy-
brid and Google Satellite
and then locate the region
of interest on the map.

(c) Set parameters to con-
vert the selected region to
raster.

Figure 2: Instructions to extract aerial images from QGIS.

Regarding aerial images, one should notice the coordinate reference system in QGIS. The
format “EPSG:3857” [10] projects a coordinate system for world between 85.06◦S and
85.06◦N. This is used for display by many web-based mapping tools, including Google
Maps and OpenStreetMap. Meanwhile, the format “EPSG:4326” [11] projects the lati-
tude/longitude coordinate system based on the Earth’s center of mass, used by the Global
Positioning System among others. The second format may create more distortions and
inaccuracies in our case, which is the aerial map of Munich. Therefore, we recommend
using “EPSG:3857” around the Munich area.

4 ROADRUNNER 9

4 RoadRunner

After exporting the aerial image from QGIS, we import that image into Roadrunner as
the base plate and create a road network of a city with its instructions.

4.1 Draw Road

(a) without Curb (b) with Curb

Figure 3: The difference between roads with and without Curb

You can easily add road by following the official instruction videos and trying by yourself.
We recommend choosing the road style with curbs. This can be found after clicking on the
road. The difference between roads with and without curbs is obvious and is demonstrated
in Figure 3. If the road does not have a curb, the sidewalk will not be continuous on the
junctions. Roads with curbs will make their sidewalks more and more narrow in junction
with roads that do not have a sidewalk.

4.2 Edit Road

Figure 4: Lane Edit Tools (From left to right: Lane Tool, Lane Width Tool, Lane Offset
Tool, Sidewalk Height Tool, Lane Add Tool, Lane Form Tool, Lane Curve Tool, Lane
Chop Tool, and Lane Split Tool)

1. Applying with the Lane Width Tool as in Figure 4 and according to Richtlinien für
die Anlage von Landstraßen [6] and Guidelines for the Design of Motorways [7] as
we mentioned, we set most of the width of our roads to these numbers: Sidewalk:
1.5, Curb: 0.5, Parking: 2.5-2.8, and Driving: 3.5.

2. You can add the parking spots on the side of the road by first sectioning the lane
that you want to set as parking slots using the Lane Chop Tool. Then, select
the sectioned rectangle by the Lane Tool and change its type to Parking. To edit
the parking, use the Parking Tool to select the parking area. You can change the
Entrance Side, the Angle, and the Width in the Parking Geometry.

4 ROADRUNNER 10

(a) Lane Curve Tool
Example

(b) Lane Add Tool Ex-
ample

(c) Lane Form Tool
Example

Figure 5: Lane Editing Tool Example

4.3 Junction Section

1. To edit and configure the junction, you can use the Custom Junction Tool to select
the two ends of the roads that you want to join together, and then press space. A
junction will then be created.

2. You can edit the corners of the road to fit the aerial image using the Corner Tool.
To edit the logic on the junction, use the Maneuver Tool to connect the logic control
points of each lain to each of its corresponding lanes.

4.4 Addition of Roads

There are many details on the road that affect the behavior of a human driver. These
details can not only provide valuable hints for the driving decision but also function as
a very important part in the sense of whether the simulator is realistic enough. We also
advise the following group on our project to keep to our effort and make the details align
with the regulations.

4.4.1 Lane Marking

1. Using the Lane Marking Tool from the toolbar, you can add the markings on the
road by selecting the road using the Lane Marking Tool and then dragging a marking
style file from the Markings folder in the Library browser to the road.

2. You can divide the markings on the road by right-clicking on the markings. You
can even delete the markings by first dividing them from other markings, and then
deleting them.

3. The most common marking styles that are used are DashedSingle03 (used for mark-
ings on the middle lane of highway same direction road), DashedSingle05 (used
for main roads in the city), DashedSingle07 (used for markings approaching the
junction), DashedSingle10 (used for markings in the junction).

4 ROADRUNNER 11

(a) DashedSingle03 (b) DashedSingle05 (c) DashedSingle07 (d) DashedSingle10
(Red: DashedSingle10,
Blue: DashedSingle07)

Figure 6: Four useful lane styles

4.4.2 Area Isolation

There are usually some areas on our roads to make more space and increase safety for
road users, which is defined as area isolation in our case. Here, we introduce two kinds of
area isolation in Figure 7.

(a) Striped Region (b) Traffic Island

Figure 7: Striped Region vs Traffic Island

Striped Region
The striped region, in our case, is a
buffer zone and turn lanes. It can
be used to create a buffer zone or
safety spaces between traffic lanes
and other road elements.
To add the striped regions, one can
right-click with the Marking Poly-
gon Tool. We have created a special
marking material which is located in
the Unterschleissheim folder. Figure 8: Markings for Unter-

schleissheim

5 UNITY 12

4.4.3 Traffic Plates and Traffic Lights

1. Select the right item in the Props →
Signs → Germany folder in the Library
Browser. Open the 2D Editor from
Windows. Click on the added variant
in the Attributes window. This creates
a copy of the format of the sign, which
you can edit and reuse.

2. Use the tool on the left side of the 2D
Editor to edit the sign. Remember to
use the Bahnshift text font for the traf-
fic plates because it has a similarity
with standard DIN 1451 [12].

Figure 9: Signs of Unterschleissheim

4.5 Create Road Style

1. To create a new road style, use the
Cross Section Tool, which can be
found on the toolbar to right-click on
a road that has already been modi-
fied.

2. Press the new road style by clicking
on the Create Road Style in the At-
tributes Window. A new road style
will show up in the current folder of
the Library Browser. Figure 10: Road Styles of Unterschleis-

sheim

5 Unity

5.1 Asset

5.1.1 Predispose

Before we start drawing the scene with unity, it would be better to envision the elements
that will be involved in the scene, for example, pedestrians, plants, and buildings. As
a powerful and popular cross-platform game development engine, Unity has a robust
asset library where we can easily access a wide range of graphics, and model resources to
accelerate the development process.

5.1.2 Create folders according to the hierarchical type of the model

When working with models in Unity, organizing the assets and files efficiently is important
for maintaining a structured project. Follow these steps to create the folders.

5 UNITY 13

5.1.3 Modify

After we import the resources into the asset, there is still more modifying work needed to
do to suit our specific projects, such as scale, rotation changing, and appearance rendering
method transforming. For the scale and rotation changes, we can go into the inspector
window, and enter the specific values. For the appearance rendering method transforming,
Unity provides the opportunity to change various properties such as lighting, materials,
textures, shaders, and lighting. These options can be seen in the inspector window. It is
necessary to know that when we modify one item in the asset, the changes will apply to
all the scenes using this item. There is a tip we can know: when we import the building
asset, sometimes there will be a diffuse reflective layer of the building which generates a
diffuse reflection of the building with natural light. However, it could be shadow rendering
method does not work with the version of Unity being used, or it could be a limitation
of the Mac’s display, this layer produces a fuzzy shell outside the model. In this case,
the strategy we adopt is deleting this layer, then the building can be displayed well.
In addition, there is an add component function that allows users to attach additional
functionality and behaviors to buildings. We have not used this function, but we think
this could be a useful tool for future work, such as adding some scars on the road.

5.2 Import the Road Runner model into the Unity

When we import the road model from Roadrunner, we take the following steps:

1. Prepare the file in the Roadrunner: pack the Roadrunner files into a folder. Create
a new Unity project: We choose 3D (HDRP) as our template

2. Import the roadrunner model and place it in the scene. Left-click the Asset folder,
which is in the project window at the bottom left of the screen. Then right-click
and select Import New Asset, or simply drag the Roadrunner folder into the Asset
window. Wait a while for Unity to process the import, the waiting time depends on
the complexity and size of the model. After the importing process finishes, we can
now drag the .fbx file from the project window into the SampleScene, and finally,
the model can be displaced in the Scene window. A little tip is that you can set the
axes to (0,0,0).

5.3 Restore the road details in Unity

1. After we have imported some building assets into Unity, we can do many operations
to fine-tune the placement and scale the objects. These operations are realized
by controlling the mouse in conjunction with the keyboard. We summarize some
common operations:
1. left-click+Q: Selection
2. left-click+W: Drag
3. left-click+E: Rotation
4. left-click+R: Change the scale of the building (you can also achieve this by
changing the scale in the transform window)
5. Press and hold the scroll wheel: move and pan the object within the Unity editor.

6 GARCHING 3D SCENE 14

If you want to save the new component after the change, you can drag the file from
the layer into the asset and select it.

2. Restore the buildings according to the real scene
Access to maps with real street views. In this step, we referenced multiple live maps
and drove ourselves to the field for a full range of photography. Listed below are
some of the live map resources we refer to

Figure 11: Street information from Mapillary [13].

(a) Our field trip to collect detailed
data. (b) Bird view from Google Earth [14].

Figure 12: Collecting geographical information from Google Earth and field trip.

6 Garching 3D Scene

We modeled and digitally twinned this city in Unity as 1:1 as possible, based on a high-
precision map of Garching, the city around Munich. We transformed the real-world map
data into a virtual urban environment including road networks, lanes, traffic signs, signals,
and buildings. This map modeling allows us to generate scenarios that provide realistic
urban scenes for developing and testing autonomous driving systems. The Garching city
scene for our simulator is designed in the following steps.

6.1 Map modeling

We use OpenStreetMap, GoogleMap, and custom map data as a basis for building vir-
tual city environments. This map data contains the road network, traffic signals, lanes,

6 GARCHING 3D SCENE 15

intersections, buildings, and other important landmarks. We read and parse map data to
extract key information such as roads, lanes, traffic lights, buildings, etc. This information
is used to construct a virtual urban environment.

(a) Bird’s eye view Garching road network
in Google Maps

(b) Bird’s eye view Garching road network
in our scene

Figure 13: Google Maps vs Our Scene

6.2 Road Generation

Based on the map data, we use a drawing tool in Unity called Easy road to build and
generate our road network. We also generate a road grid based on road rules and geometric
properties. Roads can be straight, curved, freeways, or complex intersections. In addition,
users can manually create and modify roads in the simulator using customization tools.
We generate lane markings and lane boundaries on roads based on lane information from
map data. These lane markings include lane lines, dashed lines, solid lines, etc., which
are used to indicate the areas and rules for vehicle travel.

6.3 Buildings and Landmarks

Our 3D scene places virtual buildings at locations based on the building information in
the map data. These buildings can be buildings, stores, public facilities, etc. Landmarks
such as bridges, squares and landmarks can also be added to the simulator.

(a) Urban buildings (b) Landmark building

Figure 14: Urban buildings and Landmark building

6.4 Lane markings and traffic rules

The simulated 3D city scene generates the correct lane markings and traffic signs on the
road based on the lane markings and traffic rules information in the map data. This

6 GARCHING 3D SCENE 16

includes lane lines, intersection markings, traffic signals, etc. These markings and rules
play an important role in vehicle behavior and navigation.

(a) Lane markings on the viaduct. (b) Sunny weather conditions

Figure 15: Lane markings and weather in the simulation.

6.5 Lighting and Weather Conditions

We also provide realistic lighting and weather simulation for urban scenes. Users can select
different weather conditions such as sunny, cloudy, rainy, or night and adjust lighting and
shadow effects to create realistic environments.

6.6 Dynamic and static objects

At the same time, the various types of environments in our scene consist of 3D models
of static objects (such as buildings, vegetation, traffic signs, and infrastructure) as well
as dynamic objects (such as vehicles and pedestrians). All models are carefully designed
to balance visual quality and rendering speed: we use low-weight geometric models and
textures but maintain visual realism by carefully crafting materials and using variable
levels of detail. All 3D models have a common scale and their size reflects the size of real
objects. By following these steps, the 3D scene Garching is able to simulate a realistic city
scene including road networks, buildings, traffic rules, and lighting effects. This provides
developers and researchers with a highly customizable and realistic platform for testing
and training autonomous driving systems.

Figure 16: Dynamic vehicles and pedestrians on the street, as well as static objects

7 RESULT DEMONSTRATION 17

7 Result Demonstration

7.1 Case 1 Traffic circle simulation

As a popular intersection design, roundabout traffic plays a critical role in the public
transport system. It could effectively manage traffic flow, minimize conflict points, and
improve overall traffic efficiency.
However, it also comes with a complex traffic situation. The main problems with it include
multiple entry and exit points and lanes, peak hours, and high traffic volume, and some
drivers may fail to respect the right of way of other vehicles on the roundabout. So, we
need to build a simulation scene for Traffic Island.
In this case, we select a traffic island (48.286355, 11.584840) in Untershleisshiem, and
rebuild it in Roadrunner with a high degree of similarity.
Figure 17a displays the real scenario. It can be easily found that various guideboards are
set at the crossing, including signs of Yield, Pedestrian Crossing, Turn Right, and Traffic
Circle. Using the toolkit in RoadRunner, we did a 1-to-1 simulation of the traffic signs,
seen in Figure 17b. In addition, we restored the surrounding greenery in Unity.

(a) Real view (b) Simulation in RoadRunner

Figure 17: Case 1 Traffic circle simulation

7.2 Case 2 Simulation of intersections near attractions

As all know, Munich is a tourist city with many attractions, the city is dotted with at-
tractions, big and small. However, being close to an attraction also means high traffic
and congestion, a mix of transportation (cabs, internet taxis, or other means of trans-
portation), and potentially a lot of pedestrian traffic.
In this case, we chose a crossing (48.284724, 11.553562) near Untershleisshiem Seen. This
lake is a very popular lake in the Untershleisshiem area, and at this intersection, many
different types of signs are installed to indicate the different modes of transportation next
to the attraction. What is worth mentioning is that we can see a white, rectangular-
shaped sign in Figure 18a. It represents “Rettungsweg”, and is used to indicate the
escape route. There is no existing model in RoadRunner, so we processed a made this
model by ourselves in RoadRunner, making the available signs more diverse. In addition,
we completed the surrounding natural landscape in Unity. The final result is presented
in Figure 18

8 LEARNING ALGORITHM 18

(a) Real view (b) Simulation in Unity

Figure 18: Case 2 Simulation of intersections near attractions

8 Learning Algorithm

8.1 Introduction

Another task involved analyzing and implementing a self-driving vehicle (SDV) algorithm
using precise HD maps derived from real-world environments. This section explores how
real-world driving examples were used as training data in [15] to develop a driving pol-
icy for an SDV through reinforcement learning. Our goal is to assess the algorithm’s
adaptability to a Unity game engine-based driving simulator.

8.2 Architecture

To achieve autonomous driving, a self-driving vehicle (SDV) must address two main chal-
lenges: path planning and object detection. Path planning involves determining the
desired trajectory for the vehicle, while object detection entails identifying and recogniz-
ing various elements such as other vehicles, traffic lights, lanes, and general obstacles like
roadwork sites.
In the study referenced as [15], real-world driving scenes in the form of high-definition
(HD) maps were inputted into a simulator. The simulator then applied a driving policy
to guide the vehicle along a specific path. The predicted path was subsequently compared
to the path taken in the real-world example. By evaluating the deviation from the expert
driver’s example, the driving policy was adjusted accordingly. This iterative process
involved feeding a substantial amount of data into the algorithm, enabling the SDV to
learn and imitate the driving behavior of the expert driver.

8.2.1 Inputs and Outputs

In order to understand and implement a similar algorithm for incorporating self-driving
functionalities in a vehicle, it is essential to be familiar with the given inputs and desired
output. Determining the desired output is relatively straightforward, as it involves defin-
ing the vehicle’s position in a specific state using X and Y variables, along with a yaw
value indicating its facing direction.
The required inputs can be obtained by studying the l5Kit dataset used in [15]. They are
presented in Table 1. The term “number of samples” refers to the maximum perception

8 LEARNING ALGORITHM 19

Figure 19: One iteration of policy update [15]

capacity, meaning that up to 30 other traffic participants can be considered within a
single time step. Similarly, for the lanes, this means that up to 30 interpolated X and Y
values representing the boundaries of a lane, corresponding to a certain lane length can
be considered.

Table 1: Algorithm Inputs

Input Properties No of Sam-
ples

SDV position X, Y, yaw pose of current point
in time

1

Other Traffic Participants X, Y, yaw pose of current point
in time

up to 30

Lanes mid interpolated X, Y points of lane
center

up to 30

Lanes left interpolated X, Y points of left
lane boundary

up to 30

Lanes right interpolated X, Y points of right
lane boundary

up to 30

Crosswalks polygon boundary of crosswalks up to 20

8.2.2 Neural Network

To implement a self-driving vehicle algorithm based on HD maps and object detection,
it is essential to analyze previous significant work in that field. Therefore, I examined
the neural network architecture presented in [15], which is specifically designed for path
planning. In order to incorporate all the features listed in Table 1, a graph neural network
is utilized. The inputs are passed through a 3-layer PointNet network, resulting in a
128-dimensional feature descriptor. This descriptor is then aggregated using a scaled dot-
product attention layer. Finally, a Multi-Head Attention layer outputs the action that
the SDV should take.

8 LEARNING ALGORITHM 20

Figure 20: 4 graphical input examples. Red = SDV, blue = other traffic participants,
grey = lanes, yellow = crosswalks

8.2.3 Object Detection

To perceive its surroundings, a self-driving vehicle needs to detect objects in its environ-
ment. State-of-the-art object detection models like YOLOv5 [16] already exist and do
not need to be developed from scratch. For our work, we aim to incorporate real object
detection within our Unity simulator. To achieve this, we need to attach a camera to
our vehicle that is capable of capturing images of the environment. To that end, I have
implemented a C# script to capture snapshots from our vehicle’s dash cam.

8.2.4 Practical Implementation of Urban-Driver

To validate the work presented in [15], I attempted to run and analyze the provided
Jupyter notebook within the l5kit repository. However, I encountered challenges related
to package dependency versions, as the code was published some time ago. In order to
execute the example in l5kit/examples/urban driver/, I had to use Python version 3.7,
Numpy version 1.19.5, and wheel version 0.38.4; otherwise, the installation would fail.
After resolving the dependency issues, I was able to train the model using the provided
example data.

8.3 Outlook

The ultimate objective of this project is to have a Unity-based driving simulator with
self-driving vehicles trained on the proposed algorithm. The DI-Lab project aimed to
understand and verify the algorithm’s structure, inputs, and outputs, as well as to grasp
the overall project concept and implement initial steps. Moving forward, as part of the
“Forschungspraxis” phase, I will continue by simulating the bird’s-eye view inputs depicted
in Figure 20 within Unity. I will process these inputs and feed them into the algorithm to
obtain initial training results based on our own simulator. Additionally, I will integrate a
LiDAR sensor into Unity to simulate real object detection capabilities.

References

[1] Mathworks RoadRunner. https://www.mathworks.com/products/roadrunner.
html.

[2] UNITY ENGINE. https://unity.com/.

[3] Bayern Atlas and Simple 3D Architecture Models. https://geoportal.bayern.
de/bayernatlas/?topic=ba&lang=de. Accessed: 2023-07-18.

[4] Unity Learn Platform. https://learn.unity.com/. Accessed: 2023-07-18.

[5] VectorZero. https://www.youtube.com/@vectorzero1558. Accessed: 2023-07-18.

[6] Road and Transport Research Association. Richtlinien für die Anlage von Land-
straßen. FGSV, 2012.

[7] Road and Transport Research Association. Guidelines for the Design of Motorways.
FGSV, 2011. url: https://www.fgsv-verlag.de/pub/media/pdf/202_E_PDF.v.
pdf.

[8] Unity Version Control. https://unity.com/solutions/version-control. Ac-
cessed: 2023-07-18.

[9] QGIS Homepage. https://www.qgis.org/en/site/. Accessed: 2023-07-18.

[10] EPSG:3857. https://epsg.io/3857. Accessed: 2023-07-18.

[11] EPSG:4326. https://epsg.io/4326. Accessed: 2023-07-18.

[12] DIN 1451. https://en.wikipedia.org/wiki/DIN_1451. Accessed: 2023-07-18.

[13] Mapillary. https://www.mapillary.com/. Accessed: 2023-07-18.

[14] google earth. https://earth.google.com/web/@48.16450537,11.58641181,507.
87739675a,169.90387884d,35y,0h,0t,0r. Accessed: 2023-07-18.

[15] Oliver Scheel et al. “Urban driver: Learning to drive from real-world demonstrations
using policy gradients”. In: Conference on Robot Learning. PMLR. 2022, pp. 718–
728.

[16] Glenn Jocher et al. “ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmen-
tation”. In: Zenodo (2022).

21

https://www.mathworks.com/products/roadrunner.html
https://www.mathworks.com/products/roadrunner.html
https://unity.com/
https://geoportal.bayern.de/bayernatlas/?topic=ba&lang=de
https://geoportal.bayern.de/bayernatlas/?topic=ba&lang=de
https://learn.unity.com/
https://www.youtube.com/@vectorzero1558
https://www.fgsv-verlag.de/pub/media/pdf/202_E_PDF.v.pdf
https://www.fgsv-verlag.de/pub/media/pdf/202_E_PDF.v.pdf
https://unity.com/solutions/version-control
https://www.qgis.org/en/site/
https://epsg.io/3857
https://epsg.io/4326
https://en.wikipedia.org/wiki/DIN_1451
https://www.mapillary.com/
https://earth.google.com/web/@48.16450537,11.58641181,507.87739675a,169.90387884d,35y,0h,0t,0r
https://earth.google.com/web/@48.16450537,11.58641181,507.87739675a,169.90387884d,35y,0h,0t,0r

	Abstract
	Introduction
	Background
	Motivation
	Tools Selection
	Resources and Materials
	Geographical Information
	Instructions on the Tools
	Reference of Building Roads

	Problems and Solution
	Team Effort Coordination
	Geographical Information
	Unity
	Large File Processing
	Workload Allocation among Team Members

	Complementary Tools
	Plastic SCM for Team Coordination
	QGIS for Geographical Data

	RoadRunner
	Draw Road
	Edit Road
	Junction Section
	Addition of Roads
	Lane Marking
	Area Isolation
	Traffic Plates and Traffic Lights

	Create Road Style

	Unity
	Asset
	Predispose
	Create folders according to the hierarchical type of the model
	Modify

	Import the Road Runner model into the Unity
	Restore the road details in Unity

	Garching 3D Scene
	Map modeling
	Road Generation
	Buildings and Landmarks
	Lane markings and traffic rules
	Lighting and Weather Conditions
	Dynamic and static objects

	Result Demonstration
	Case 1 Traffic circle simulation
	Case 2 Simulation of intersections near attractions

	Learning Algorithm
	Introduction
	Architecture
	Inputs and Outputs
	Neural Network
	Object Detection
	Practical Implementation of Urban-Driver

	Outlook

