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Abstract

The generation of synthetic data within simulation environments to partially or fully re-
place costly and sparse real-world data is important in a diverse range of fields, such as
autonomous driving, robotics and medical imaging. In this project, we bring together the
domains of geospatial engineering and autonomous driving. We establish how synthetic
semantic 3D city models can be used to obtain accurate, simulated laser scan measure-
ments of Light Detection and Ranging (LiDAR) automotive perception sensors.
Our contributions are threefold: (1) We successfully create a pipeline to create synthetic
point cloud data based on real-world locations by transferring semantic information from
OpenDRIVE and LOD3 models to the synthetic point cloud generation within CARLA,
a simulation environment, such that the synthetic point clouds have ground truth se-
mantic information. (2) We further design a novel metric, making use of the Multiscale
Model to Model Cloud Comparison (M3C2) and Cloud-to-Cloud (C2C) distances as well
as a voxelized Intersection over Union (IoU) approach. This metric enables the quanti-
tative comparison between different synthetic point clouds given their real-world point
cloud counterparts. (3) Finally, we explore the domain gap by harnessing the synthetic
point clouds for training PointNet++ and KPConv, two semantic segmentation neural
networks.
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1 Introduction

The generation of synthetic data within simulation environments to partially or fully re-
place costly or lacking real-world data is relevant in a diverse range of fields, such as
medical imaging, robotics and autonomous driving. In medical imaging, synthetic images
of dermatological conditions can complement scant real-world annotated data in train-
ing detection networks [8]. Comprehensive simulation environments for various purposes
allow for the generation of synthetic data in robotic environments [19]. Recently, there
has been active research [6] regarding the creation of synthetic data using simulation and
the domain gap between the generated synthetic and real-world-life data. In autonomous
driving, robust and provably safe path planning algorithms can be tested and fine-tuned
against automatically generated scenarios in simulation before being deployed to real-
world test vehicles [13].
As it forms - together with geometric understanding - the backbone of perception and en-
ables scene understanding, semantic segmentation is a crucial part of autonomous driving.
Today, deep learning-based methods are state-of-the-art in semantic segmentation. While
there are some (benchmark) data sets, such as SemanticKITTI [2] and nuScenes [3], the
absence of diverse large-scale training data and high cost of collecting and labelling new
data pose a challenge. With this project, we put forward a method to create synthetic
Light Detection and Ranging (LiDAR) point clouds in the urban road space to enlarge
and diversify the available training data.
Three main questions of research drive this project:

1. What are suitable classes and class correspondences for urban environment modeling
and road space segmentation using mobile laser scanning (MLS) data?

2. What deterministic and quantitative metric can be developed to compare synthetic
point clouds and real-world MLS data?

3. What are the domain disparities and inference performance variations between real-
world MLS and synthetic point clouds in tasks such as semantic road space segmen-
tation?

Approach and Contributions

In this project, we bring together the domains of geospatial engineering and autonomous
driving by investigating how synthetic city- and building models can be used to obtain
accurate, simulated measurements of automotive perception sensors such as LiDAR.
Building data comprising exterior features, such as walls, windows and doors (called Level
of Detail (LOD)3) is provided for an area within the city center of Ingolstadt, Germany,
by the SAVeNoW project [29, 32]. For the same area, dense MLS as well as OpenDRIVE
data is provided by 3D Mapping Solutions [27] within the SAVeNoW project [29].
In order to answer the research questions, we provide four major contributions to the
field.

• Firstly, the semantic datasets are analyzed to create a concise yet sufficiently detailed
set of classes to describe the urban environment.
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• The semantic LOD3 data as well as OpenDRIVE data are combined within CARLA [7],
a simulation environment for autonomous driving. This allows for performing vir-
tual LiDAR measurements and creating synthetic point clouds of the inspected area
in Ingolstadt.

• The synthetic point clouds obtained by this procedure are expected to be similar
to the real-world MLS point clouds in terms of semantics and geometry. To verify
this, we directly compare the point clouds by measuring distances and employing a
novel comparison metric developed for this project.

• Lastly, we leverage the synthetic data for training segmentation networks using
different proportions of real-world and synthetic data and compare inference perfor-
mance, thereby investigating the domain gap in semantic road space segmentation.

In chapter 2, we briefly introduce related work. Chapters 3 and 4 elaborate on which data
has been used in the project and how it has been processed, including the processes of
labelling real-world data, generating synthetic data, data comparison and training. Then,
in chapter 5, we present and discuss the results of our research. Lastly, we reflect on our
work and indicate further research directions in chapter 6.
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2 Related Work

Synthetic Point Cloud Dataset The simulators such as CARLA [7] provide the
ability to collect simulated LiDAR scans. The deep learning method can use vast data
from such environments. However, this method introduces a large domain gap between
the real-world and synthetic data, which is still open for research. Datasets such as Paris-
CARLA-3D [6] have shown a potential way to create synthetic data conveniently based
on 3D models. Moreover, they drive a correlated strategy by directly reconstructing the
environment from authentic point clouds using splats [24]. They aim to generate imperfect
synthetic scans that resemble real-world point clouds, ultimately reducing the domain gap
in training results for semantic segmentation to avoid using inexact geometric models.

Transfer Learning Synthetic Point Cloud Applying knowledge transfer from syn-
thetic to real-world data has been studied widely to mitigate constraints from data anno-
tation in various computer vision tasks, such as semantic segmentation. However, most
studies around transfer learning from synthetic to real-world focus on 2D images, while
applying synthetic data in 3D point clouds still needs to catch up. Until recently, more
research, such as SynLiDAR [34], focuses more on this problem. This method effectively
addresses synthetic-to-real-world gaps and consistently enhances point cloud segmentation
through its translated data.

TUM FAÇADE Façade segmentation plays a crucial role in 3D semantic segmentation
of urban scenes, as buildings serve as one of the most frequent objects in the cities. TUM-
FAÇADE[33] pioneers in the evaluation and creation of façade-focused 3D point cloud
benchmark for façade segmentation. They propose a method to enrich the existing 3D
point cloud benchmark with façad related semantics and introduce TUM-FAÇADE data
set. Moreover, they present a standard class list for façade segmentation. The list gives
descriptions and definitions of each class and their matching features in CityGML class.
In our work, we leverage the list to formulate a consistent class list between MLS point
cloud data and CityGML LOD3 building data.
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3 Data Preparation

In this chapter, we first elaborate on which data we use, then on labelling the data and
finally on how we generate synthetic data and collect synthetic point cloud.

3.1 Data Sets

For this project, data from various sources and of various kinds is being used.

3.1.1 Mobile Laser Scan

The project is provided high-density mobile laser scanning (MLS) data by 3D Mapping
Solutions as part of the SAVeNoW project [29] covering parts of the city center of In-
golstadt, Germany. MLS point clouds differ from classical LiDAR scans by their density.
While the latter usually have point densities of 50 - 500 points/m², MLS data can feature
over 5000 points/m² [38].

3.1.2 CityGML LOD3 Model

CityGML is an international standard format issued by the Open Geospatial Consortium.
It provides a universal style to express and symbolize information from object geometry,
semantics, object appearances to objects’ hierarchical relationships. It also offers different
Levels of Detail (LOD) to portray buildings in the city[10]. With LOD0 the simplest to
LOD4 the most intricated, it allows a more flexible depiction of buildings to adapt to var-
ious use cases. In our project, we focus our work on LOD3 building models for selected
street sections of Ingolstadt[32]. This dataset provided by the SAVeNoW project [29]
and the TUM Chair of Geoinformatics contains buildings that consist of the following
subfeatures: Door, Window, BuildingPart, BuildingInstallation, WallSurface, RoofSur-
face, ClosureSurface, GroundSurface, OuterCeilingSurface, and OuterFloorSurface. In
the later steps of our project, we leverage these subfeatures to create different segments
of 3D meshes that allow the transition of semantics.

3.1.3 OpenDRIVE

OpenDRIVE file [20] provides data regarding the geometry of roads, lanes, and objects,
such as roadmarks, as well as road features along the roads, like signals. OpenDRIVE’s
main purpose is to provide a road network description that can be fed into simulations to
develop and validate Advanced Driver Assistant Systems (ADAS) and Automated Driving
(AD) features. Combining the LOD3 Model with CityGML dataset, we are able to build
the virtual city and later leverage it for generating a synthetic dataset.

3.2 Definition of Classes for the Urban Environment

We define classes for labelling and segmentation in the urban environment and road space
based on the existing semantic categories in the CityGML and OpenDRIVE datasets. A
high-level goal while designing the class definitions is to keep the numbers of the objects in
each class to be roughly identical within one dataset. Thus, we investigate the CityGML
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/ LOD3 [32] and OpenDRIVE datasets in the FME Workbench. This provides a variety
of information on the properties of the dataset, including the number of occurrences of
different CityGML and OpenDRIVE class types. These numbers of occurrences serve as
a basis for the definition of our custom high-level classes. In order to obtain class balance
as much as possible, we merge similar class types, while also keeping some distinction in
important categories, especially within building features. (There, we actively decide to
keep features with relatively low occurrence counts, such as doors.)
The result of the merging process is depicted in Appendix Figure 9. The class list is given
in Table 1. For concise definitions of the classes, see Appendix Figure 8.

Table 1: Class list for the Urban Environment and road space segmentation.

Class Label No.
RoadSurface 1
GroundSurface 2
RoadInstallation 3
Vehicle 4
Pedestrian 5
WallSurface 6
RoofSurface 7
Door 8
Window 9
BuildingInstallation 10
Tree 11
Noise 12

3.3 Systematic Manual Labelling

To ensure high quality and reliability in the labelling of the MLS data, a labelling process
supported by automatic tools has been defined, as well as the specific tools to use.

3.3.1 Labelling Process

The labelling process has been designed to ensure highest possible consistency and quality
given the limited resources within the project. It encompasses six stages.

1. Loading in the MLS point cloud into the tool suite used for labelling.
Hereby, a transformation from global coordinates to a more handy local coordinate frame
can be performed. This transformation is only temporary and will be removed upon
saving the manipulated point cloud.

2. Running a connected-component-based geometric classification. This sep-
arates points and groups of points that are far away from other points in the region,
effectively filtering out outliers and singular objects. The algorithm splits up the original
point cloud into N new point clouds, each point cloud containing points that are geo-
metrically close to each other while having some distance to other groups. The indices
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(names) of the new point clouds are ordered by the number of points they contain, i.e. the
first new point cloud has the highest number of points, while the Nth point cloud has the
fewest. With the parameters used, almost all non-noise points are in the first new point
cloud, while the other new point clouds contain either some solitary (and still relevant)
objects or especially with ascending indices, noise. Thus, the majority of labelling work
will be done in the first new point cloud, called from now on for simplicity point cloud.

3. Performing ground plane segmentation. In the point cloud, points belonging to
the ground planes, such as roads, pavements and soil, are separated from points belonging
to 3D objects with height. This is a crucial step for simplifying and speeding up manual
labelling. The ground plane segmentation performs better when separable objects and
noise points have previously been removed, which is another justification for step 2 of this
process. The ground plane segmentation creates two new point clouds, one containing
ground points, the other containing the 3D object points.

4. Manual labelling of the ground point cloud and the non-ground point cloud.
This is performed using a polyline segmentation tool. For a selected group of points, the
numerical classification value (label) is assigned according to Table 1. This process step
is based on a labelling guideline created for this project. The guideline contains the class
names, their numerical representation, and a definition of what this class includes and
what it does not. The guideline is appended to this report, see Appendix 7 Figure 8. Each
point group selected and labelled with the segmentation tool is stored in a new sub-point
cloud. This point cloud contains only one class of points and manually has to be given
a meaningful name. This is to ensure easy re-labelling at a later time in case of human
errors.

5. Merge and export the labelled point cloud. Having labelled all points, the sub-
point clouds are duplicated and their duplicates are then merged into one point cloud.
That point cloud is then exported as a .las file and contains the labels.

6. Peer-checking of the result. Another member of the project team looks at the
labelled point cloud and double-checks the consistency of the labelling. In case of detected
errors and inconsistencies, the responsible team member revisits step 4 of this process and
adjusts the labelling. The effort of re-labelling is limited as the intermediate results in
the form of the sub-point clouds can be used.

3.3.2 Labelling Tools

In this project, the open source software CloudCompare v12 (Kyiv) [5] is used. It contains
a connected-component-based geometric labelling tool, a ground plane segmentation tool
based on cloth simulation [36] and a manual polyline segmentation tool. With these tools,
the labelling process can be efficiently conducted.
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3.4 Synthetic Data Pipeline

Our synthetic data pipeline takes in the CityGML model of the LOD3 Building [32]
and an OpenDRIVE file that contains the information regarding the road systems in
Ingolstadt. The synthetic data pipeline has three main steps: Road Generation, LOD3
Building Generation, and Map Generation.

3.4.1 Road Generation

For the current software to process OpenDRIVE files, we apply two different software,
RoadRunner and FME, since each has its advantages and disadvantages. In our project,
three different approaches are used to extract these data from the OpenDRIVE file into
our synthetic custom map. Figure 1 displays an overview of our dataflow. By applying a
different approach, the synthetic custom map generation would be as realistic as possible:

Figure 1: Overview of our dataflow

CARLA [7] is an open-source simulator for autonomous driving research. CARLA
allows for simulating LiDAR and camera sensors in virtual outdoor environments. The
synthetic LiDAR would be placed on an ego vehicle in CARLA to make the collected
point cloud more realistic. The vehicle would drive around the custom synthetic map we
created to collect the point cloud data. In the OpenDRIVE file processing step, CARLA
is used to interpret the driving logic (laning and road networks) from the OpenDRIVE
input file. CARLA would produce spawnable points for vehicles and route planner for
the vehicles.

RoadRunner [17] is an interactive editor that allows 3D scene design and road scene
customization for the simulation. RoadRunner takes the OpenDRIVE files and produces
a scene that contains the fundamental components of the road system in our custom map:
Road geometry, the city ground, trees, and some road installations, such as traffic lights



3 DATA PREPARATION 8

and traffic signs. RoadRunner Scene produces an FBX file containing all the geometry
information of the scene in meshes format. This FBX file would be applied later in
our pipeline to generate the synthetic map. The mesh geometries of vegetation objects
generated by RoadRunner are not accurate compared to real-world data. However, they
are positional correct, and their relative measure is also relatively valid, so they are still
acceptable when creating our synthetic map.

Feature Manipulation Engine (FME) [25] is a geospatial extract, transformation,
and load software platform. FME is applied to generate road installations. FME allows us
to customize the mesh transformation from the CityGML definition, which could create
better geometry details. FME transformation is more complicated than RoadRunner,
especially if we want to keep the semantic matching of the meshes when applied in the
CARLA simulator.

r:tr̊an [26] is a road space transformation library. It supports a smooth transformation
of road space model from OpenDRIVE to CityGML format, with the features in Open-
DRIVE preserved nicely. Since FME does not support OpenDRIVE format, we utilized
r:tr̊an to transform our OpenDRIVE data into CityGML format in order to do further
transformations on the data.

3.4.2 LOD3 Building Generation

To create custom 3D buildings, we need to transform CityGML file into CARLA-readable
format which is a FBX mesh file. We leverage FME to do the transformation: First, we
add a reader that reads in CityGML with individual feature type. The choice of reading
the features as individuals is important, since it allows us to produce separate mesh files
for each feature. By doing so, we can keep the object semantics in our custom map
for CARLA. After reading in the CityGML files with individual features, we pass each
subfeature of our LOD3 models [32] through the following transformers in listing order:

1. GeometryFilter This filter can be used to filter out geometry types that are spec-
ified. We use it to filter out geometry type “surface“, and pass them to later stages.

2. GeometryValidator This filter is used to detect invalid surfaces and if possible,
fix the surfaces. For example, we detect and repair surfaces with boundaries that look
connected when projected to X-Y plane, but are actually not well connected on Z coor-
dinate.

3. Triangulator We use the Triangulator transformer to take in surfaces and triangu-
late them into meshes.

4. MeshMerger We then use MeshMerger to combine the triangle meshes we have for
each surface into one mesh.
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5. Offsetter We use Offsetter to translate the coordinates of the meshes in order to
align with the road space model.
After transformation, we have for each feature type a single merged mesh. To save them,
we add a data writer to write the output meshes into FBX mesh files. We let the writer
copy the feature types from the reader so that it creates for each of them an output flow.

3.4.3 Road Installation

Road installations, such as fences, poles, and traffic lights, exist widely in the real-world.
To simulate them, we extract the feature CityFurniture from the road space model. We
first utilize r:tr̊an to transform OpenDRIVE data into CityGML model. We then leverage
FME to extract the CityFurniture objects and transform them into a mesh file. Again,
we use Triangulator, MeshMerger, and Offsetter to do the transformation. The detailed
visialization can be found in Appendix 11.

3.4.4 Map Generation

CARLA uses Unreal Engine Editor 4 to create and modify its maps. CARLA Unreal En-
gine Editor 4 (CARLAUE4) contains all the assets and scenes for generating the CARLA
binary. The CARLAUE4 contains all the functionality of CARLA and is kept separate
from most of the assets, so the functionality in this plugin can be used as much as possible
in any Unreal project.

Meshes Alignment in map generation In the CARLAUE4, we receive three FBX
files from the inputs: OpenDRIVE-RoadRunner meshes (comprising the classes road, side-
walk, trees, bushes, ground, traffic light, and traffic signs), LOD3 building model meshes,
and one OpenDRIVE-FME mesh (containing road installation features). Furthermore,
CARLAUE4 would take in the OpenDRIVE file directly and produces the road logic,
which contains spawnable points and a route planner. These FBX files, when imported
into Unreal Engine, have lost information regarding the global position and hence need
to align together. The LOD3 building was exported in the wrong scale (meter) while the
other was scaled to centimeters; hence, the LOD3 building models needs to be scaled 100
times in all dimensions. The rotation is maintained, so it is 3 Degrees of Freedom (DoF)
alignment corresponding to 3 coordinates. The meshes can be aligned by choosing a pair
of points that are matching to each other and fit them accordingly.

Semantic matching Instead of using the semantics given by CARLA, custom semantic
tags in CARLA were created and used corresponding to our classes (see Table 1) for real-
world data. This step is based on CARLA’s guideline documentation to update some
of the CARLA source code. Then each mesh would be matched to one semantic tag by
sorting the assets in Unreal Engine accordingly.

3.5 Synthetic Data Generation

After creating our synthetic data pipelines, we use a manually controlled vehicle in
CARLA to make the collected synthetic point cloud more realistic. The synthetic point
cloud is collected by two sensors on top of our vehicle.
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LiDAR Sensor configuration Our simulated LiDAR sensors’ configuration is based
on a real-life LiDAR setup. Based on the real-life configuration supplied by [11] and [6],
we update our simulated LiDAR setup accordingly. The details of our LiDAR setup are
provided in Appendix 7.

Manual Control Vehicle Setup In order to make the driving setup more realistic and
avoid the numeric complexity of designing a driving path, our ego vehicle is controlled
manually. Based on the script given by CARLA, we added more functionality to collect
and align the point cloud on the run and the option to save the point cloud. While
collecting the point cloud, the ego vehicle speed is maintained at around 30km/h. To
avoid physical simulation problems (such as invisible bounding box collision), most of
the physical interactions of the road and building meshes are turned off, and only sensor
interaction is allowed. The vehicle is driven based on the road logic. Furthermore, the
ego vehicle only acts as our sensors carrier, and hence a small deviation from the meshes
and driving logic, which could lead to non-perfect alignment between the vehicles and
road, has no notable effect on the experiment outcome. With this approach, the synthetic
point cloud can be collected quickly and conveniently. The complete implementation can
be found in our repository [18].

Noise Injection In CARLA, noise for synthetic LiDAR sensors is not yet supported.
Thus, before registering the synthetic LiDAR scans, we post-process the individual point
clouds by injecting noise. The process is depicted in Figure 2. The semantic LiDAR
scanner in CARLA collects points in cartesian coordinates and converts them to spherical
coordinates. Here, the error in range values is normally distributed with a standard
deviation of ρ = 2 cm, which produces promising results based on the work of [28]. After
applying the noise to the point cloud in spherical coordinates, the point cloud is converted
back to cartesian coordinates. Finally, we apply rotation and translation matrix based on
the current sensors’ position for alignment.

Figure 2: Carla noise injection process [28]
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4 Data Processing

One major goal of this project is to evaluate the usefulness and correctness of the generated
synthetic data. To this end, an indirect and a direct approach are taken. The direct
approach involves computing distances and designing a custom metric to quantify how
well the synthetic point clouds match the real-world ones. As an indirect approach, we test
the synthetic point cloud by application. We train semantic segmentation deep learning
networks on synthetic data, real-world data, and on different mixtures of these. Then,
by comparing inference measures, we aim to assess how suitable the synthetic data is for
training. In both approaches, the labelled real-world MLS data is necessary.

4.1 Direct Comparison: Distances and Metric

In order to compare the synthetic point cloud with the labelled MLS point cloud and
measure similarity, different distances can be employed. For reproducibility, we create a
Python script that conducts the distance- and metric calculation. For the benefit of the
community, we publish the script in [16].
Before comparison, it is necessary to transform the two point clouds into the same co-
ordinate frame. This step can be conducted and visually verified in CloudCompare [5].
Another preprocessing step is to conduct a top-view grid filtering (see also Appendix 7
Figure 15). This rough approach ensures that in the area of comparison, both point clouds
have at least some points. For the comparison script, we implemented the transformations
and filtering directly in the code.

4.1.1 State-of-the-Art Metrics for Point Cloud Comparison

There are several distances and metrics that can be computed between two sets A and B.
In semantic segmentation, the Jaccard index J(A,B) = |A∩B|

|A∪B| , also known as intersection

over union (IoU), is widely used. In semantic segmentation, it can indicate class-wise
segmentation performance. Calculating the IoU for each class individually and taking the
average results in the mean intersection over union (mIoU).
While the IoU is useful in semantic evaluations, for geometric comparisons, different
distances are preferred. The Hausdorff-Distance encodes the longest shortest distance
between two elements of A and B. In other words, it is the largest distance between the
convex hulls of the two sets. Practically, this means that outliers affect the Hausdorff
distance.
If point-wise correspondences between A and B are known, a point-to-point distance can
be computed by calculating the mean or median of the distances between the correspon-
dences. If there are no correspondences given, an alternative approach is for every ai ∈ A
to compute (1) the distance to the nearest neighbor-point in B or (2) the distance to a
mesh generated by the points of B. In this setup, B is called a reference point cloud, and
A is called the compared point cloud. For a valid result, the reference point cloud should
overlap the compared or target point cloud. Subsequently, we will call these approaches
cloud-to-cloud distance (1) and cloud-to-mesh distance (2) respectively [9, 12].
In the field of geodesy, change detection algorithms are widely used to monitor changes in
topography, vegetation, or also cities. One popular classical approach is multi scale model
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to model cloud comparison (M3C2) [12, 14]. M3C2 first estimates surface normals and
orientations and secondly estimates a mean change of surface along the normal direction
[12]. The result of the algorithm is a new point cloud dM3C2, in which points encode the
respective M3C2 distance (or change) at their position.
While M3C2 is more sophisticated than C2C, a limitation is that change is measured
along the directions of the surface normals. For this, see also Appendix, Figure 17. Thus,
changes in a direction parallel to surfaces are, as long as there are no correspondences
given, difficult to estimate. This is also true for C2C and C2M [12]. An extension of
M3C2 addressing this issue is Correspondence-Driven Plane-Based M3C2 [12, 35]. Next
to classical methods, there are also deep learning based change detection approaches [12].
These require training data sets [12].

4.1.2 Our Approach

To compare real-world and synthetic point clouds, for this project, we decide to compute
(1) a distance between the point clouds and (2) create a custom metric that shall ease
the comparison and benchmarking between point clouds.
Due to the lack of correspondences and change detection training data, the selection of
distances and metrics is limited to Hausdorff distance, Jaccard index, C2C, C2M and
M3C2.

Distance Calculation Experiments with the Hausdorff distance have led to the insight
that it is expensive to compute and affected by outliers. As we want to compare the point
clouds with only simple preprocessing methods described above, there will still be outlier
objects. These render the Hausdorff distance ineffective for our means, as outliers with a
distance of up to the filter-grid size are still in the point clouds. For instance, if there is a
car at the very border of A and point cloud B does not cover that area, the distance from
the points constituting the car to the nearest points in B is high. As only the highest
such distance is represented in the Hausdorff distance, we get no information on how the
rest of the clouds match (except for that they are closer than the outlier).1

This is why we chose to compute a C2C distance dC2C between the two point clouds. Here,
the outliers still have an impact on the result, but the much more numerous inliers will
dominate - thus, the result is more meaningful for an indication of how well the synthetic
point cloud matches geometrically with the real-world one.
Additionally, we compute the M3C2 distance. To make use of the semantic information
that we have, we perform the M3C2 calculation class-wise and compute a weighted aver-
age. Let C be the number of classes in both A and B. Then we split both point clouds

into disjoint class-wise point clouds, i.e. A =
C⋃
c=1

A(c) and B =
C⋃
c=1

B(c). On each pair of

class-wise point clouds, we perform M3C2 and take the median of the resulting M3C2
distances. We denote the class wise median as d̃

(c)
M3C2. Averaging the absolute values

of the medians with custom class weights W = {w(c)}Cc=1, we arrive at the mean M3C2

1In fact, we implemented and calculated the Hausdorff distance. For one early synthetic point cloud
and the corresponding real-world point cloud, the calculation took 5 hours on a modern notebook and
the result without grid-filtering was a distance of 75 m.
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distance:

dMeanM3C2 =
C∑
c=1

w(c) · |d̃(c)
M3C2| where

C∑
c=1

w(c) = 1. (1)

The final cloud distance we propose is a weighted mean between the absolute value of
C2C distance |dC2C | and the mean M3C2 distance dMeanM3C2:

d(A,B) = λ1dMeanM3C2 + λ2|dC2C | where λ1 + λ2 = 1. (2)

Note that the distance is in the same unit as point clouds A and B and thus has physical
meaning.

Metric Definition For the metric, we incorporate M3C2, C2C and mIoU and fit the
result to the interval [0, 1], where 0 is the best possible result, and where 1 means the
point clouds are as different as possible. For the fitting, we use a bounded growth function
with growth parameter α < 0 : f(x) = 1− exp(αx).
To compute IoU on 3D data efficiently, we create one voxel grid that we populate with
points from both class-wise point clouds. The voxels have a side length of lvoxel. The
union count is the number of voxels in which there are points from at least one cloud;
the intersection count is the number of voxels in which there are points from both clouds.
For the mIoU, we weigh the class-wise IoU (c) values with the custom weights W . Thus
we have

mIoU =
C∑
c=1

w(c) · IoU (c) where
C∑
c=1

w(c) = 1. (3)

The mIoU behaves inversely in the sense that beneficial mIoU values are close to 1 and
poor values close to 0. This is why we define a mIoU factor fmIoU = 1

mIoU+ε
, where ε > 0

is a small value to prevent division by zero.
In the final metric we weigh and insert the distances |dC2C | and dMeanM3C2 and the mIoU
factor fmIoU into the bounded growth function:

m(A,B) = 1−exp
(
α
(
λ1dMeanM3C2+λ2|dC2C |+λ3fmIoU

))
where λ1+λ2+λ3 = 1. (4)

Note that, in contrast to the distance (equation 2), the interpretation of the absolute value
of this metric is difficult. Instead, the metric is useful when comparing the similarities of
different synthetic point clouds to their respective twin real-world point clouds.

Implementation The Python script [16] we implemented for the calculation of dis-
tances and metrics uses py4dgeo [21] for the M3C2 calculations, open3d [37] for C2C and
laspy [15] for reading the point clouds. All other functionality is implemented by the
project team using standard Python libraries.
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4.2 Indirect Comparison: Network Training with Synthetic Data

From robotics to architecture, 3D semantic segmentation networks are widely used in
various fields. They are especially crucial in the area of autonomous driving, as their
capability to understand 3D outdoor scenes in detail facilitates the development of safe
and reliable navigation and decision makings. To train a 3D semantic segmentation
network that achieves desirable accuracy, the amount and quality of data are of great
importance. In reality, the acquisition of outdoor point clouds is not only time-consuming
and costly, but also poses the problems of occlusions and missing parts of buildings. This
raises the following question: Instead of spending more time and putting more cost into
collecting new and high-quality data, can one leverage synthetic point clouds to mend the
data shortage and effectively train the neural network? To answer this question, we select
two semantic segmentation networks and evaluate the feasibility to train them with our
synthetic data.

4.2.1 State-of-the-Art Deep Neural Networks for Semantic Segmentation

We choose two networks that are widely used in 3D segmentation problems: Point-
Net++ [23] and KPConv [30] for comparison. While they both leverage spatial property
of the point clouds, the former one integrates the geospatial information with multi-layer-
perceptrons stacking up in a hierarchical structure and the later one leverages 3D kernels
to aggregate the information.

PointNet++ [23] PointNet++, as a refinement over the original PointNet[22] archi-
tecture, significantly enhances the treatment of unstructured 3D point cloud data by
incorporating a hierarchical learning mechanism. The essence of this enhancement stems
from overcoming a primary limitation of the original PointNet architecture—its inability
to adequately capture local features and multi-scale data. The core idea behind Point-
Net++ is a nested application of PointNet—deemed “small nets“—across hierarchical
levels within the point cloud. The hierarchical strategy deployed in PointNet++ enables
the learning of local features with progressively increasing receptive fields, giving rise to a
more contextual understanding of the data. In the context of PointNet++’s performance
in point cloud segmentation, the effectiveness of the hierarchical approach is evident.
By methodically attending to localized and global features in a systematic, hierarchical
manner, PointNet++ offers an enhanced framework for point cloud analysis.

KPConv [30] Kernel Point Cloud Convolution is a state-of-the-art convolution network-
based approach for unordered point cloud classification and segmentation. Different from
other non-convolution works, it approaches the understanding of unordered point cloud
by comprehending their local spatial structure. Instead of defining kernels with pixels
or voxels like other similar approaches in convolution-based network, they use 3D kernel
points to describe the locations of kernel weights. Kernel points allow the kernels to
operate directly on point clouds, and thus eliminate the need to project the point clouds
onto 2D plane or 3D grids. Moreover, they operate the kernels on spherical neighborhoods.
This gives KPConv several advantages over other kernel-point-based methods. Compared
to computing convolutions on the whole point cloud, it largely lower the computation
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burden. The spherical shape also provides a more consistent domain compared to other
methods that find the kernel domain using k-nearest neighbor. Overall, KPConv is an
ideal network for analyzing 3D point clouds with their spatial distributions.

4.2.2 PointNet++

Our initial thought is to mitigate any potential distortions in performance outcomes due to
the difference in implementations, so we utilize the original repository from Qi et al.[22] for
training. But after several attempts, we decided to only use the structure of PointNet++
and wrote other parts of the neural network by ourselves. The main reasons are as follows:
(1) The original repository is not maintained for a long time, since the inception of the
architecture, with the paper published as far back as 2017. During the implementation
period, many of the utilized packages, such as Python, other Python libraries, CUDA
have released newer versions with modified functions and features. Therefore, updating
the original repository to align with the more recent versions of these packages would
necessitate extensive modifications to the codebase. (2) PointNet++ was tested on several
benchmark datasets, including ModelNet40[31], ShapeNet[4], and Stanford 3D Indoor
Spaces Dataset (S3DIS)[1], and then they were stored in HDF5 format. After being
converted into HDF5 format, the dataset is structured into a hierarchical form consisting
all individual 3D models or scenes in point cloud representation. Since our dataset is an
entire huge outdoor scenario which represents one part of Ingolstadt city, it will take lots
of effort if we manually split the dataset into small parts/scenarios in a similar form of
the dataset mentioned above. And it will have a bad influence on the performance of the
model as well, which we will explain later. To sum up, considering the effort required and
the uncertainty (we might face some issues but cannot get feedback from the author since
its not maintained anymore) to successfully run PointNet++ from the original repository,
we have decided to build the neural network by ourselves.

Data Preparation After using the same preprocessing methods that are applied in KP-
Conv, which generate compressed, downsampled point spheres and not achieving pleasing
results with PointNet++ as, for instance the point sphere did not guarantee a consistent
size, we approached the data preprocessing for PointNet++ in another way:
The data sets were split by applying a grid and segmenting it into cubes of size 6x6x6m
along the raster. Since PointNet++, like many other deep learning models, expects a
fixed input size for each batch, the size of the preprocessed data splits was fixed after
some manual feature inspections to 12k points. To not mistakenly cut objects in half
and therefore losing information about the point interaction in global space by slicing
the objects closed shape as well as to also enlarge the data available for training, the
sliding cube area was shifted by half its size, in other words by 3m in every direction.
Furthermore, every training sample was randomly rotated around the z-axis to augment
the cubes a bit. We did not want to apply any artificial noise as the real-world data is
already slightly imperfect by nature.

Training on Real World Data When it comes to training, one must take care of the
imbalanced distribution of the occurrence of each class. The imbalance can be exemplary
seen in 14. RoadSurface, GroundSurface and WallSurface heavily outweigh the other
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classes with a share of around 90% of the points in the provided real-world data set.
After preprocessing, the share shifts slightly towards walls and trees due to the way of
the method of the sliding downsampling window. The previously by density-dominating
road surfaces are reduced much more than the spaced-out crowns of partially freestanding
trees. Therefore a shift is noticeable and recorded in the appended Figure 18. Neverthe-
less, the imbalance of class distribution remains, although different, still existent. After
all, the standard unweighted multiclass cross-entropy loss approach will therefore not lead
to pleasing results. The loss function(s) should be picked with respect to the class imbal-
ance. Therefore a linear combination of Focal Loss and Dice Loss was chosen.

The Focal Loss is given by:

Focal Loss = −α · (1− p)γ · log(p) (5)

Where p is the predicted probability of the positive class, α is the balancing factor that
can be used to adjust the weight of the positive class relative to the negative class. This
is used to inversely apply the class balance proportion in order to give more impact to less
represented classes on the loss function. It generally encourages the model to down-weight
easy examples that are highly represented and focus the training on hard negatives. This
purpose is fulfilled by γ, the focusing parameter that adjusts the rate at which easy exam-
ples are down-weighted. When γ = 0, the focal loss reduces to the standard (weighted)
cross-entropy loss.

The Dice coefficient is given by:

Dice Coeff. =
2 · |y ∩ ŷ|
|y|+ |ŷ|

(6)

Dice Loss was added as an extension to Focal Loss to improve the IoU performance. The
measurement of overlap between the predicted labels and ground truth ranging from 0 to
1, with 1 representing complete overlap, is hereby taken specifically into consideration by
the loss function.

The results of the real-world training on PointNet++ can be found in 5.3. Training was
performed on real-world data only since we found KPConv to deliver more pleasing results
even after modifications to the PointNet++ structure, loss function and choice of different
hyperparameters. Therefore we chose to extend the tests on compositions of synthetic
and real-world data on the KPConv network which is introduced in the following.

4.2.3 KPConv

To minimize the effect of performance biases caused by implementation differences, we
utilize the original repository from Thomas et al.[30] for training. We do not do any
extra hyperparameter tuning in order to keep our experiments fully focus on the effect
of training with different data sets. Their program processes large point clouds directly
without the need to split the data into small scenes beforehand. This highly matches
with our case since our data are large point cloud files with more than millions of points
contained. The point clouds are processed and formulated into input batches with a
unique method, which contains the following steps:
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(a) real-world points (b) synthetic points (c) mixture

Figure 3: Mixture of points with 75% real-world and 25% synthetics.

Grid Subsampling This is to down-sample the point clouds in a grid fashion. Point
clouds are first being divided into small grids, then one point per grid is kept. The
down-sampling step allows less computational burden and memory consumption.

KDTree Construction For each point cloud, a kd-tree is constructed for sphere neigh-
borhood querying around selected center points.

Batch Formulation In each iteration, several random points are selected. Then the
spherical neighborhoods of these points are queried and re-centered to the origin. These
neighborhoods are then stacked together as an input batch to the network. To formulate
input batches that sample different regions of the clouds evenly, a potential value for each
point is maintained. Upon selection, the potential value of the point and its neighbors
will be updated to a higher value and thus lowering the probability for them to be selected
in later batches.
To evaluate the effects of synthetic point clouds, we train the network with the following
combinations of real-world and synthetic data: 100% real-world data, 75% real-world
data and 25% synthetic data, 50% real-world data and 50% of synthetic data, 25% real-
world data and 75% synthetic data, and 100% of synthetic data. The main goal is to see
how the network performs when we gradually increase the synthetic data and decrease
the real-world data in training. We mix the real-world and synthetic points by first
randomly down-sampling the real-world and synthetic point clouds to desired percentage,
then concatenate the points into one point cloud. The Figures 5, 6, and 7 visualize the
result for a 50-50 mixture of real-world and synthetic data. One can observe the synthetic
point cloud mend up a region of wall surface in real-world point cloud that is occluded
by tree.
We are also interested in exploring other use cases of synthetic point clouds. For example,
can they serve as extra structures for the model to learn more descriptive features to adapt
the domains between two kinds of data? Or can they serve as data for pre-training the
model, and allow us to do efficient transfer learning on real-world data? To evaluate this,
we designed two more experiments as follows: 1. Train on all real-world training data
and all synthetic training data, and evaluate on real-world validation data. 2. Train on
all synthetic training data for several epochs, then train on all real-world train data, and
evaluate on real-world validation data.
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5 Results and Discussion

In this section, we present and discuss the results of our experiments. We provide analyses
to the research questions of how to quantitatively compare the real-world with synthetic
data and investigate the domain gap of synthetic data when using it for semantic road
space segmentation. Also, we present the resulting synthetic point clouds generated from
the data generation pipeline.

5.1 Generated Synthetic Point Cloud

After applying the data pipelines and generation in 3.4 and 5.1, the final synthetic point
cloud contains 100M points. The semantic classes correspond to the real-world data
classes. The Figure 4 display the complete synthetic point cloud and the comparison
between synthetic point cloud and real-world point cloud. As mentioned in 3.4, vegetation
in our map is not geometrically accurate, which is displayed in Figure 5.

Figure 4: Complete synthetic point cloud (color) and comparison with real data (grey)

Figure 5: Tree in real (left) and synthetic data (right)

5.2 Cloud Comparison

Parameters For M3C2, we choose parameters proposed by CloudCompare’s M3C2
plugin for our data, see Appendix 7.3. For mIoU, we chose a grid size of 5 m for filtering
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and a voxel size of lvoxel = 0.5 m. The transformation offsets to bring both point clouds
to the same reference frame are given in Table 2. For the synthetic point cloud, we found
some systematic alignment errors and have a second set of (optional) transformations,
in the following called synthetic aligned. Additionally, the synthetic point cloud needs
to be flipped along Y . We suspect this originates in inconsistent use of left-handed or
right-handed coordinate systems in the simulation pipeline.

Table 2: Offsets for real-world and synthetic point clouds.

real-world Synthetic Synthetic (Aligned)
X -674000 0 -0.3
Y -5405000 0 -1.4
Z 0 0 -1.8

The class weights for mIoU and mean M3C2 are chosen to emphasize building-related
classes and can be found in Table 3. We consider walls to be especially important as they
constitute the main geometry of buildings. Note that we do not perform the comparison
on the classes Vehicle, Pedestrian, RoadInstallation, Tree and Noise, as these classes
are highly temporary or noisy.

Table 3: Weights per class used for weighted average computation mIoU and M3C2

Class RoadInst. GroundInst. WallSurf. RoofSurf. Door Window BuildingInst.

Weight 0.1 0.1 0.2 0.15 0.15 0.15 0.15

As distance weights we use λ1 = 0.6 for mean M3C2 and λ2 = 0.4 for C2C, assigning
more importance to the class-wise change detection than to the outlier-influenced cloud
distance. For the metric, we have a similar strategy in choosing the weights and consider
the fact that by construction, even acceptable mIoU values will lead to large IoU factors.
To have a balance between mean M3C2 and mIoU, we thus empirically select λ1 = 0.6 for
M3C2 and λ3 = 0.1 for mIoU. Again, we attribute less influence to C2C with λ2 = 0.3.
For the bounded growth rate, we empirically choose α = −0, 2 as it leads to a wide range
of values in the range [0, 1] being used with the data for this project.

Results and Findings For testing the distance and metric calculation, we select a
subset of the labelled training dataset called Train2. We use our implemented Python
script [16] and the parameters above. The results are in Table 4.

Table 4: Distance and metric results

distance metric dMeanM3C2 dC2C mIoU fmIoU

Synthetic 1.14 0.73 1.01 1.34 1.82% 54.79
Synthetic (Aligned) 0.15 0.09 0.04 0.31 29.01% 3.44

With the alignment shift of the synthetic point cloud, the distances are in a cm range,
while the mIoU is in a low two-digit span. This leads to a relatively small IoU factor
of 3.44. Accordingly, the aligned synthetic point cloud is performing well on our custom
metric with a value of 0.09, which is much closer to 0 than to 1.
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For the non-aligned synthetic point cloud, the distances are at around 1 m, which coincides
well with the magnitude of the alignment shift (see Table 2). The mIoU has worsened by
one order of magnitude. This is explainable with the voxel size lvoxel = 0.5 m < 1.14 = d
being smaller than the cloud distance. Essentially, the resolution of the IoU calculation is
higher than the distance of points, which leads to low IoU results. In contrast, with the
aligned synthetic point cloud d = 0.15 < 0.5 = lvoxel, thus the IoU is significantly higher.
The low mIoU as well as the higher distances lead to a metric score of 0.73, which is
closer to 1 than to 0 and much higher than the shifted score of 0.09. As the shifted point
cloud fits the real-world one better than the unshifted one, this result confirms that our
metric works as intended and can indeed distinguish well-fitting semantic point clouds
from less-well-fitting ones.

5.3 Training / Using Synthetic Data for Semantic Segmentation

5.3.1 PointNet++

The evaluation of the results when applying the model to the real-world data validation
split leads to the following segmentation as shown in Figure 6.
One can see the labelled classes and, especially important, in Figure 7(c), the blue ar-
eas, which indicate mislabelled points. Therefore, we can discern from the graph that a
considerable percentage of points have not been accurately labeled.
Furthermore, the confusion matrix for this evaluation is shown in Table 8, where the mis-
matches of the predicted point labels to the ground truth can be analysed in more detail.
The most well-segmented classes are RoadSurface, WallSurface, Tree, GroundSurface,
and Vehicle as can be observed in Figure 6, which the confusion matrix in Table 8
confirms by a relatively low False-Negative-Rate and a better performing Precision. Nev-
ertheless, the Vehicle class has many wrongly segmented cars in the left area of the view
in Figure 6. This area should probably have been cut off in any case since this area was
hardly covered by the LiDAR sensors with which the data was recorded.

We also observe that the class Door is frequently labelled as WallSurface leading to a 0%
precision and 100% false-negative-rate. This might originate in the often indistinguish-
able boundaries of the class to the surrounding wall structure. This might also be the
reason for many Windows and BuildingInstallations, which were segmented as part
of the wall. After all, even with the aid of Focal Loss, the imbalance (see Figure 14
in the Appendix) still seems to impact the network enough to predict those objects as
WallSurface.
Another problem could be the number of points in the sample, which we set to 12k
randomly selected points in a cubed subsection of the original cloud. This exceeds the
amount used in the PointNet++ paper, “PointNet++: Deep Hierarchical Feature Learn-
ing on Point Sets in a Metric Space“ by Charles R. Qi et al. [23], which uses only 1,024
points per pass for training and testing.
Although this may be a cause of loss in precision, we found having too few points or too
small-sized training samples to be more problematic. But this would have to be inspected
and analysed further.
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(a) True Labels (b) Predicted Labels

(c) Deviation of the Predictions (blue) (d) Class Legend for (a) / (b)

Figure 6: Prediction & deviation of the PointNet++ segmentation

Given the suboptimal performance of PointNet++ in our case, we decide to focus our
analysis on KPConv, which produces more promising results.

5.3.2 KPConv

We evaluate the results on our validation and test split for real-world data with IoU. The
models perform especially well on flat surfaces such as RoadSurface, GroundSurface,
and WallSurface. However, it is not the case for Door. We observe that doors are
often segmented as WallSurface. It might be caused by the class imbalances between
WallSurface and Door (see Appendix 7.8) and the similar structures between them. Since
they all have similar vertical flat plane structures, the models can easily get confused and
recognize them as same class. With much more WallSurface in the data, the models
then have higher probabilities to predict these flat surfaces as WallSurface.
Same situation above also happens in the classes RoadSurface and GroundSurface: Due
to different proportions for ground and road, synthetic data has considerably more ground
points than the real-world data. When the ratio of synthetic data increases, it starts to
bias the performances.
The performance on class Window decrease as synthetic data increase. In real-world data,
windows usually contain non-flat structures such as window frames. In synthetic point
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cloud, windows are usually without frames and fitted with the walls, which simplifies
them to flat surfaces and makes it hard for the models distinguish between windows and
walls.
The poor performances of Pedestrian most likely result from the lack of training data.
On the other hand, Tree segmentation performs well, which might result from its unique
structure that no other class possesses.
The objects in BuildingInstallation class often consist of different parts that have
similar structure to other classes. The current synthetic data BuildingInstallation is
still using only basic shapes such as cylinders or boxes, hence not close to real-life data.
For example, some of them contain vertical flat surfaces that are often segmented as walls,
and some of them are formed in irregular shapes that resemble noise.
Overall, the synthetic point clouds are smooth and contain relatively less significant struc-
tures for each class, which makes it hard for the model to extract meaningful features.
However, we observe that the models actually still produce acceptable results with a
mixture of 75%-25% between real-world data and synthetic data. We provide several
visualizations for the behaviours discussed above in Appendix 7.8.
Besides IoU, we present the results with visualizations. Although there are some perturba-
tions and noise in some objects, the models actually provide quite reasonable segmentation
visually. We provide a larger view of segmentation result on validation set with training
on 75% real-world data and 25% synthetic data in Appendix 7.8. Many objects are cor-
rectly recognized. However, the precise borders of these objects do not match perfectly
with the true labels. Thus, highly affect the performance of IoUs.
Similar to the results from Paris-Carla-3D[6], we observe poor performance when doing
transfer learning from synthetic data to real data. We attach the validation and test
results in Appendix7.8.

(a) True Label (b) 100%-0% (c) 75%-25%

(d) 50%-50% (e) 25%-75% (f) 0%-100%

Figure 7: Visualization of segmentation results on validation set with different training
data ratios.
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Table 5: Class-wise IoUs and mean IoU on real test data with training ratio: real%-
synthetics%

100%-0% 75%-25% 50%-50% 25%-75% 0%-100%
RoadSurface 0, 93 0, 94 0, 90 0, 92 0, 55
GroundSurface 0, 73 0, 69 0, 62 0, 66 0, 35
RoadInstallation 0, 51 0, 35 0, 40 0, 23 0, 23
Vehicle 0, 67 0, 66 0, 51 0, 48 0, 00
Pedestrian 0, 00 0, 00 0, 00 0, 00 0, 00
WallSurface 0, 71 0, 69 0, 73 0, 69 0, 62
RoofSurface 0, 01 0, 44 0, 65 0, 20 0, 66
Door 0, 04 0, 00 0, 00 0, 00 0, 00
Window 0, 24 0, 24 0, 30 0, 17 0, 21
BuildingInstallation 0, 80 0, 11 0, 10 0, 08 0, 13
Tree 0, 89 0, 45 0, 88 0, 85 0, 44
mIoU 0, 45 0, 45 0, 46 0, 39 0, 29
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6 Conclusion and Outlook

In this project, we succeed in accomplishing the four contributions of (1) defining a set of
semantic classes to describe the urban environment, (2) generating synthetic point clouds
including semantic information, (3) deriving of a meaningful comparison metric to ex-
press similarity between the generated synthetic data and corresponding real-world data,
and (4) investigating the domain gap between real-world and synthetic data by training
semantic segmentation networks on different mixtures of real-world and synthetic data.
By observing occurrences of the highly detailed class types in CityGML and OpenDRIVE
and merging them into broader categories, we define a class list both suitable for the de-
scription of the urban environment as well as for semantic road space segmentation. As we
keep relevant features such as windows, doors and roofs, the classes list is detailed enough
for a sophisticated description of the urban environment. By merging other CityGML
and OpenDRIVE class types that are less relevant to our application, we ensure the num-
ber of classes is adequate to be applicable for training semantic road-space segmentation
networks.
Our synthetic data pipeline successfully generates a synthetic model of the city center of
Ingolstadt based on the road network and LOD3 data provided by 3D Mapping Solutions
within the SAVeNoW project [29, 32]. Using CARLA [7], we have created a synthetic
Ingolstadt point cloud dataset.
The derived distances and metrics can indeed help in understanding which synthetic
point clouds are better fitting the real-world data. By performing change detection in a
class-wise manner using class-specific weights and combining it with the Cloud-to-Cloud
distance and the mIoU value, we combine established methods already known in the field
in a novel way to construct our metric. Furthermore, our distance measure gives a physi-
cally meaningful result helping with quantifying geometric divergence between two point
clouds.
With the experiments on training semantic segmentation network with different mixtures
of real-world to synthetic data, we gain precious insights in the feasibility as well as dif-
ficulties in fusing insufficient training data set with synthetic data. We observe that the
overly-smooth and featureless structure of synthetic data is the main cause of the gap
between real and synthetic data domains. Moreover, we find that although the synthetic
data, due to its simplified structure, cannot entirely replace real-world training data, it
still serves as an effective option for training a segmentation network with acceptable
results given the ratio of synthetic-to-real-world data is not too high.

Outlook and Future Research Directions Currently, the synthetic map still requires
3 DoF alignments. The synthetic model could fit better with real-world data by applying
further alignment methods, leading to a better synthetic point cloud. Furthermore, the
meshes production from our method is relatively simple. More complex methods could be
applied here to generate better details and realistic meshes. Otherwise, since the models
and the real-world data are aligned globally, a trained mesh deformation for the models
to fit the point cloud better could also be used.
For the synthetic data collection, currently, we inject a small amount of noise into the
point cloud. For the future, we propose to research how to make this noise more realistic;
for instance, by using a drop-off rate based on intensity, a drop-off rate based on other
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factors or even a learned noise.
To ensure an equal influence between the distance and the mIoU on the metric output,
we intend to further fine-tune the metric weights. So far, we have set the weight param-
eters empirically. In the future, a more rigorous and systematic approach can lead to a
more balanced metric. Additionally, we propose to make the voxel size lvoxel for the IoU
calculation a function of the distance measure. This is because with the mIoU, we want
to penalize proper semantic mismatches, not errors that arise due to a translation shift -
this shift is already taken into account with the distances. Thus, we advocate for inves-
tigations whether larger, adaptive voxel sizes (in the order of magnitude of the distance
measure) can help decouple the mIoU from the geometric error. An alternative solution
to the decoupling problem could be to perform cloud registration such as Iterative Closest
Point as a preprocessing step for the mIoU calculation (note that registration should be
performed only after having obtained the distances).
With the current experiment settings, we see the possibility to successfully train segmen-
tation networks with synthetic data. However, the approaches we use and results we
have obtained so far still have considerable room for improvements. Our approach to mix
the real-world and synthetic data is relatively naive. With random down-sampling ap-
proach, the 3D point clouds’ geographic structures are not well preserved. Moreover, this
method does not guarantee that the selected points lie in different areas of the two point
clouds. The two down-sampled point clouds thus may contain highly overlapping areas
when merging. An alternative way would be spatially cutting and merging point clouds
in CloudCompare to ensure selection of different areas for each point cloud. Further, we
do not focus on model-tuning in our work, since our goal is to assess the trainability of
data. It may be worthwhile to pursue hyperparameter tuning in order to fully uncover
the potential of synthetic point clouds. Last but not least, the question of whether it is
possible to bridge the domain gap between real and synthetic data, and if possible, how
should the problem be approached, is yet to be answered.
Finally, we are curious to see how our approach can be extended by incorporating other
modalities such as camera and radar data, effectively paving the way for synthetic multi-
modal perception and data generation.
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7 Appendix

Here, the interested reader can find additional information and further insightful details
on the project that could not be included in the main part of the report due to page
limits.

7.1 Class List and Definitions

In order to start labelling the real-world point clouds and train the semantic segmentation
network, we need to create a list containing all the classes, and formal definition of
each class, so that we could minimize the inconsistency when we separately labelling.
Meanwhile, we want to keep the numbers of the objects in each class to be roughly
identical. So our first step is to view the dataset we have, CityGML and OpenDRIVE, in
the FME Workbench. As described in the main part of the paper, the FME Workbench
could provide us various information about the properties of the dataset, e.g. the names
and the numbers of different types within the dataset. So, based on these information,
we listed all the types we had so far in CityGML and OpenDRIVE dataset as in Figure 9,
then we try to merge the similar or same types and try to keep the numbers of objects in
different types roughly same, so that we could avoid data imbalance in the final dataset.
Since our project are focusing on the building related objects, so although for some classes
like Road Installations and Trees, they have very few objects comparing to other classes,
we could ignore this point in our project. After considering the points mentioned above,
we define a class list as shown in Figure 8.

Figure 8: Class list with definitions used for labelling the MLS data and training segmen-
tation networks.
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Figure 9: Original names of each types from CityGML and OpenDRIVE and the numbers
of objects included.
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7.2 Data Splits

The synthetic data generation was possible for a subset area of Ingolstadt (the area where
we have been provided with LOD3 data). We split this area into a training, validation and
test area. The corresponding real-world MLS point clouds were labelled and constitute
the data sets training real-world, validation real-world and test real-world. The split has
been chosen with three constraints in mind:

1. There should be no overlap between each of the sets to avoid training leak.

2. The balance between the sets should roughly follow a 70 − 20 − 10 ratio between
train, validate, and test.

3. Each set should contain a sufficient number of points and instances for each class
that we train on.

The labelled real-world data sets are shown in Figure 12, while synthetic datasets from
the same area are depicted in Figure 13.

7.2.1 Data Split Statistics

To get an objective insight into how the data ratios are, we implemented a Python script
[16] that computes some data set statistics based on point counts. Point counts are no
reliable indication on the number of instances (as point densities in the point clouds can
vary from object to object), but can give a rough estimate. Figure 14 shows the results of
these statistics. Each bar represents one class. The total height of the bar represents the
share of this class over all data sets, while the colors of each bar indicate the distribution
of the class points between train, validation and test in the real-world MLS data.
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7.3 Parameters for M3C2

The parameters for M3C2 are found by using CloudCompare’s implementation of M3C2.
There, before performing M3C2, the parameters can be estimated by the programm. We
adopt these parameters, but also make use of p4dgeo’s option to run M3C2 with multiple
Normal Radius values. The parameters used in this project can be found in Table 6.

Table 6: Parameters for M3C2 in [m].

Cyl Radius Normal Radius Max Distance

0.21 0.21 10
0.21 0.42 10
0.21 0.84 10

7.4 Map Generation

In the context of CARLA, map generation involves aligning meshes to create a realistic en-
vironment for synthetic data. The alignment is achieved through 3 DoF, maintaining the
original rotation, and matching coordinates between paired points. To incorporate cus-
tom semantics, specific semantic tags were created for real-world data, following CARLA’s
guideline documentation, and updating the source code accordingly. Each mesh was then
associated with a semantic tag by organizing the assets in Unreal Engine accordingly.
The alignment process is further refined by manually adjusting the meshes using an an-
chor point or line. This step ensures precise alignment and accurate positioning of each
mesh within the environment. By selecting appropriate anchor points or lines that match
between meshes, the relative positions of various objects are preserved, resulting in a
coherent and realistic synthetic environment. During this manual alignment process, the
user carefully adjusts the meshes to fit seamlessly together, taking into account their
spatial relationships and interactions with the surrounding elements. By iteratively align-
ing and adjusting the meshes, the synthetic environment gradually takes shape, closely
resembling a real-world setting. Furthermore, we provide detail visualization for Road
Installation that is processed using r:tr̊an and FME.
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Figure 10: Synthetic custom map in Unreal-Engine 4

Figure 11: Road installation from FME in Unreal Engine 4
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7.5 Synthetic Data Generation

In Table 7, we specify the exact LiDAR configuration used in our setup.

Table 7: LiDAR Configuration in CARLA

Attribute Value
channels 128
points per second 500000
rotation frequency 20
upper fov 15
lower fov −25
horizontal fov 360
range 100
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7.6 Real-world and Synthetic Point Cloud Visualizations

Figure 12: Data Splits of real-world MLS point clouds. Blue/green color scale: training
data set. Brown/red color scale: validation data set. Pink scale: test data set.
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Figure 13: Data Splits of synthetic point clouds. Blue/green color scale: training data
set. Brown/red color scale: validation data set. Pink scale: test data set.
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Figure 14: Statistics of data splits of real-world MLS point clouds. The height/lengths of
the bars indicate the absolute percentage w.r.t the entirety of trainig, validation and test
points. The percanteges written in the bars themselves indicate the relative ditribution
between train, validation and test for each class. For instance, almost 50% of all points
are of class road; while 70.1% of road points are wihtin the training set.
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Figure 15: Grid Filter Result. Bird’s eye views of real-world (left) and non-aligned syn-
thetic (right) point clouds. Both are shifted to the same reference frame and only certain
classes as indicated in the legend are displayed. Top row: unfiltered point clouds. Bottom
row: grid-filtered point clouds. It can be seen that areas where there are only points from
one of the two clouds are filtered out, while the main area of comparison is being kept.
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Figure 16: Top view showing a section of the unaligned synthetic and real-world point
cloud displaying walls (read: real-world, blue: synthetic) of a house. The walls happen to
be arranged in such a way that one wall has almost no shift in the XY plane, while the
other wall is visibly shifted. Note that both walls do have notable shift in Z direction.

Figure 17: M3C2 distance point cloud with 3D view of the same house whose walls have
been shown in Figure 16. Blue and red points have relatively high M3C2 distances, while
white points have small ones. The insensitivity of M3C2 towards shifts orthogonal to the
estimated normal can clearly be seen. Similar as the (deep blue) ground points, both
walls are shifted by a notable amount in Z direction. However, only the side-facing wall
on the left is also shifted in the XY plane (see Figure 16). The M3C2 result clearly does
not consider the Z shift in the walls (which is orthogonal to the normals of the walls),
resulting in small M3C2 distances for the front-facing wall, while the side-facing wall’s
XY shift is well reflected in the M3C2 distance.
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7.7 PointNet++ Results

Table 8: Confusion Matrix PointNet++ on Validation Set

True Label
Predicted

Road Ground RoadInst. Vehicle Pedestrian Wall

RoadSurface 655345 139695 0 5182 0 17320
GroundSurface 94825 130538 4 73 0 61506
RoadInst. 6666 37713 412 20652 0 96240
Vehicle 14637 31391 2938 47497 0 80680
Pedestrian 10490 8284 100 611 0 9692
WallSurface 11076 56746 789 9255 64 2451781
RoofSurface 0 14 0 0 0 22251
Door 0 3555 69 506 0 37796
Window 1431 5558 2 1078 0 606316
Build.Inst. 0 9212 616 732 0 244621
Tree 200 14749 50 1368 6 119998
Precision (%) 82.46 29.84 8.27 54.62 0.00 65.41

True Label
Predicted

Roof Door Window Build.Inst. Tree FNR (%)

RoadSurface 0 0 4148 0 55404 25.28
GroundSurface 0 0 10846 246 60013 63.54
RoadInst. 4003 0 15664 2190 52500 99.83
Vehicle 2663 0 31950 8245 276035 90.42
Pedestrian 148 0 1790 519 9190 100.00
WallSurface 7495 0 22468 26111 261257 13.88
RoofSurface 0 0 209 337 1078 100.00
Door 174 0 302 74 17547 100.00
Window 52 0 4996 4005 72980 94.46
Build.Inst. 1515 0 26625 7492 78425 97.97
Tree 44 0 25360 7758 1081802 4.38
Precision (%) 0.00 0.00 3.46 13.15 55.02
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Figure 18: Shifted class distribution after preprocessing for PointNet++
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7.8 KPConv Results and Visualizations

Table 9: Class-wise IoUs and mean IoU on real validation data with training ratio: real%-
synthetics%

100%-0% 75%-25% 50%-50% 25%-75% 0%-100%
RoadSurface 0, 90 0, 89 0, 89 0.87 0, 55
GroundSurface 0, 58 0, 50 0, 49 0.42 0, 31
RoadInstallation 0, 34 0, 27 0, 20 0.31 0, 00
Vehicle 0, 89 0, 52 0, 57 0.72 0, 00
Pedestrian 0, 00 0, 00 0, 00 0, 00 0, 59
WallSurface 0, 76 0, 71 0, 66 0.73 0, 21
RoofSurface 0, 16 0, 09 0, 16 0.20 0, 00
Door 0, 17 0, 00 0, 00 0, 00 0, 28
Window 0, 48 0, 45 0, 28 0.28 0, 08
BuildingInstallation 0, 25 0, 18 0, 00 0.11 0, 45
Tree 0, 94 0, 93 0, 90 0.82 0, 01
mIoU 0, 50 0, 41 0, 39 0, 36 0, 22

Table 10: Class-wise IoUs and mean IoU on real validation data with training ratio:
real%-synthetics% (For transfer learning, it is pre-trained with all synthetic data, and
fine-tuned on real train data.)

100%-100% Transfer learning
RoadSurface 0, 90 0, 89
GroundSurface 0, 58 0, 50
RoadInstallation 0, 34 0, 27
Vehicle 0, 89 0, 52
Pedestrian 0, 00 0, 00
WallSurface 0, 76 0, 71
RoofSurface 0, 16 0, 09
Door 0, 17 0, 00
Window 0, 48 0, 45
BuildingInstallation 0, 25 0, 18
Tree 0, 94 0, 93
mIoU 0, 50 0, 41
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Figure 19: Segmentation result on validation set with training on 75% real and 25%
synthetics

(a) True class label (b) Predicted labels

Figure 20: The images are synthetic point clouds sampled from a façade in real MLS
data. The windows (blue region in upper image) on this façde is wrongly segmented
as WallSurface. The Door (purple region in upper image) on this façde is wrongly
segmented as WallSurface. Some other vertically flat but non-WallSurface surfaces are
mis-segmented as well.
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(a) True Class Label (b) Predicted Labels

(c) Side view

Figure 21: The images are synthetic point clouds sampled from a façade in LOD3 building
data. The windows (blue region in upper image) on this façde is wrongly segmented as
WallSurface. The window points inference from LOD3 buildings constructed structure-
less surfaces that blend into the walls. As one can observe from the side view, the front
surface of façade is a completely flat surface without any structure.
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Figure 22: This image presents the prediction results of a façade in real MLS data.
The BuildingInstallation objects on the top this façde are wrongly segmented as
WallSurface, as the main components of these installations are vertical planar surfaces.
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