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Abstract

Brazil is the largest producer of soybean in the world and the year-to-year variation of
its national production affects global food prices. The goal of this study was to develop
a regional and national soybean wheat yield estimation system for Brazil. Twenty years
(2001-2020) of readily available global gridded monthly climate and remote sensing indices
across the most important soybean cultivated areas were used to build statistical models
to estimate regional and national soybean yield, including six different machine learning-
based approaches: Random Forest, Gradient Boosted Trees, Artifical Neural Network,
Long Short Term Memory, Bi Directional Long Short Term Memory, and Transformer.
The best performance to estimate national soybean yield were obtained by ANN and Bi-
LSTM approaches, with an leave-one-year-out cross-validation rRMSE of less than 2%.
As the statistical models employed monthly climate and remote sensing data from within
a season, accurate national yield predictions are possible during the cropping season prior
to the harvest. This predictability of the national soy production improves approaching
the harvest. Estimating soybean yields in Brazil before harvesting can help to plan ahead
for production failures due to adverse weather.
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1 Introduction

Soybean is an important source of food, protein and oil and is considered as the primary
world source of vegan protein [Abraham et al., 2020]. In the recent years, Brazil has
become the world’s largest soybean producer exceeding the United States. Brazil has dou-
bled its annual production over the last decade, from 68 million tonnes (Mt) in 2010 to 138
Mt in 2021 [Conab, 2022|. Soybean is one of the most important crops for Brazilian na-
tional economy as it is a top export commodity reaching its highest value in 2021 with 86
millions tons that generated almost 40 billion dollar value. Soybean cropland in Brazil is
expected to increase more than 27% in the next 10 years by occupying lands with degraded
pasture. With the new areas, the national soybean production is expected to exceed
150 Mt by 2029 [Statista Research Department, 2022], [Colussi and Schnitkey,
2021]. With continuous growth of human population, the global demand for food and
particularly for protein are expected to increase by the end of the century, pressuring
agricultural systems to produce up to 60% more food. Brazil contributed with 7% of
global cereal exports in 2020, and is an important player in meeting current and future
demand for food [FAO, 2022]. However, climate variability which is mainly driven by the
El Nino phenomenon [Noia Junior et al., 2019], has strongly affected soybean produc-
tion in Brazil. In 2022, the country expected to produce 140M¢t of soybeans, but severe
droughts in southern Brazil reduced its production to less than 125M¢ [Conab, 2022].
Similar national soybean production failures due to widespread droughts also occurred in
2012 and 2016 [Conab, 2022]. These extreme events affected the global trade of agricul-
tural commodities, causing food price spikes. Soybean yield estimation systems could be
useful to anticipate national soybean production failures, which are usually only known
after harvest. These systems could help policy makers and food traders to plan ahead
any disruption of the food market caused by climate variability, stabilizing food security
[Voora et al., 2020], [Toloi et al., 2021].

Crop yield prediction is a challenging task as crop yield depends on many different fac-
tors such as climate, weather and soil. Methods based on machine learning emerge as an
alternative to crop simulation models as they can determine patterns and gain knowledge
from several different features using historical data. Various machine learning algorithms
have been used including regression models, Random Forests and Gradient boosting trees
[VanKlompenburg et al., 2020]. The most used model for crop yield prediction are
Artificial Neural Networks (ANN). [Barbosa dos Santos and Ferreira dos Santos,
2021] for example, used a a Multi-Layer Perceptron to predict soybean yield with seasonal
average temperature, relative humidity and solar radiation. Also, Cai et al. [Cai et al.,
2019] integrates satellite and climate data to predict wheat yield at regional scale using
different machine learning approaches.

Accordingly, this study aims to estimate regional and national soybean yield and pro-
duction in Brazil, using twenty years (2001-2020) of climate and remote sensing data.
Several machine learning approaches including Linear Regression Model(LM), Random
Forest(RF), XGBoost(XGB), Long Short-Therm Memory(LSTM), Artifical Neural Net-
work (ANN) as well as a transformer based approach are compared for this time series
prediction.
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First an exploratory data analysis on the climate and remote sensing data was applied to
select which climate variables and vegetation indices should be included. In section |3| the
different model approaches are introduced and given further information on their setup.
In section [l The models are compared by their performance on estimating soybean yield,
their spatial performance on state level as well global level using different metrics including
coefficient of determination (r?), Root Mean Squared Error (RMSE) and Root Relative
Mean Squared Error (rRMSE). The models with the best performance were tested for an
in-season analysis to also identify their soybean yield estimation performance during the
soybean season in Brazil.

2 Material and Methods

2.1 Soybean crop, climate and remote sensing data

Brazil is divided into 27 federative units (including 26 states and the federal district),
of which 20 produce soybean. This study was carried out for the six largest soybean
producing states in Brazil, which together account for 82% of national production. The
states studied are: Mato Grosso (MT, which accounts for 33% of the national soybean
production in 2022), Goias (GO, 13%), Parana (PR, 10%), Rio Grande do Sul (RS, 7%),
Mato Grosso do Sul (MS, 7%), Minas Gerais (MG, 6%) and Bahia (BA, 5%) (figure [1).
Historical soybean yield and harvested area data from 2001 to 2020 (totaling more than
26,000 yield observations) were collected from the Brazilian Institute of Geography and
Statistics [IBGE, 2022] for over 1400 municipalities. Around 3.5% of the yield data was
missing. The missing data were filled using a simple variant of the k-nearest-neighbour
approach (described in the subsection 2.1.1 Data Completion). Long term daily weather
data from 2001 to 2020 consisting of maximum and minimum temperature, solar radiation
and rainfall were obtained from the NASA POWER service (Prediction Of World-wide
Energy Resources) [NASA, 2021]. Weather data were collected for each of the studied
municipalities based on their central geographical coordinates (centroid). The satellite
data originated from NASA’s Moderate-resolution-Imaging-Spectroradiometer (MODIS)
satellites, which have been available since February 2000 with a resolution of 500m-1000m.
Only the bands 1-16 and 31-32 were used. The data was obtained from the Google
Earth Engine platform [Gorelick et al., 2017]|. The following remote sensing indices
were used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Chlorophyll Vegetation Index (CVI) and Green Leaf Index (GLI). A landcover
mask was applied to the satellite imagery for each individual county and only those pixels
classified as ”cropland” were used for further processing. The landcover mask was created
in 2016 and is based on the Sentinel-II satellites from the European Copernicus mission
[Buchorn et al., 2020]. The remaining pixels for each county were then averaged.
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Figure 1: National Soybean Production Share for the different states of Brazil

The soybean yield data in each municipality were trend-corrected with a cubic spline
function as suggested by [Guarin et al., 2020] to remove the long-term trend typically
due to technological improvements within the study period.

2.1.1 Soybean crop yield and remote sensing data completion

The spectral data from MODIS as well as the soybean yield data contained missing values.
The climate data had no missing values. Different approaches to fill the missing spectral
and soybean yield data, were used as follow:

Non-yield data: Climate/Spectral data has been generated by sampling from suitably
fitted distributions. Missing values in the spectral data were in turn filled by values
sampled from these distributions. The features of the spectral data followed either a
normal distribution or simple bimodal distributions. The shape of these distributions
varied notably for different climate zones and years. As a consequence, 2-component
Gaussian mixture models have been used as target distributions for each combination of
an input feature other than precipitation, year and climate zone, while for precipitation
an exponential distribution was chosen.
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Figure 2: Two distributions resulting from the fitting process used for data completion
and seasional forecasting, both 2-component Gaussian mixture models. The first cor-
responds to solar radiation in November while the second corresponds to the frequency
measurements of the first MODIS band in January, both restricted to climate zone Af of
the Koppen classification.

Yield data: A different approach has been used for completing the missing soybean
yield data. It requires less compute time than the previous one. The approach is based
on the following case distinction for each combination of year ¢ and county ¢, going from
2001 to 2020:

1. If i > 2001 and a proper yield value y.;_; exists, let N.; denote the set of at most k
counties d # ¢ with proper yield values y,; in the same climate zone as ¢ which are
closest to ¢ in terms of the 2-norm of the respective climate features (the climate
data has been normalized prior to determining the neighbourhood). If there are
fewer than k such neighbours in N := N,; NN, ,;_1, apply step 2 instead. Form the
average ratio

1 Yd,i

Y=
|Nc,i| Y Yd,i—1

of the counties’ in years ¢ and ¢ — 1 and set the missing value y.; == v - yci—1.

2. Define y.; as the average of the yields yq; in No,.

2.2 Climate and Vegetation Indices

Oceanic Nino Index Climate anomalies and volatility (e.g. abnormally low pre-
cipitation) regularly cause crop yield losses all over the world. Water deficit and ex-
treme temperatures are of particular significance in limiting soybean yields in Brazil
[Noia Junior et al., 2019], and their year-to-year variability is mainly caused by a phe-
nomenon known as El Nino Southern Oscillation (ENSO) [Noia Junior et al., 2019],
which has two main phases the El Nino and La Niria phases, defined as follow [NOAA,
2022]:

e FEl Nino brings above average temperature waters to the central and eastern tropical
Pacific, sometimes all the way to the coast of South America. At the surface, the
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prevailing easterlies (trade winds) slow down or sometimes even reverse. Rainfall
increases over the warm waters in the central-east tropical Pacific, but decreases
over Indonesia and the western Pacific. During EI Ninio events there is an increased
likelihood for floods in southern Brazil and droughts in the northern regions of the
country [Noia Junior et al., 2019

e La Nina results in an influx of below average temperature waters to the same re-
gion while the prevailing easterlies intensify. Its effects are adverse to the effects
attributed to El Nino events, i.e., floods in northern Brazil and droughts in the
south of the country.

For illustration, the large-scale El Nino event of 2015/2016 resulted in off-season yield
reductions of 4% for soybean and 31% for maize, respectively. These losses were mainly
associated with states in the northeast of Brazil (e.g. Bahia). The central part of Brazil
does generally not seem to be as affected by the effects of ENSO [Noia Junior et al.,
2019].

The Oceanic Nino Inder aims at quantifying the drasticity of the ENSO phases by means
of the running 3-month average of sea surface temperatures in the east-central tropical
Pacific between 120°-170°W (close to the International Dateline) and whether they are
warmer or cooler than average [NOAA, 2022]. The corresponding data obtained from
[CPC, 2022] contains one such measurement for each month, independent of county and
state.

2.2.1 Weather based Indices

Due to the climate in Brazil, the most restricting factors for the yield are heat and drought.
The following indices were used to help the models to detect when such events occur:

Hot Days Hot days are defined as a day where the highest recorded temperature exceeds
32°C" and the sum of these days per month was used as an additional input feature.

Lowrain Days Similar to the hot days, this index counts the number of days with less
than 0.5mm/m? of precipitation per month.

Evapotranspiration Evapotranspiration (ET) is the simultaneous transfer of water to
the atmosphere by evaporation (i.e. the process by which liquid water is converted into
water vapor and removed from the evaporation surface) and transpiration (i.e. the process
which consists of the vaporization of liquid water in plant tissues and its vapor removal
into the atmosphere) [Allen et al., 1998]. It is measured in mm/m? .

Following [Noia Junior et al., 2019], the Heargreves-Samani method was used to to
estimate the potential evapotranspiration (ETP). Furthermore using the water soil bal-
ance proposed by [Thornwaithe et al., 1957], the actual evapotranspiration (ETA) was
computed. Together, the Agricultural Reference Index for Drought, also known as ARID,
described by [Woli et al., 2012], was added to the data.
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Standardized Indices In contrast to the indices shown above, these indices use past
weather data to quantify how far present data deviates from the ordinary.
Three standardized indices were calculated:

e I-month Standard Precipation Index
e 3-month Standard Precipation Index

e I-month Standard Temperature Index

Past monthly precipation and monthly average Temperature data form the basis for the
computation. The indices are constructed as follows:

1. A gamma distribution is fit to the historic data (for the 3-month index the average
of the past three months is used).

2. The gamma distribution is fit to a standard normal distribution.

3. According to the above steps, find a transformation that maps the historic data
such that it follows a standard normal distribution.

4. Use this transformation on the new data to get the index

A value of —2 for the 1-month Standard Precipation Index would roughly correspond to
a month drier than approximately 95% of the measured months.

2.2.2 Spectral Based Indices

The following four related indices based on the spectral MODIS data have also been
included as input features to the models:

e Normalized Difference Vegetation Index (NDVI),
e Enhanced Vegetation Index (EVI),

e Chlorophyll Vegetation Index (CVI) and the

e Green Leaf Index (GLI)

The computation of these indices is based on the first four spectral bands recorded by
MODIS. All of them can be regarded as measures for the existence of vegetation and
individually can be used to estimate more intricate features such as the plant biomass,
the vegetation density and so forth.

Consider the NDVI as an example: It is computed from measurements of the first two
bands Eig;ggﬁ and has values between —1 and 1 if these measurements are positive and
finite. Areas harbouring dense vegetation will typically have a positive NDVI between 0.3
and 0.8.

The idea for this is as follows: Live green plants absorb solar radiation in the PAR spectral
region (photosynthetically active radiation). Leaf cells re-emit solar radiation in the near-
infrared spectral region corresponding to roughly 50% of the incoming solar energy in
order to avoid overheating. As a consequence, such plants appear rather dark in the PAR
spectral region and quite bright in the near-infrared spectral region, which is why the
difference in the nominator is going to be large.
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2.3 Statistical Data Exploration and In-season analysis
2.3.1 Metrics for soybean yield modeling performance

The performance of the soybean yield estimating models was tested with a leave-one-year-
out cross validation. First a model was built using each of the seven machine learning
aproaches, with 19 of the 20 years to select the best subset of variables, and then it was
tested on the excluded years (Cross-validation). This process was repeated for each year
for a total of 20 iterations. The mean absolute percentage error (MAPE) and RMSE
were then calculated based on the predicted yield of the test year and the corresponding
observed national soybean yield. The relative root mean square error (rRMSE) was also
calculated, as the RMSE divided by the average observed trend correct yield in each
country.

2.3.2 Mapping the Yield to the Production

The provided data includes the yield (kg/ha) and soy cropping area (ha). Since the yield
is a relative measurement, it provides a good value to use as the response. After the
estimation a simple multiplication with the area provides the soy production values

2.3.3 In-Season Analysis

The Soybean cropping season in Brazil starts in September with sowing, and finishes
in March with the harvest. Additionally to the simulation task, an in-season analysis
was performed to identify the soybean yield estimation performance of the models during
the soybean season in Brazil. This was carried out at the end of each month during
the cropping-season from August (no live data) to March (data from the whole growing
cycle).

There are two basic approaches to generating results with missing data:

e Generating (forecasting) the missing data and using the original model (Compare
the data generation of the Data Completion (2.1]) section).

e Truncating the regressors, such that only the known values remain, i.e. drop all the
values from March and train a new model with only the truncated data matrix as
regressors for the February forecast,

Both methods were applied and will be discussed in the corresponding parts of the report.

2.4 Explainable Al

Deep Neural Networks are a blackbox approach by nature. In other words, it is hard to
explain how all the individual neurons work together to arrive at the final output. In
general, it isn’t even clear what any particular neuron is doing on its own. That means it
is basically ignored how it works and just giving it input and getting output.

SHAP Values (SHapley Additive exPlanations), proposed by Scott M. Lundberg and
Su-In Lee [Lundberg et al. (2017)], is one of the most used ways of explaining the
model and understanding how the features of the data are related to the outputs. The
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original idea behind the SHAP values are based on the Shapley Values in Game Theory
which was proposed by the Nobel laureate mathematician Lloyd Shapley. It is a method
derived from coalitional game theory to provide a way to distribute the ”payout” across
the features fairly. To each cooperative game it assigns a unique distribution (among the
players) of a total surplus generated by the coalition of all players [Shapley (1951)].

More clearly, Shapley values are based on the idea that the outcome of each possible
combination (or coalition) of players should be considered to determine the importance
of a single player. "What Shapley does is quantifying the contribution that each player
brings to the game. What SHAP does is quantifying the contribution that each feature
brings to the prediction made by the model” [Mazzanti (2020)].

The following SHAP formula reported in the article [Lundberg et al. (2017)] can be
obtained:

T
SHAPfeqture() = Z {\set\ X (]set!)] [Predictse(x) — Predictsep feature ()]

set: feature€set

where x is the data observations, I is the total number of feature, set is the all possible
combinations of feature subsets that contains the corresponding feature for the calculation
of the SHAP value, Predict(-) is the prediction function of the corresponding model.
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3 Soybean yield estimation models description

This section covers the approaches used to estimate soybean yield (t/ha). Each model
consists of 20 submodels with 1 year as test set and the other 19 years split in train
and validation sets (leave one year out cross validation LOYOCYV). This approach aims
to get good generalisation properties, since the yields from one year could be strongly
correlated. The predictions are made on the county level, i.e. a prediction is made for
every county, which are then accumulated to estimate at the state and national level. The
trend correction is applied beforehand and readded after the raw prediction to get the
final values.

3.1 Baseline Models

The baseline Models are simple models, that help to show advantages of the more sophis-
ticated models. All results should be compared to the baseline in order to get meaningful
statements about each models performance.

Farmer’s Approach

A very natural and simple approach to estimate yield is to take an average of the yield
over the last five years. One special property of the Farmer’s Approach is, that it can be
calculated before sowing and thus will also serve as a baseline model for the In-Season
Forecasting section of the report. Note that since it is also used as a regressor, trend
correction is applied.

Linear Models

The next to simplest approach consisted of fitting a linear model to the yield observations.
Initially, all features were included with no regard to colinearity. To take state or climate
zone information into account, two variants have been tested:

e The first variant uses a single (‘global’) regressor in which the corresponding infor-
mation is included via a one-hot-encoding.

e The second variant uses multiple regressors, i.e. one per climate zone or state.

During testing it became apparent that at least for the simpler models a single global
regressor would produce less noisy predictions. Here the imbalanced distribution of the
number of observations per state or climate zone plays a major role. Since some of the
features are strongly correlated, a reduction of the feature space seemed appropriate.
Furthermore it was noticed that the absolute values of the coefficients for the one-hot
encoded state/zone variables in case of the single global regressor tend to be several orders
of magnitude larger than the remaining ones when using standard multilinear regression.
It is for these reasons that Ridge regression has been used instead, which should address
both issues at the same time. In case of the single global regressor on states, choosing the
regularization parameter A = 1230 yielded lowest average RMSE.
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3.2 Decision Tree based Models

A decision tree is a type of model which can both be applied to classification and regression
problems. The underlying idea involves repeatedly subdividing the feature space by axis-
parallel hyperplanes (splits) such that the resulting partition of the input data has low
error with regard to some measure (e.g. impurity in case of classification). Decision trees
are typically grown according to some heuristic criteria as the problem of determining an
optimal tree for arbitrary input is NIP-hard. Such criteria can e.g. be:

e Grow the tree until a maximum depth has been reached.

e Only perform a split as long as the error decrease at the corresponding node is large
enough.

A random forest is an ensemble model consisting of multiple decision trees to be trained
in parallel while each tree was trained on a varying subset of training data and represents
different learned patterns. Their individual predictions on a given input are aggregated
in some way (e.g. averaging in case of regression or taking the majority vote in case of
classification) in order to obtain a single prediction.

It is a common initial approach to use a random forest regressors when predicting yield (see
e.g. [Cai et al., 2019] and [Barbosa dos Santos and Ferreira dos Santos, 2021])
next to a standard multilinear regressor, as decision trees are usually better at handling
non-linearity. Similarly to the linear models, a single global random forest regressor as
well as individual ones for states/zones were trained and the comparison between the two
variants yielded more or less the same results as for the linear models. 100 trees were used
for the single global regressor, while each of the state- and zonewise regressors consisted
of 50 trees. The average RMSE over all years encountered during cross validation actually
turned out to be larger for the random forest than for the results of the Ridge regression.

3.3 Gradient boosting based Models

This Introduction roughly follows the one from the XGBoost documentation [ XGBoost|.
This package was also used to implement the model.

Like for random forests, the underlying structure of gradient boosted trees is a decision
tree ensemble. The difference lies in the way that the trees are generated. Tree generation
in gradient boosting somewhat resembles a gradient descent method, where 8, = 5,1 —
sV f(Bi—1). Analogously a new tree is generated, such that its addition to the ensemble
decreases the loss.

Hyperparameter Selection

Since gradient boosted trees are prune to overfitting, a good selection of hyperparameters
is crucial to archive reasonable results. The tuning was done with the package hyperopt
[Bergstra2013]. Every submodel got the same hyperparameters and a custom objective
function based on the accumulated loss for all the models was implemented to achieve
similar performance between the models (the train data was split again to get independent
results). The best parameters were:
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max_depth = 4

n_estimators = 70

learning_rate = 0.1

o =23
e v=4.5
e \=15

max_depth is the maximum depth of each tree, n_estimators the amount of trees and
a, 7, A regularisation parameters similar to the parameters from ridge and lasso regression.

Model Improvements

The model performed well with regard to the yield prediction, but significantly worse in
terms of estimating the production. Weighing the samples according to their cultivation
areas was the first approach to improve upon this, but this proved too severe of a weighing,
since the areas differ by several orders of magnitude for some countys. Weighing according
to the log(area) proved to increase the performance for the production while getting
similar results for the yield.

One other approach was to include the Farmer’s approach as a regressor to somewhat
measure differences between countys, since differences in soil, soy, and infrastructure like
irrigation also affect the yield. This also improved the performance of the model.

3.4 Neural Network based Models
3.4.1 LSTM & Bi-LSTM

As a state-of-the-art approach, a Long Short-Term Memory (LSTM) was proposed to
capture the dependencies between the time steps. A LSTM can learn to bridge minimal
time lags in excess of 1000 discrete-time steps by using input, output and forget gates
[Hochreiter and Schmidhuber, 1997]. It can be applied from one way to another
(from left to right) or bidirectionally for a sequential data. Two different LSTM models
were set up, i.e., from left to right and bidirectional which can capture the information
for both directions to make yield predictions.

To do so, the data were reshaped by converting it to a 3-d tensor in order to make it
compatible with the input shape of the corresponding LSTM models. Since 19 years, 32
features, and 1243 counties were available to train the model, the input shape and the
output shape look R!243#19231 and R! respectively. Two hidden layers were implemented
each having a hidden size of 128 and 64 respectively. The layer numbers have been de-
cided after some experiments to get the best result. To improve the model stability and
performance, standardization, i.e. standard scaling, was used for both training and test
data by using scikit-learn library. For the model implementation, Keras API for the Ten-
sorFlow library was used.The model structure of the LSTM and Bidirectional LSTM can
be seen in the figure (3)). The only difference between these two models is that normal
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LSTM layers for the LSTM model were used, whereas bidirectional LSTM layers for the
Bidirectional LSTM.

YeR?

Time steps =19 <

Features = 32
Y

;v;

Batch size = 1243

Xe ]R1243 x19x 32

Figure 3: Model structure of Global LSTM and Global Bidirectional LSTM. Global Bidi-
rectional LSTM has exactly the same structure by just changing the LSTM layers with the
Bidirectional ones.

To validate the model, training set was split by 20% for each year. To get rid of overfit-
ting, there was used a 20% Dropout rate for each hidden layer as well as 10 training step
as an early stopping. The details regarding the chosen hyperparameters and the loggings
of the loss curves are displayed in table [I, and in the Appendix

Loss: MSE
Optimizer: Adam
Learning rate: 1073
Batch size: 19
Metric: Validation loss
Early Stopping: 10
Validation split: 20 %
Dropout: 20 % (for the hidden layer)

Table 1: Hyperparameters for Global LSTM and Global Bi-LSTM
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3.4.2 ANN

As an alternative, a fully connected Artificial Neural Network (ANN) [LeCun et al.,
2015] was tested under the assumption of independence between the time steps. The
data were reshaped by casting to be able to extract monthly information for climate and
satellite image data. The input shape and the output shape look R'?3 and R! respectively.
For the model structure, two hidden layers were used with 256 and 128 units respectively.
However, the model was not sufficiently able to learn in a proper time, that has been
detected by the validation loss plots. Afterwards one more hidden layer was added which
has 64 units to make the model more robust. To improve the model stability and perfor-
mance, standardization, i.e. standard scaling, was used for both training and test data by
using scikit-learn library. For the model implementation, Keras API for the TensorFlow
library was used. The model structure of the ANN can be seen in the figure .

Figure 4: Model structure of Global ANN

To validate the model, the training set was splitted into 80% of the data for training and
20% for validation for each year. To reduce overfitting, Dropout with a rate of 30% for
each hidden layer was implemented as well as 10 training step as an early stopping. All
the details about the hyperparameters can be seen in the table 2] Another important
hyperparameter that dramatically affected the model performance is the learning rate.
The first used learning rate of 1072 - as in the LSTM - showed fluctuation in the validation
loss curve. For that reason the validation loss was not able to converge to the training
loss as seen in the figures . Therefore, the learning rate was decreased from 1072 to 1074
to reduce the fluctuation effect on the validation loss. Several loss plots for comparison
can be seen in the Appendix
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Loss: MSE
Optimizer: Adam
Activation: ReLu

Learning rate: 1074
Batch size: 32
Metric: Validation loss
Early Stopping: 10
Validation split: 20 %
Dropout: 30 % (for each hidden layer)

Table 2: Hyperparameters for Global ANN

3.5 Transformer based Models

This model architecture is based on the transformer approach of [Vaswani et al., 2017].
This novel approach of a transformer model entirely relies on a self-attention mechanism
that computes a representation of the sequence by relating different positions to search
the most relevant input timesteps. To apply this approach to timeseries, the structure
needs to be adapted as shown in figure

. .

Feed
Forward

|

Multi-Head
Attention

-

Positional 9

Encoding A 1
Input Yield
Embedding

Figure 5: Model Structure of the Transformer based model. Combines the Transformer
encoder with an perceptron classification head.
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Here, only the transformer encoder part is used followed by a (Multi-) layer perceptron
classification head. The transformer encoder block maps an input sequence to a sequence
of continuous representations and can be stacked multiple times. It includes a Multi-
Head Attention that performs an attention mechanism several times in parallel where
the single outputs are concatenated and linearly transformed. This is followed by an
fully connected feed-forward network position wise and for each of these layers exists a
residual connection followed by normalization. As only the yield for a particular input
sequence is predicted, instead of the decoder a set of dense layer is used. To apply the
model for specific climate clusters, this information is incorporated as well as a yield trend.

As in the LSTM /ANN model before, for validation of the model, the overall training
data was splitted into a 80% training set and 20% validation set. To prevent overfitting,
a dropout of 0.2 was selected after the Multi Head Attention as well as in the following
Feed Forward network. Also, in the Multi -Layer Perceptron head a Dropout of 0.1 was
established. Furthermore, 4 attention heads were used with a size of 256. 4 transformer
encoder blocks are stacked together and the whole model is trained on batches of size 64
on 100 epochs, with the option of Early Stopping if the validation loss is not decreasing
in 5 steps. The details regarding the chosen hyperparameters and the loggings of the loss
curves are displayed in Figure 28 and in the Appendix



4 RESULTS 18

4 Results

4.1 Performance of Machine learning approaches to estimate
soybean yield in Brazil

Farmers usually estimate expected yield by averaging the obtained yield of the last 5-years
(farmer-method). When applying this farmers approach to estimate national soybean
yield, the rRMSE was of 12.6%:

Yield Prediction for 5 Year Average (rRMSE = 12.8%)

4] —+- predicted

Observed

tha

Yield in

T IS LS P IS FEE S SO
TSI T TS

Figure 6: 5-years average prediction

The farmer-method will not capture extreme soybean yield losses caused by extreme cli-
mate events. Here, different machine-learning approaches were tested to estimate soybean
yield, particularly in years with extreme low yields.

The different machine-learning approaches showed different performance in estimating
soybean yield, as presented in figure For the Linear Model the values are clustered
around the actual yield value with some significant outliers. Here, the RMSE over all
years of the predicted yield counts 465 kg/ha. Also, around half of the observed variation
can be explained by the linear model, as indicated by the 2. The linear model presented
a TRMSE value of 16.7%. Random forest model and XGBoost model presented a bet-
ter performance for estimating soybean yield, compared to the Linear Model. Random
forest model showed an TRMSE of 16.1% and an r? of 0.61, whereas XGBoost model
showed an TRMSE of 15.3% and an r2 of 0.64. The Time-Series approaches of LSTM and
Bidrectional-LLSTM, performed poorer compared to the above-mentioned models, with an
rRMSE of around 18%.

With the ANN model over than 65% of the observed yield was explained. The ANN
model showed a RMSE value of 420 kg/ha.

The best estimations of soybean yield in Brazil were obtained with the transformer based
model. This model presented the highest 2 (76%) and the lowest rRMSE (12.6%), among
all the machine-learning approaches tested. However, this model over or under-estimate
soybean yield according to the year of cultivation.
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Figure 7: Comparison of the actual observed yield(kg/ha) and the predicted yield(kg/ha)
of each model over all years. r?, RMSE and rRMSE are used as metrics.

4.2 Spatial Performance

The models performance were also evaluated on state level, as shown in figure[§ In order
to facilitate the visualization of the results, only the best tree models of ANN, Transformer
based and bi-lstm model together with the linear model are shown. In Bahia state, the
models presented their worst performance in estimating soybean yield, with an rRMSE
varying from 11.2% to 16.2% according to the modeling approach used. Overall, the best
model performance states were obtained in Parana and Rio Grande do Sul states. In
these states the ANN approach showed an rRMSE of around 5%, with RMSE of 150
kg/ha and r? of 0.87. The transformer based model captures the soybean yield year-to-
year variability but it overestimates yield from 2001 o 2010 and underestimate it from
2011 to 2020. The linear model does not capture some of the soybean yield year-to-year
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variability (both low and high yields), as from 2001 to 2003 in Mato Grosso and Mato
Grosso do Sul states. Similar patters are shown by the bi-lstm model from 2001 to 2007

in Minas Gerais and Mato Grosso states.
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Figure 8: Statewise Comparison of the observed soybean yield(red lines, kg/ha) and the
estimated yield (kg/ha) of selected models from 2001 to 2020. The three best performing
models of ANN, Transformer based and bi-lstm in relation to the linear model.

The rRMSE obtained from each model varied according to the state (figure E[)

The

best soybean yield predictions were obtained in the states of central Brazil, including
Mato Grosso, Goias and Mato Grosso do Sul. From all models, the transformer model
presented the smallest TRMSE variation between the states, with rRMSE of around 10%
in all states. In comparison, the rRMSE varied from 10% to more than 20% between the

states for all the other models tested.
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Figure 9: graphical interpretation of the Root Relative Mean Squared Error per State

To analyze the models performance in estimating extremes high or low soybean yields, the
models performance were compared during 2015/ 2016 cropping season, which was a very
strong El Nino year, and 2010/2011 a strong La Nina year [Golden Gate Weather Services,
2022]. Here, the LM, RF and XGB overestimate soybean yield by around 450 kg /ha, par-
ticularly in Mato Grosso and Parana. LSTM/ Bi-LSTM and ANN also overestimate soy-
bean yield but by around 150 kg/ha. The transformer based model totally under-predicts

this year with around 400 kg/ha. In contrast, for the La Nina season of 2010/2011 all of

the models overestimate soybean yield for most of the states, but not for the high yields

of Bahia and Parana.
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Figure 10: Comparison of model’s prediction in climatic extreme years. left: very strong
El Nino season 2015/2016, right: strong La Nina season 2010/2011
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4.3 Evaluation of production on state and national level

The observed and estimated soybean yield were combined with observed cropping areas
to evaluate the models performance at both state and national levels. For the state level,
the models are compared based on their prediction for Mato Grosso (MT) as it is, stated
in section [2.1] accountable for largest amount on the national soybean production, shown
in figure For this state, the Bi-LSTM and ANN predict the production of MT with
an rRMSE value of around 2.5%.

Area: MATO GROSSO (rRMSE = 10.7%)

Area: MATO GROSSO (rRMSE = 2.3%)
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Figure 11: Production on state level on the example Mato Grosso (MT). MT accounts
for 33% of the national soybean production in 2022.
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Figure 12: Evaluation of Production on national level comparing all approaches.

RF, XGB and Bi-LSTM.

LM,

On national level, The ANN and Bi-LSTM outperform the other approaches with an
rRMSE less than 2%, as shown in figure [L2] and The linear model, random forest and
XGBoost model were also able to capture most of the significant points with an rRMSE
of 5-6%. The transformer based model overestimates soybean yield in the first years from
2001 to 2010 and underestimates from 2011 to 2020, with an rRMSE of 12%.
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4.4 In-season forecast

For the Gradient Boosted Trees model, both approaches introduced in the In-season Anal-
ysis section were modeled. To evaluate the results, the observed and predicted Produc-
tion values for each year of the LOYOCYV were accumulated on the whole dataset i.e. for
Brazil. Then the rRMSE was calculated over the years to measure the deviation in the
accumulated models, which is shown in the following figure.

rRMSE Evaluation over time for gradient boosted trees in Brazil
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Figure 14: Evaluation of the relative root mean square error of the soy production in
Brazil for the above compared approaches of generating predictions at a given time (end
of month) with the 5 Year average (Farmer’s approach) as a baseline.

As a quick recap, the Generated label in the figure describes the performance of the
standard model using generated data inplace of the missing values. For the Truncated
label, new models were trained (with adjusted hyperparammeters) at each timestamp
with the truncated dataset corresponding to the until then collected data. The results of
this analysis were compared to the trend corrected average of the last 5 years (Farmer’s-
approach). The rRMSE didn’t decrease for both approaches until December, but even in
August, the Model with the generated values was able to outperform the 5 year average by
approximately 1 percentage point and thus offers strictly better predictions at any given
time. Curiously the overall best performance was observed from the truncated model in
February.

4.5 SHAP Values

By applying SHAP approach, as stated in the section ([2.4]), to our global ANN model for
each year, the following figure results have been produced by taking the average of
each year.
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Figure 15: The absolute mean of the SHAP values for the Global ANN model for each

year.

The ANN model tends to use the features state Rio Grande Do Sul and state Parana as
the most important. This is consistent with the data since it contains the highest number
of observations on these two states. Another remarkable point is the SHAP values are
mostly higher for the months December, January and February. This is observed from the
produced results that CVI, GLI, NDVI and EVI indices are the most important features

for the corresponding months mentioned in the previous sentence.
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5 Discussion

In this project, several modelling approaches were tested to estimate soybean yield in the
seven states with the highest soybean production in Brazil. These states contribute 82%
to the total Brazilian soybean production and make up 28% of the global production. The
modelling approaches include both simple and widely used machine-learning approaches
such as linear and tree-based models, as well as recurrent neural networks and more
complex approaches like transformer models. Most of these models, such as linear and
tree-based models have been extensively tested for crop yield estimation ([Jeong et al.,
2016]). However, machine learning approaches such as the transformer models have been
rarely used for grain crops yield estimation.

All these models were built based on features extracted or aggregated from publicly avail-
able datasets, most notably climate-related and spectral measurements. With that, this
study can be replicated for any crop in any country of the world.

To simulate soybean yield, climate and remote sensing data was combined from over
26,000 yield observations, across more than 1200 municipalities from 2001 to 2020. De-
spite the large number of observations, the model performance was still limited by the
size of the dataset, particularly in some regions. The states of Bahia and Minas Gerais
had the worst predictability from the models (figure 9), because they have the least yield
observations and consequently the smallest training sets. Overall, the statewise rRMSE
ranges from 1.7% to 12%, according to the modelling approach.

Once built,the time required for training the yield prediction models in the prescribed
leave-one-year-out cross validation (LOYOCV) ranged from a few seconds (linear, XG-
Boost) to 30-45 minutes (random forest, ANN) to 3-4 hours (Bi-directional LSTM, Trans-
former). When testing the models at national level, the lowest error was achieved by the
ANN (0.7% rRMSE), followed by the bi-directional LSTM (1.1% rRMSE). The tree-based
models obtained an rRMSE of 5.3% for Random Forest and of 6.1% for XGBoost. Ridge
regression presented an rRMSE of 4.9%. The highest rRMSE value of 13.3% was obtained
for the transformer-based model. In comparison, the simple five-year average produced
an TRMSE of 12.8%.

At state level, the performance of the different modelling approaches in estimating soy-
bean yield varies more strongly. In the following, the maximum rRMSE over all states
will be abbreviated by max-rRMSE. The ANN still shows the best performance (max-
rRMSE < 2.3%), followed by the bi-directional LSTM (max-rRMSE < 2.3%). These
models also presented a good performance when applied to simulating yield of other
crops ([Zhu et al., 2021]). Although the performance of Random Forest models for es-
timating crop yields has been extensively tested at regional, national and global levels
[Jeong et al., 2016], it resulted in a high max-rRMSE of < 25.7% for the given setting.

Regarding the in-season forecasting results (figure , a reliable predicition and thus a
significant improvement over the Farmer’s approach is given from December onwards.
Nevertheless are the increasing errors from March to November and peak performance in



February for the truncated approach indicators, that the impact of some regressors was
not accurately identified (the Farmer’s approach was included as a regressor and should
theoretically provide an upper bound). Together this indicates that either careful selec-
tion of the regressors or a larger dataset might provide a way to improve on the models.

Many studies have compared different approaches to estimate crop yield at regional and
national level [Nigam et al., 2019]|, [Lobell “& Asseng, 2017]). However, comparing
seven different machine-learning approaches as a key basis for a soybean yield estima-
tion system in Brazil is a novelty. The biggest difficulties encountered when building
an estimation model are the size, format and availability of reliable datasets for agricul-
ture. Despite of this, some of these models are rarely used in the agricultural context
which creates a barrier for new users. However, in this project the knowledge of differ-
ent professionals in agriculture, climate and machine-learning were brought together and
successfully implemented and tested all these models to estimate soybean yield.

Multiple regional and national soybean yield forecast models have been introduced using
available monthly climate as well as remote sensing data. Besides, the potential for
timely in-season yield prediction was also explored and found that decent prediction
performance can be obtained about two months before harvest in Brazil. Forecasting
soybean production in Brazil before harvest can contribute to some extent to mitigating
the instability of potential global food disruptions due to adverse weather.

27



References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems. p.. 5998-6008).

[2] Gangopadhyay, T. (2019). Deep Time Series Attention Models for Crop Yield Predic-
tion and Insights.

[3] Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Compu-
tation. 9 (8): 1735 — 1780. https://doi.org/10.1162/neco.1997.9.8.1735

[4] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep Learning. Nature. 521, 436 - 444.
https://doi.org/10.1038 /nature14539

[5] Abraham, E.R., Mendes dos Reis, J..G, Vendrametto, O., Oliveira Costa Neto,
P.L., Carlo Toloi, R., Souza, A.E., Oliveira Morais, M. (2020). Time Series Predic-
tion with Artificial Neural Networks: An Analysis Using Brazilian Soybean Produc-
tion. Agriculture. 10(10):475. https://doi.org/10.3390/agriculture10100475

[6] Statista Research Department (2022). Brazil: soybean export volumn 2006-2021.
Retrieved July 27, 2022 from https://www.statista.com/statistics/721215/soybeans-
export-volume-brazil /

[7] Colussi, J. & Schnitkey,G. (2021). Brazil Likely to Remain World Leader in Soybean
Production (2021). farmdoc daily (11):105, Department of Agricultural and Consumer
Economics,University of Illinois at Urbana-Champaign.

[8] Fukase, Emiko & Martin, Will (2020). Economic growth, convergence, and world food
demand and supply. World Development. Vol. 132.

[9] Voora, V., Larrea, C., Bermudez, S. (2020). Global Market Report: Soybeans.
Sustainable Commodities marketplace series 2019. Retrieved July 27, 2022 from
https://www.iisd.org/system /files/2020-10/ssi-global-market-report-soybean.pdf

[10] Toloi, M.N.V., Bonilla, S.H., Toloi, R.C., Silva, H.R.O., Naas, I.d.A (2021).
Development Indicators and Soybean Production in Brazil. Agriculture. 11, 1164.
https://doi.org/10.3390/agriculture11111164

[11] Van Klompenburg, T., Kassahun, A., Catal, C. (2020). Crop yield prediction us-
ing machine learning: A systematic literature review. Computers and Electronics in
Agriculture. 177, 105709.

[12] Guarin, J.R., Asseng, S., Martre, P. & Blinznyuk, N. (2020). Testing a crop model
with extreme low yield from historical district records. Field Crops Research. 249,
107269.

[13] NASA (2021). The POWER Project. NASA Prediction Of Worldwide Energy
Ressources. Retrieved July 28, 2022 from https://power.larc.nasa.gov

28



[14] IBGE (2022). Producao Agricola Municipal. Retrieved July 28, 2022 from
https://sidra.ibge.gov.br/tabela/1612

[15] Conab (2022). Soja. Retrieved July 28, 2022 from https://www.conab.gov.br/info-
agro/safras/serie-historica-das-safras/itemlist /category /911-soja

[16) NOAA (2022). Climate Variability: Oceanic Nio Index. Retrieved July 28,
2022 from https://www.climate.gov/news-features/understanding-climate/climate-
variability-oceanic-ni%C3%B1o-index

[17] CPC (2022). Historical El Nio / La Nina episodes (1950-present). Retrieved July 29,
2022 from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring /ensostuff/
ONI_v5.php

[18] de Souza Noia Junior, R., Fraisse, C., Karrei, M. & Perondi, D. (2020). Effects of the
El Nino Southern Oscillation phenomenon and sowing dates on soybean yield and on

the occurrence of extreme weather events in southern Brazil. Agricultural and Forest
Meterology. 290, 108038.

[19] FAO (2022). FAOSTAT: Crops and livestock products. Retrieved July 28, 2022 from
https://www.fao.org/faostat /en/data/TCL

[20] Gorelick, N., Hanche, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017).
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens-
ing of Environment. 202

[21] Buchhorn, M., Lesiv, M., Tsendbazar, N., Herold, M., Bertels, L. & Smets,
B. (2020). Copernicus Global Land Cover Layersa”Collection 2. Remote Sens-
ing.https://doi.org/10.3390/rs12061044

[22] Thornthwaite, C.W. & Mather, J.R. (1957). Instructions and tables for computing
potential evapotranspiration and the water balance. Laboratory in Climatology. 10,
No. 3.

[23] Woli, P., Jones, JW. Ingram, K.T. & Fraisse, C.W. (2012). Agricul-
tural Reference Index for Drought (ARID). Agronomy Journal. 104: 287-300.
https://doi.org/10.2134/agronj2011.0286

[24] Noia Junior, R. S., Fraisse, C. W., Cerbaro, V. A., Karrei,M. A. Z., Guindin,N.
(2019). Evaluation of the Hargreaves-Samani Method for Estimating Reference Evap-
otranspiration with Ground and Gridded Weather Data Sources. Applied Engineering
in Agriculture. 35(5): 823-835. https://doi.org/10.13031/aeca.13363

[25] Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop evapotranspiration
guidelines for computing crop water requirements. FAO Irrigation and drainage paper
56. Food and Agriculture Organization.

[26] Cai Y., Guan K., Lobell D., Potgieter A., Wang S., Peng J., Xu T., Asseng S., Zhang
Y., You L., Peng B (2019). Integrating satellite and climate data to predict wheat yield

in Australia using machine learning approaches, Agricultural and Forest Meteorology,
https://doi.org/10.1016/j.agrformet.2019.03.010.

29



[27] Barbosa dos Santos, V. & Ferreira dos Santos, A., (2021).Machine learning algorithms
for soybean yield forecasting in the Brazilian Cerrado. Journal of the Science of Food
and Agriculture.https://doi.org/10.1002/jsfa.11713

[28] Golden Gate Weather Services (2022).El Nino and La Nina Years and Intensities.
Retrieved July 28, 2022 from https://ggweather.com/enso/oni.htm

[29] de Oliveira Aparecido, Lucas Eduardo et al. (2022). Predicting coffee yield based
on agroclimatic data and machine learning. Theoretical and Applied Climatology.
http://hdl.handle.net/11449/230415.

[30] Diennevan Souza Barbosa, B. et al. (2021). UAV-based coffee yield predic-
tion utilizing feature selection and deep learning. Smart Agricultural Technology.
https://doi.org/10.1016/j.atech.2021.100010

[31] Li, X., Metsis, V., Wang, H. & Ngu, A. (2022). TTS-GAN:
A Transformer-based Time-Series Generative Adversarial Network.
https://doi.org/10.48550 /arXiv.2202.02691

[32] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining

[33] Lundberg, S. & Lee, S. (2017). A Unified Approach to Interpreting Model Predictions.
arXiv. https://doi.org/10.48550/arxiv.1705.07874

[34] Shapley, Lloyd S. (1951 August 21). Notes on the n-Person Game - II:
The Value of an n-Person Game. Santa Monica, Calif.: RAND Corporation.
https://www.rand.org/content /dam /rand/pubs/researchmemoranda/2008 /RM670.pdf

[35] Mazzanti, Samuele (2020, Jan 4). SHAP Values Explained Exactly
How You Wished Someone Explained to You. Towards Data Science.
https://towardsdatascience.com /shap-explained-the-way-i-wish-someone-explained-
it-to-me-ab81cc69ef30

[36] Srivastava, A.K., Safaei, N., Khaki, S., Lopez, G.M., Zeng, W., Ewert, F., Gaiser, T.,
Rahimi, J. (2021). Comparison of Machine Learning Methods for Predicting Winter
Wheat Yield in Germany. ArXiv, abs/2105.01282.

[37] Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E.,
Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., & Kim, S. H. (2016). Random
Forests for Global and Regional Crop Yield Predictions. PloS one, 11(6), e0156571.
https://doi.org/10.1371/journal.pone.0156571

[38] Prasad, N.R., Patel, N.R., & Danodia, A. (2021). Cotton Yield Estimation Using
Phenological Metrics Derived from Long-Term MODIS Data. Journal of the Indian
Society of Remote Sensing. 49, 2597 - 2610.

30



[39] Zhu, C., Tian, J., & Li, P. (2021). Research on Grain Yield Prediction
Model Based on Contribution Multiplier and Bidirectional LSTM Neural Network.
2021 2nd International Conference on Artificial Intelligence and Information Sys-
tems (ICAIIS 2021). Association for Computing Machinery. Article 77, 1 a“ 7.
https://doi.org/10.1145/3469213.3470278

[40] Nigam, A., Garg, S., Agrawal, A. & Agrawal, P. (2019). Crop Yield
Prediction  Using Machine Learning  Algorithms. 2019  Fifth  Interna-
tional Conference on Image Information Processing (ICIIP). pp. 125-130.
https://doi.org/10.1109/1CIIP47207.2019.8985951.

[41] Lobell, D.B. & Asseng, S. (2017). Comparing estimates of climate change impacts
from process-based and statistical crop models. Environmental Research Letters. Vol
12,1.

[42] Feng, L., Wang, Y., Zhang, Z. & Du, Q. (2021). Geographically and temporally
weighted neural network for winter wheat yield prediction. Remote Sensing of Envi-
ronment. Vol. 262, p. 112514. https://doi.org/10.1016/j.rse.2021.112514

31



Appendix

Table S1 — Loss Plots for ANN with learning rate 1074
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Figure 16: Training and validation loss plots of the Global ANN model with learning rate
10~* for 2001 — 2008.
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Figure 17: Training and validation loss plots of the Global ANN model with learning rate
10~* for 2008 — 2016.
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Figure 18: Training and validation loss plots of the Global ANN model with learning rate
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Table S2 — Loss Plots for ANN with learning rate 1073
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Figure 19: Training and validation loss plots of the Global ANN model with learning rate
10~3 for 2001 — 2008.
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Figure 20: Training and validation loss plots of the Global ANN model with learning rate
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Figure 21: Training and validation loss plots of the Global ANN model with learning rate
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Table S3 — Loss Plots for Bi-LSTM
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Figure 22: Training and validation loss plots of the Global Bi-LSTM model for 2001 —
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Figure 23: Training and validation loss plots of the Global Bi-LSTM model for 2009 —
2016.
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Figure 24: Training and validation loss plots of the Global Bi-LSTM model for 2017 —
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Table S4 — Loss Plots for LSTM
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Figure 27: Training and validation loss plots of the Global LSTM model for 2017 — 2020.
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Table S5 — Loss Plots for Transformer based model

121

1.0

0.8 1

Loss

0.6

0.4 4

0.2 4

124

1.0 A

0.8 1

Loss

0.6 4
0.4 4

0.2 1

Figure 28: Training and validation loss (MSE) plots of the Transformer based model for
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