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Zebrafish Larvae

Figure 1: Zebrafish[5]
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Light Field Microscope

Figure 2: (a) A microscope
with a microlens array[3]

Figure 3: Microlens array[1]
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Advantages of Light Field Microscopy Images
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Figure 4: Comparison of images at different focal planes[3]
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Light Field Microscope
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Figure 5: (b), (c) The red point stands for a point source generating illumination. Red
regions on top shows the intensity of illumination arriving at the sensor plane[3].
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Light Field Microscope

Experimental light field
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Figure 6: Example light field of a sphere[3]
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Light Field Transformations

Lenslet Image Lenslet Sub-image

43
> Angular resolution: 43 x 43

> Spatial resolution: 23 x 23
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Reordering Light Field

Lenslet Image Views Image

Figure 7: Reordering lenslet to views image[6]
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Reordering Light Field

Lenslet Image Views Image

Figure 8: Reordering lenslet to views image[6]
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Reordering Light Field

Lenslet Image Views Image
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Figure 9: Reordering lenslet to views image[6]
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Light Field Transformations

View Views Image

43
> Angular resolution: 43 x 43

> Spatial resolution: 23 x 23
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Lenslet Image Views Views Image
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Goal

light field image

forward inverse
model problem
A A

light field reconstruction
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light field image multiple views
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LEARN
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Datasets - Real Images

> Fish eye

Lenslet Views

Figure 10: Fish eye
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Datasets - Real Images

> Spheres

Lenslet Views

Figure 11: Spheres
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Dataset - Training Data

> Created own dataset containing geometric objects

Ground Truth Dept Map

3D Scene Projection
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Figure 12: Scene Figure 13: Resulting depth map
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Dataset

> 369 images

Lenslet Views
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Figure 14: Resulting lenslet and views image
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Overview of Networks

> Input - views image
> Epinet
> Views network

> Input - lenslet image

» Lenslet network

» Lenslet classification network
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Figure 15: Epinet architecture [9]
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Epinet

v

2.2 million parameters

Multistream convolutional encoder
Upscaling: nearest neighbor interpolation
Optimizer: RMSProp (no learning rate decay)
Regularization: None

Activation function: Leaky ReLU

Learning rate: 10~*

Error: Mean squared error

Chen, Kramer, Klein, Romen

Data Innovation Lab

28



Department of Mathematics
Technical University of Munich

Overview of Networks

> Input - views image
> Epinet
> Views network

» Input - lenslet image

» Lenslet network

» Lenslet classification network

Chen, Kramer, Klein, Romen

Data Innovation Lab

29



Department of Mathematics
Technical University of Munich

Views Network
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Figure 16: Left to right: input, 4 convolution layers, upscaling by nearest neighbor
interpolation, 3 convolution layers.
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Views Network

v

4.1 million parameters

» Convolutional encoder

» Upscaling: nearest neighbor interpolation
» Optimizer: Adam (no learning rate decay)
» Regularization: None

» Activation function: Leaky ReLU

» Learning rate: 1078

» Error: Absolute error
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Overview of Networks

» Input - views image
> Epinet
» Views network

> Input - lenslet image

» Lenslet network
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Lenslet Network
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Figure 17: General structure of a convolution encoder-decoder architecture. We use
Inception-ResNet-v2 [10] blocks in encoder.
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Lenslet Network

v

7.6 million parameters

Inception-ResNet-v2 blocks encoder

Upscaling: fast up-convolution (x3)

Optimizer: Adam (exp. decaying learning rate (400 examples))
Regularization: L2 (scale: 5 107°)

Activation function: Leaky ReLU (after each block)

Learning rate: 5+ 1076

Error: Mean squared error
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Overview of Networks

» Input - views image
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Lenslet Classification Network
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Figure 18: General structure of a convolution encoder-decoder architecture. We use
Inception-ResNet-v2[10] blocks in encoder.
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Lenslet Classification Network

v

5 million parameters

Inception-ResNet-v2 encoder

Upscaling: fast up-convolution (x3)

Optimizer: Adam (exp. decaying learning rate (400 examples))
Regularization: L2 (scale: 5 107°)

Activation function: Leaky ReLU (after each block)

Learning rate: 5 1078

Error: Mean absolute error
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Quantitative Results

Network MSE BPR (6 = 0.15) Input #params (millions)
Epinet 0.0049958 0.04304 Stacked views 2.2
Views 0.0122427 0.12022 Stacked views 4.1
Lenslet 0.00595414 0.05586 Lenslet 7.6
Lenslet (cls) 26.9925 0.99521 Lenslet 5
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Qualitative Results - Test Data

Ground Truth Epinet Views
Lensiet Lenslet (cls)

Figure 19: Depth prediction of an image from test set after 300 epochs.
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Qualitative Results - Fish Eye

Epinet Views

Lenslet (cls)

Figure 20: Depth prediction of fish eye after 300 epochs.
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Qualitative Results - Spheres

Epinet Views
Lenslet Lenslet (cls)

Figure 21: Depth prediction of spheres after 300 epochs.
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Discussion - Real Data

> Image of fish eye and spheres taken with different configurations
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> Better networks on the test set pick up more noise
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Discussion - Real Data

> Image of fish eye and spheres taken with different configurations
> Better networks on the test set pick up more noise

> No ground truth to compare the results
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Discussion - Generated Dataset

» Simulation needed to overcome lack of data
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v

Simulation needed to overcome lack of data

v

General problem when using deep networks on light field data

v

Geometric objects are biologically not plausible

v

Real data contains noise

v

Realistic simulation with unrealistic scene
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Discussion - Light Field Data

» Typical light field resolutions in research papers:

» Spatial resolution of 512 x 512
» Angular resolution of 3 x 3,5 x50r9 x 9

> e.g. see EPINET[9], VommaNet[8]
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Discussion - Light Field Data

» Typical light field resolutions in research papers:

» Spatial resolution of 512 x 512
» Angular resolution of 3 x 3,5 x50r9 x 9

> e.g. see EPINET[9], VommaNet[8]

> Light field microscopy data in our project:

> Spatial resolution of 43 x 43
» Angular resolution of 23 x 23
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Discussion - Light Field Data

> Depth predictions with a resolution of 43 x 43 too small
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Discussion - Light Field Data

v

Depth predictions with a resolution of 43 x 43 too small

v

Upsampling of spatial resolution to 256 x 256

v

Differences in baseline and depth range

v

Architectures proposed in research papers were not directly
suited for our data
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> Realistic scene generation
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> Realistic scene generation

> Networks that are invariant to camera configurations
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> Realistic scene generation
> Networks that are invariant to camera configurations

> Light field reconstruction using depth prediction
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Thank you for your attention

Questions?
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Backup Slides
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Depth Estimate

Figure 22: Example of a depth estimate.[4]
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Upsampling Strategies

(a) up-convolution (c) up-projection

(b) fast up-convolution (d) fast up-projection
Figure 2. From up-c: lutions to up-projections. (a)
Standard up-convolution. (b) The equivalent but faster
up-convolution. (¢) Our novel up-projection block, fol-
lowing residual logic. (d) The faster equivalent version
of (¢c)

Figure 23: Different up-sampling strategies[7]
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Upsampling Strategies

Figure 3. Faster up-convolutions. Top row: the com-
mon up-convolutional steps: unpooling doubles a fea-
ture map’s size, filling the holes with zeros, and a 5 x 5
convolution filters this map. Depending on the position
of the filter, only certain parts of it (A,B,C.D) are mul-
tiplied with non-zero values. This motivates convolv-
ing the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to ob-
tain the same output, while avoiding zero multiplications.
A.B,C.D only mark locations and the actual weight val-
ues will differ

Figure 24: Faster up-convolution[7]
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Upsampling Strategies

» Deconvolution can cause checkerboard artifacts

k- -

Figure 25: Nearest neighbor upsampling[2]
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Lenslet Network - Fish Eye - Fewer Epochs

Figure 26: Spheres prediction (best Figure 27: Spheres prediction (last
epoch) epoch)
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Lenslet Network - Spheres - Fewer Epochs

Figure 28: Spheres prediction (best Figure 29: Spheres prediction (last
epoch) epoch)
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Lenslet Classification Network - Fewer Epochs

N A

Figure 30: Ground truth. Figure 31: Predicted depth map.
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