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Zebrafish Larvae

Figure 1: Zebrafish[5]
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Light Field Microscope

Figure 2: (a) A microscope
with a microlens array[3]

Figure 3: Microlens array[1]
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Advantages of Light Field Microscopy Images

Figure 4: Comparison of images at di�erent focal planes[3]
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Light Field Microscope

Figure 5: (b), (c) The red point stands for a point source generating illumination. Red
regions on top shows the intensity of illumination arriving at the sensor plane[3].
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Light Field Microscope

Figure 6: Example light field of a sphere[3]

Chen, Krämer, Klein, Romen – Data Innovation Lab 8



Department of Mathematics
Technical University of Munich

Light Field Transformations
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I Angular resolution: 43× 43

I Spatial resolution: 23× 23
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Reordering Light Field

Figure 7: Reordering lenslet to views image[6]
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Reordering Light Field

Figure 8: Reordering lenslet to views image[6]
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Reordering Light Field

Figure 9: Reordering lenslet to views image[6]
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Light Field Transformations
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View
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I Angular resolution: 43× 43

I Spatial resolution: 23× 23
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Light Field Image
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Lenslet Image

43

Views Image

23

23

Views

Chen, Krämer, Klein, Romen – Data Innovation Lab 14



Department of Mathematics
Technical University of Munich

Goal
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Datasets - Real Images

I Fish eye
Lenslet Views

Figure 10: Fish eye
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Datasets - Real Images

I Spheres
Lenslet Views

Figure 11: Spheres
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Dataset - Training Data

I Created own dataset containing geometric objects

Figure 12: Scene

Ground Truth Depth Map

Figure 13: Resulting depth map
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Dataset

Figure 14: Resulting lenslet and views image

I 369 images
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Overview of Networks

I Input - views image
I Epinet

I Views network

I Input - lenslet image
I Lenslet network

I Lenslet classification network
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Epinet

Figure 15: Epinet architecture [9]

I Multi-stream network
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Epinet

I 2.2 million parameters

I Multistream convolutional encoder

I Upscaling: nearest neighbor interpolation

I Optimizer: RMSProp (no learning rate decay)

I Regularization: None

I Activation function: Leaky ReLU

I Learning rate: 10−4

I Error: Mean squared error
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Views Network
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Figure 16: Le� to right: input, 4 convolution layers, upscaling by nearest neighbor
interpolation, 3 convolution layers.
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Views Network

I 4.1 million parameters

I Convolutional encoder

I Upscaling: nearest neighbor interpolation

I Optimizer: Adam (no learning rate decay)

I Regularization: None

I Activation function: Leaky ReLU

I Learning rate: 10−6

I Error: Absolute error
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Lenslet Network

Figure 17: General structure of a convolution encoder-decoder architecture. We use
Inception-ResNet-v2 [10] blocks in encoder.
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Lenslet Network

I 7.6 million parameters

I Inception-ResNet-v2 blocks encoder

I Upscaling: fast up-convolution (x3)

I Optimizer: Adam (exp. decaying learning rate (400 examples))

I Regularization: L2 (scale: 5 ∗ 10−6)

I Activation function: Leaky ReLU (a�er each block)

I Learning rate: 5 ∗ 10−6

I Error: Mean squared error
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Lenslet Classification Network

Figure 18: General structure of a convolution encoder-decoder architecture. We use
Inception-ResNet-v2[10] blocks in encoder.
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Lenslet Classification Network

I 5 million parameters

I Inception-ResNet-v2 encoder

I Upscaling: fast up-convolution (x3)

I Optimizer: Adam (exp. decaying learning rate (400 examples))

I Regularization: L2 (scale: 5 ∗ 10−6)

I Activation function: Leaky ReLU (a�er each block)

I Learning rate: 5 ∗ 10−6

I Error: Mean absolute error
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�antitative Results

Network MSE BPR (δ = 0.15) Input #params (millions)
Epinet 0.0049958 0.04304 Stacked views 2.2
Views 0.0122427 0.12022 Stacked views 4.1
Lenslet 0.00595414 0.05586 Lenslet 7.6

Lenslet (cls) 26.9925 0.99521 Lenslet 5
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�alitative Results - Test Data
Ground Truth Epinet Views
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Figure 19: Depth prediction of an image from test set a�er 300 epochs.
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�alitative Results - Fish Eye
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Figure 20: Depth prediction of fish eye a�er 300 epochs.
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�alitative Results - Spheres
Epinet Views
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Figure 21: Depth prediction of spheres a�er 300 epochs.
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Discussion - Real Data

I Image of fish eye and spheres taken with di�erent configurations

I Be�er networks on the test set pick up more noise

I No ground truth to compare the results
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Discussion - Generated Dataset

I Simulation needed to overcome lack of data

I General problem when using deep networks on light field data

I Geometric objects are biologically not plausible

I Real data contains noise

I Realistic simulation with unrealistic scene
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Discussion - Light Field Data

I Typical light field resolutions in research papers:
I Spatial resolution of 512× 512

I Angular resolution of 3× 3, 5× 5 or 9× 9

I e.g. see EPINET[9], VommaNet[8]

I Light field microscopy data in our project:

I Spatial resolution of 43× 43

I Angular resolution of 23× 23
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Discussion - Light Field Data

I Depth predictions with a resolution of 43× 43 too small

I Upsampling of spatial resolution to 256× 256

I Di�erences in baseline and depth range

I Architectures proposed in research papers were not directly
suited for our data
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Outlook

I Realistic scene generation

I Networks that are invariant to camera configurations

I Light field reconstruction using depth prediction
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Backup Slides
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Depth Estimate

Figure 22: Example of a depth estimate.[4]
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Bad Pixel Ratio

BPR(x, x̂; δ) =
1

NM

N∑
i=0

M∑
j=0

I[δ < |xi,j − x̂ i,j|]
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Upsampling Strategies Published at IEEE International Conference on 3D Vision (3DV) 2016

Figure 2. From up-convolutions to up-projections. (a)
Standard up-convolution. (b) The equivalent but faster
up-convolution. (c) Our novel up-projection block, fol-
lowing residual logic. (d) The faster equivalent version
of (c)

We further extend simple up-convolutions using
a similar but inverse concept to [7] to create up-
sampling res-blocks. The idea is to introduce a
simple 3 × 3 convolution after the up-convolution
and to add a projection connection from the lower
resolution feature map to the result, as shown in
Fig. 2(c). Because of the different sizes, the small-
sized map needs to be up-sampled using another
up-convolution in the projection branch, but since
the unpooling only needs to be applied once for
both branches, we just apply the 5 × 5 convolu-
tions separately on the two branches. We call this
new up-sampling block up-projection since it ex-
tends the idea of the projection connection [7] to
up-convolutions. Chaining up-projection blocks al-
lows high-level information to be more efficiently
passed forward in the network while progressively
increasing feature map sizes. This enables the con-
struction of our coherent, fully convolutional net-
work for depth prediction. Fig. 2 shows the dif-
ferences between an up-convolutional block to up-
projection block. It also shows the corresponding
fast versions that will be described in the following
section.

Fast Up-Convolutions. One further contribution
of this work is to reformulate the up-convolution
operation so to make it more efficient, leading to a
decrease of training time of the whole network of

Figure 3. Faster up-convolutions. Top row: the com-
mon up-convolutional steps: unpooling doubles a fea-
ture map’s size, filling the holes with zeros, and a 5 × 5
convolution filters this map. Depending on the position
of the filter, only certain parts of it (A,B,C,D) are mul-
tiplied with non-zero values. This motivates convolv-
ing the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to ob-
tain the same output, while avoiding zero multiplications.
A,B,C,D only mark locations and the actual weight val-
ues will differ

around 15%. This also applies to the newly intro-
duced up-projection operation. The main intuition
is as follows: after unpooling 75% of the result-
ing feature maps contain zeros, thus the following
5 × 5 convolution mostly operates on zeros which
can be avoided in our modified formulation. This
can be observed in Fig. 3. In the top left the origi-
nal feature map is unpooled (top middle) and then
convolved by a 5 × 5 filter. We observe that in an
unpooled feature map, depending on the location
(red, blue, purple, orange bounding boxes) of the
5×5 filter, only certain weights are multiplied with
potentially non-zero values. These weights fall into
four non-overlapping groups, indicated by different
colors and A,B,C,D in the figure. Based on the fil-
ter groups, we arrange the original 5 × 5 filter to
four new filters of sizes (A) 3 × 3, (B) 3 × 2, (C)
2× 3 and (D) 2× 2. Exactly the same output as the
original operation (unpooling and convolution) can
now be achieved by interleaving the elements of the
four resulting feature maps as in Fig. 3. The corre-
sponding changes from a simple up-convolutional
block to the proposed up-projection are shown in
Fig. 2 (d).

Figure 23: Di�erent up-sampling strategies[7]
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Upsampling Strategies
Published at IEEE International Conference on 3D Vision (3DV) 2016

Figure 2. From up-convolutions to up-projections. (a)
Standard up-convolution. (b) The equivalent but faster
up-convolution. (c) Our novel up-projection block, fol-
lowing residual logic. (d) The faster equivalent version
of (c)

We further extend simple up-convolutions using
a similar but inverse concept to [7] to create up-
sampling res-blocks. The idea is to introduce a
simple 3 × 3 convolution after the up-convolution
and to add a projection connection from the lower
resolution feature map to the result, as shown in
Fig. 2(c). Because of the different sizes, the small-
sized map needs to be up-sampled using another
up-convolution in the projection branch, but since
the unpooling only needs to be applied once for
both branches, we just apply the 5 × 5 convolu-
tions separately on the two branches. We call this
new up-sampling block up-projection since it ex-
tends the idea of the projection connection [7] to
up-convolutions. Chaining up-projection blocks al-
lows high-level information to be more efficiently
passed forward in the network while progressively
increasing feature map sizes. This enables the con-
struction of our coherent, fully convolutional net-
work for depth prediction. Fig. 2 shows the dif-
ferences between an up-convolutional block to up-
projection block. It also shows the corresponding
fast versions that will be described in the following
section.

Fast Up-Convolutions. One further contribution
of this work is to reformulate the up-convolution
operation so to make it more efficient, leading to a
decrease of training time of the whole network of

Figure 3. Faster up-convolutions. Top row: the com-
mon up-convolutional steps: unpooling doubles a fea-
ture map’s size, filling the holes with zeros, and a 5 × 5
convolution filters this map. Depending on the position
of the filter, only certain parts of it (A,B,C,D) are mul-
tiplied with non-zero values. This motivates convolv-
ing the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to ob-
tain the same output, while avoiding zero multiplications.
A,B,C,D only mark locations and the actual weight val-
ues will differ

around 15%. This also applies to the newly intro-
duced up-projection operation. The main intuition
is as follows: after unpooling 75% of the result-
ing feature maps contain zeros, thus the following
5 × 5 convolution mostly operates on zeros which
can be avoided in our modified formulation. This
can be observed in Fig. 3. In the top left the origi-
nal feature map is unpooled (top middle) and then
convolved by a 5 × 5 filter. We observe that in an
unpooled feature map, depending on the location
(red, blue, purple, orange bounding boxes) of the
5×5 filter, only certain weights are multiplied with
potentially non-zero values. These weights fall into
four non-overlapping groups, indicated by different
colors and A,B,C,D in the figure. Based on the fil-
ter groups, we arrange the original 5 × 5 filter to
four new filters of sizes (A) 3 × 3, (B) 3 × 2, (C)
2× 3 and (D) 2× 2. Exactly the same output as the
original operation (unpooling and convolution) can
now be achieved by interleaving the elements of the
four resulting feature maps as in Fig. 3. The corre-
sponding changes from a simple up-convolutional
block to the proposed up-projection are shown in
Fig. 2 (d).

Figure 24: Faster up-convolution[7]
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Upsampling Strategies

I Deconvolution can cause checkerboard artifacts

Figure 25: Nearest neighbor upsampling[2]
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Lenslet Network - Fish Eye - Fewer Epochs

Figure 26: Spheres prediction (best
epoch)

Figure 27: Spheres prediction (last
epoch)
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Lenslet Network - Spheres - Fewer Epochs

Figure 28: Spheres prediction (best
epoch)

Figure 29: Spheres prediction (last
epoch)
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Lenslet Classification Network - Fewer Epochs

Figure 30: Ground truth. Figure 31: Predicted depth map.
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