

AI-driven analysis and image acquisition of in-vivo neuronal network activity

Xingying Chen, Bastian Krämer Michal Klein, René Romen

August 5, 2019

Department of Mathematics Technical University of Munich

Table of Contents

ТЛ

Table of Contents

Introduction

Zebrafish Larvae

Figure 1: Zebrafish[5]

Chen, Krämer, Klein, Romen – Data Innovation Lab

Light Field Microscope

Figure 2: (a) A microscope with a microlens array[3]

Figure 3: Microlens array[1]

Advantages of Light Field Microscopy Images

Light Field Microscope

Figure 5: (b), (c) The red point stands for a point source generating illumination. Red regions on top shows the intensity of illumination arriving at the sensor plane[3].

ТЛ

Light Field Microscope

Figure 6: Example light field of a sphere[3]

Light Field Transformations

Lenslet Image

Lenslet Sub-image

- Angular resolution: 43 × 43
- Spatial resolution: 23 × 23

ПΠ

Reordering Light Field

Lenslet Image	Views Image
0 0 0 0 1 1 1 1 2 2 2 8 3 3 4 4 4 5 5 5 0 0 0 0 1 1 1 1 2 2 2 8 3 3 4 4 4 5 5 5 0 0 0 1 1 1 1 2 2 2 8 3 3 4 4 4 5 5 5	
6 6 7 7 7 8 8 9 9 10 10 11 11 11 6 6 6 7 7 7 8 8 9 9 10 10 11 11 11 6 6 6 7 7 7 8 8 9 9 10 10 11 11 11 6 6 7 7 7 8 8 9 9 10 10 11 11 11	
12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 17 17 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 12 12 12 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
19 19 19 19 20 20 21 21 22 22 23 32 18 18 19 19 19 20 20 21 21 22 22 23 23 23 18 18 19 19 19 20 20 21 21 22 22 23 23 23 18 18 19 19 10 20 21 21 22 22 23 23 23 18 18 10 19 10 20 20 21 21 22 22 23 23	
24 24 24 25 25 26 27 27 26 26 20 20 24 24 24 25 25 26 26 27 27 28 28 29 29 29 24 24 24 25 25 26 26 27 27 28 28 29 29 29 24 24 24 25 25 26 27 27 28 28 29 29 29 24 24 24 25 25 26 27 27 28 28 29 29 29 24 24 26 26 27 27 28 28 29 29 29 24 24 26 26 27 27 28 28 29 29 29	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10 10 13 13 12 12 12 12 12 12 15 15 15 10 10 10 15 12 12 12 12 12 12 12 13 15 </td <td>18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35</td>	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Figure 7: Reordering lenslet to views image[6]

ПП

Reordering Light Field

Figure 8: Reordering lenslet to views image[6]

Reordering Light Field

 Image
 Image

 Image</t

Views Image

0	1	2	3	4	5	[0	1	2	3	4	5	1	0	1	2	3	4	5
6	7	8	9	10	11	ΙΓ	6	7	8	9	10	11		6	7	8	9	10	11
12	13	14	15	16	17		12	13	14	15	16	17		12	13	14	15	16	17
18	19	20	21	22	23		18	19	20	21	22	23		18	19	20	21	22	23
24	25	26	27	28	29		24	25	26	27	28	29		24	25	26	27	28	29
30	31	32	33	34	35		30	31	32	33	34	35		30	31	32	33	34	35
0	1	2	3	4	5	Γ	0	1	2	3	4	5	Ï	0	1	2	3	4	5
6	7	8	9	10	11	l	6	7	8	9	10	11		6	7	8	9	10	11
12	13	14	15	16	17	l	12	13	14	15	16	17	1	12	13	14	15	16	17
18	19	20	21	22	23	l	18	19	20	21	22	23	1	18	19	20	21	22	23
24	25	26	27	28	29		24	25	26	27	28	29	1	24	25	26	27	28	29
30	31	32	33	34	35		30	31	32	33	34	35		30	31	32	33	34	35
0	1	2	3	4	5	Γ	0	1	2	3	4	5	Ī	0	1	2	3	4	5
6	7	8	9	10	11		6	7	8	9	10	11							
12	13	14	15	16	17	1	12	13	14	15	16	17							
18	19	20	21	22	23	1	18	19	20	21	22	23							
24	25	26	27	28	29	2	24	25	26	27	28	29							
30	31	32	33	34	35		30	31	32	33	34	35							

Figure 9: Reordering lenslet to views image[6]

Light Field Transformations

View

Views Image

- Angular resolution: 43 × 43
- Spatial resolution: 23 × 23

ТШТ

23

Light Field Image

Goal

light field image

ТШ

Goal

Goal

Goal

Table of Contents

Introduction

Datasets - Real Images

Fish eye

Figure 10: Fish eye

Chen, Krämer, Klein, Romen - Data Innovation Lab 20

Datasets - Real Images

Spheres

Figure 11: Spheres Chen, Krämer, Klein, Romen – Data Innovation Lab 21

Dataset - Training Data

Created own dataset containing geometric objects

Figure 12: Scene

Figure 13: Resulting depth map

ТШ

Dataset

Figure 14: Resulting lenslet and views image

▶ 369 images

ТШ

Table of Contents

Introduction

2 Data

Overview of Networks

- Input views image
 - Epinet
 - Views network
- Input lenslet image
 - Lenslet network
 - Lenslet classification network

Overview of Networks

- Input views image
 - Epinet
 - Views network
- Input lenslet image
 - Lenslet network
 - Lenslet classification network

Epinet

Figure 15: Epinet architecture [9]

Multi-stream network

Epinet

- 2.2 million parameters
- Multistream convolutional encoder
- Upscaling: nearest neighbor interpolation
- Optimizer: RMSProp (no learning rate decay)
- Regularization: None
- Activation function: Leaky ReLU
- Learning rate: 10⁻⁴
- Error: Mean squared error

Overview of Networks

- Input views image
 - Epinet
 - Views network
- Input lenslet image
 - Lenslet network
 - Lenslet classification network

Views Network

Figure 16: Left to right: input, 4 convolution layers, upscaling by nearest neighbor interpolation, 3 convolution layers.

Views Network

- 4.1 million parameters
- Convolutional encoder
- Upscaling: nearest neighbor interpolation
- Optimizer: Adam (no learning rate decay)
- Regularization: None
- Activation function: Leaky ReLU
- Learning rate: 10⁻⁶
- Error: Absolute error

Overview of Networks

- Input views image
 - Epinet
 - Views network
- Input lenslet image
 - Lenslet network
 - Lenslet classification network

Lenslet Network

Figure 17: General structure of a convolution encoder-decoder architecture. We use Inception-ResNet-v2 [10] blocks in encoder.

Lenslet Network

- 7.6 million parameters
- Inception-ResNet-v2 blocks encoder
- Upscaling: fast up-convolution (x3)
- Optimizer: Adam (exp. decaying learning rate (400 examples))
- Regularization: L2 (scale: $5 * 10^{-6}$)
- Activation function: Leaky ReLU (after each block)
- Learning rate: 5 * 10⁻⁶
- Error: Mean squared error

Overview of Networks

- Input views image
 - Epinet
 - Views network
- Input lenslet image
 - Lenslet network
 - Lenslet classification network

Lenslet Classification Network

Figure 18: General structure of a convolution encoder-decoder architecture. We use Inception-ResNet-v2[10] blocks in encoder.

Lenslet Classification Network

- ▶ 5 million parameters
- Inception-ResNet-v2 encoder
- Upscaling: fast up-convolution (x3)
- Optimizer: Adam (exp. decaying learning rate (400 examples))
- Regularization: L2 (scale: $5 * 10^{-6}$)
- Activation function: Leaky ReLU (after each block)
- Learning rate: 5 * 10⁻⁶
- Error: Mean absolute error

ТШ

Table of Contents

Introduction

2 Data

3 Networks

Quantitative Results

Network	MSE	BPR (δ = 0.15)	Input	#params (millions)
Epinet	0.0049958	0.04304	Stacked views	2.2
Views	0.0122427	0.12022	Stacked views	4.1
Lenslet	0.00595414	0.05586	Lenslet	7.6
Lenslet (cls)	26.9925	0.99521	Lenslet	5

Qualitative Results - Test Data

Figure 19: Depth prediction of an image from test set after 300 epochs.

Chen, Krämer, Klein, Romen - Data Innovation Lab 40

Qualitative Results - Fish Eye

Epinet Views Lenslet Lenslet (cls)

Figure 20: Depth prediction of fish eye after 300 epochs.

Chen, Krämer, Klein, Romen – Data Innovation Lab 41

Qualitative Results - Spheres

Views Epine Lenslet Lenslet (cls)

Figure 21: Depth prediction of spheres after 300 epochs.

Chen, Krämer, Klein, Romen – Data Innovation Lab 42

Discussion - Real Data

Image of fish eye and spheres taken with different configurations

Discussion - Real Data

- Image of fish eye and spheres taken with different configurations
- Better networks on the test set pick up more noise

Discussion - Real Data

- Image of fish eye and spheres taken with different configurations
- Better networks on the test set pick up more noise
- No ground truth to compare the results

ТШ

Table of Contents

Introduction

2 Data

3 Networks

Simulation needed to overcome lack of data

- Simulation needed to overcome lack of data
- General problem when using deep networks on light field data

- Simulation needed to overcome lack of data
- General problem when using deep networks on light field data
- Geometric objects are biologically not plausible

- Simulation needed to overcome lack of data
- General problem when using deep networks on light field data
- Geometric objects are biologically not plausible
- Real data contains noise

- Simulation needed to overcome lack of data
- General problem when using deep networks on light field data
- Geometric objects are biologically not plausible
- Real data contains noise
- Realistic simulation with unrealistic scene

- Typical light field resolutions in research papers:
 - Spatial resolution of 512×512
 - Angular resolution of 3×3 , 5×5 or 9×9
- e.g. see EPINET[9], VommaNet[8]

- Typical light field resolutions in research papers:
 - Spatial resolution of 512 × 512
 - Angular resolution of 3×3 , 5×5 or 9×9
- e.g. see EPINET[9], VommaNet[8]
- Light field microscopy data in our project:
 - Spatial resolution of 43 × 43
 - Angular resolution of 23×23

• Depth predictions with a resolution of 43×43 too small

- Depth predictions with a resolution of 43×43 too small
- Upsampling of spatial resolution to 256×256

- Depth predictions with a resolution of 43×43 too small
- ▶ Upsampling of spatial resolution to 256 × 256
- Differences in baseline and depth range

- Depth predictions with a resolution of 43×43 too small
- Upsampling of spatial resolution to 256×256
- Differences in baseline and depth range
- Architectures proposed in research papers were not directly suited for our data

Outlook

Realistic scene generation

Outlook

- Realistic scene generation
- Networks that are invariant to camera configurations

Outlook

- Realistic scene generation
- Networks that are invariant to camera configurations
- Light field reconstruction using depth prediction

ТЛП

Summary

Thank you for your attention

Questions?

Chen, Krämer, Klein, Romen – Data Innovation Lab 50

Bibliography I

- [1] https://www.rpcphotonics.com/product/mla-s100-f12/.
- [2] Nearest neighbour interpolation.
- [3] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy.

Wave optics theory and 3-d deconvolution for the light field microscope. *Optics express*, 21(21):25418-25439, 2013.

[4] X. Duan, X. Ye, Y. Li, and H. Li.

High quality depth estimation from monocular images based on depth prediction and enhancement sub-networks.

In 2018 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2018.

Bibliography II

- [5] L. D. Ellis, E. C. Soo, J. C. Achenbach, M. G. Morash, and K. H. Soanes. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity. *PLoS One*, 9(12):e115305, 2014.
- [6] C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch.
 Baseline and triangulation geometry in a standard plenoptic camera. *International Journal of Computer Vision*, 126(1):21–35, Jan 2018.
- [7] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab.
 Deeper depth prediction with fully convolutional residual networks.
 In 2016 Fourth international conference on 3D vision (3DV), pages 239–248. IEEE, 2016.
- [8] H. Ma, H. Li, Z. Qian, S. Shi, and T. Mu.

Vommanet: an end-to-end network for disparity estimation from reflective and textureless light field images.

arXiv preprint arXiv:1811.07124, 2018.

Bibliography III

[9] C. Shin, H.-G. Jeon, Y. Yoon, I. So Kweon, and S. Joo Kim.

Epinet: A fully-convolutional neural network using epipolar geometry for depth from light field images.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4748–4757, 2018.

[10] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
 Inception-v4, inception-resnet and the impact of residual connections on learning.
 In *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.

Backup Slides

Chen, Krämer, Klein, Romen - Data Innovation Lab 54

Depth Estimate

Figure 22: Example of a depth estimate.[4]

Bad Pixel Ratio

$$BPR(x, \hat{x}; \delta) = \frac{1}{NM} \sum_{i=0}^{N} \sum_{j=0}^{M} I[\delta < |x_{i,j} - \hat{x}_{i,j}|]$$

Upsampling Strategies

Figure 2. From up-convolutions to up-projections. (a) Standard up-convolution. (b) The equivalent but faster up-convolution. (c) Our novel up-projection block, following residual logic. (d) The faster equivalent version of (c)

Figure 23: Different up-sampling strategies[7]

Upsampling Strategies

Figure 3. Faster up-convolutions. Top row: the common up-convolutional steps: unpooling doubles a feature map's size, filling the holes with zeros, and a 5 \times 5 convolution filters this map. Depending on the position of the filter, only certain parts of it (A,B,C,D) are multiplied with non-zero values. This motivates convolving the original feature map with the 4 differently composed filters (bottom part) and interleaving them to obtain the same output, while avoiding zero multiplications, A,B,C,D only mark locations and the actual weight values will differ

Figure 24: Faster up-convolution[7]

Upsampling Strategies

Deconvolution can cause checkerboard artifacts

Figure 25: Nearest neighbor upsampling[2]

Lenslet Network - Fish Eye - Fewer Epochs

Figure 26: Spheres prediction (best epoch)

Figure 27: Spheres prediction (last epoch)

Lenslet Network - Spheres - Fewer Epochs

Figure 28: Spheres prediction (best epoch)

Figure 29: Spheres prediction (last epoch)

Lenslet Classification Network - Fewer Epochs

Figure 30: Ground truth.

Figure 31: Predicted depth map.