
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

AI-driven analysis and image acquisition of
in-vivo neuronal network activity

Authors Bastian Krämer, Michal Klein, René Romen, Xingying Chen
Mentor(s) Prof. Dr. Gil Westmeyer, Dr. Tobias Lasser, Anca Stefanoiu

TUM Chair of Biological Imaging
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Jul 2019

1

Abstract

Zebrafish larva is optimal for studying the stimulus on neurons because its body, including
its, brain is transparent. We want to reconstruct a 3D model with light field microscopy
images efficiently. The first step is to find a decent depth estimation given light field
images.
To increase the size of training data, we generated simple geometric objects (speres, cones,
rhomboids, etc.), simulated them and computed the targets (depth estimations). Mul-
titude of ata augmentation techniques from EPINET were tried out, but they are not
suitable since our images are gray-scale and the data doesn’t fit into RAM after applying
these techniques.
We explored different network architectures, but quickly abandoned the architectures with
3D convolutions, because they had worse results than the ones with 2D convolutions.
EPINET had very promising results on the light field benchmarks, but the pre-trained
version fails on microscopy data because the baselines of these two images are very differ-
ent. We had also reduced the number of blocks in subnetworks since our images are have
very small spatial dimension, achieving the best mean squared error and bad pixel ratio
on the test data. The predictions on real data are worse than Lenslet network and Views
Network. All networks can somewhat capture the structure of fisheye, but the biological
details are blurred since the training data only contain simple geometric objects. We also
phrased the problem as a classification task, implemented the classification versions of
several networks, but they do not generalize to the real dataset.
Although the results are far from satisfactory, we still think that a better depth estimation
is possible by improving the quality of the training data. One option is to acquire more
real data and calculate their depth estimation, but it is rather challenging since there
is a high probability to get a blurred picture from the microscopy. A more realistc way
is to introduce different grades of overlapping and transparency as well as some noise,
making it biologically more realistic. Our networks are already capable of predicting the
basic structure of the fisheye, they can definitely be improved if the training data is more
heterogeneous.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3
1.1 Problem definition and goals of the project 3

2 Theoretical Background 4
2.1 Light Field Microscopy . 4
2.2 Light Field Microscopy Data . 4
2.3 Datasets . 5
2.4 Data augmentation . 6
2.5 Deconvolution and artifacts . 6
2.6 Hyperparameter optimization . 6
2.7 Losses . 7

3 Networks 9
3.1 Epinet . 9
3.2 3D Convolution . 11
3.3 Lenslet Network . 11
3.4 Views Network . 13
3.5 Classification . 14

3.5.1 Lenslet Classification . 14
3.5.2 Inception Classification . 14
3.5.3 Views Classification . 15

3.6 Autoencoder . 15

4 Comparsions 16

5 Conclusions 16

6 Future Work 19

Bibliography 20

Appendix 21

1 INTRODUCTION 3

1 Introduction

1.1 Problem definition and goals of the project

The zebrafish larva has many very useful properties for research. Neuronal activities can
be measured on zebrafish larva since its body and embryos are transparent. This helps
to learn a lot about the functioning of the brain and that is why it is so useful for the
Westmeyer Laboratory. You can work with an experimental system where you can control
the input, each component and the behavioral output really well.

The main goal of this project is to find an algorithm to compute the light field reconstruc-
tion based on light field images. In Fig. 1), computing the forward model and the back
projection is not so time-consuming while solving the inverse problem takes hours. With
a depth estimate and a reconstruction guess from the back projection, a light field recon-
struction in real-time should be possible. So the first step is to learn the depth estimate
from the light field images. Based on the quality of the depth estimate and remaining
time, we can decide whether we proceed with the reconstruction.

In the first part of our paper, we provide you with some theoretical background like
terminologies, the data we had and the state of approaches. After that, we explain our
approaches and show you the experimental results. In the last part, we summarize and
give possible ideas for further improvements.

Figure 1: Project overview

2 THEORETICAL BACKGROUND 4

2 Theoretical Background

2.1 Light Field Microscopy

Light field microscopy provides a method to acquire scanless volumentric images by plac-
ing by putting a microlens array at the native image plane of the microscope [2]. The
resulting light field microscope image contains spatial and angular information of the
observed object. Different from conventional microscope images, light field microscope
images can be used to compute the 3D model and the re-focusing to different heights with
higher quality.
Fig. 2 from Broxten et al. explains how light travels through the microlens array and gives
an intuition of a light field image. After moving the object from the native image plane,
light rays concentrated in the middle change their trajectory and scatter on different part
of microlenses.

Figure 2: (a) A microscope with a microlens array (b),(c) The red point stands for a
point source generating illumination. The red regions on the top shows the intensity of
illumination arrived at the sensor plane. (d), (e) A real light field compared to a simulated
one [2].

2.2 Light Field Microscopy Data

A light field image is a 4D image where each pixel is associated with four coordinates
(x, y, s, t). Where (x, y) are interpreted as spatial and (s, t) as angular coordinates. The
images in our generated datasets all have a spatial and angular resolution of 43× 43 and
23×23 respectively. Therefore, the whole light field image contains 43·43·23·23 = 978121
pixels. Fig. 3 shows two ways how light field images can be mapped to 2D images. First,
by fixing the two angular axes to a fixed value the spatial coordinates form an image

2 THEORETICAL BACKGROUND 5

which is defined as a view. We receive the views by re-arranging all sub-aperture images
where the position of the view is decided by the angular coordinates. Each view captures
the whole scene from an angle which is determined by the angular coordinates. Therefore,
the views image shows how the whole scene looks from each angle. If we instead fix the
spatial coordinates and look at all angular coordinates, the resulting image is capturing
one spatial position in the scene from each angle. If we reorder them according to the
spatial coordinates into an image, we get the lenslet image. The lenslet image shows how
one pixel in the scene looks from each angle for each pixel. As a result, the whole scene
can be seen in the lenslet. Lenslet and views image are therefore just a reordering of the
light field image. Transforming between the representations is easy and fast. Therefore,
our networks can take any of them as input.

43

Lenslet Image

43

Views Image

23

23

Views

Figure 3: The lenslet image on the left is the photo of the microlens array mounted on
top of the microscope. It is therefore a photo of a grid of 43 × 43 microlenses, where
each microlens collects the light of one pixel of the spatial domain from each angle. The
views image on the right is constructed from the lenslet image by arranging 23×23 views
according to their angular coordinates. The position of the four views in the center is
marked in the views image. The magenta view for example has the angular coordinates
(12, 12), i.e. it is the central view. A view can be constructed from the lenslet by taking
the pixel at the angular coordinates of the view in each lenses image, i.e. take the middle
pixel of each of the 43× 43 subimages in the lenslet to gain the central view.

2.3 Datasets

For the project, we were provided with three real data points and a realistic light field
simulation [2]. The real data consist of volume and light field of a fisheye, an organoid,
and spheres. We used the volume to create a depth prediction. Unfortunately, that turned
out rather bad since the volume contains a lot of noise. For training of our networks, we
had to create a dataset using the simulation. For this, we first extended the simulation
by creating phantom images that contain a scene. We used scenes with randomly placed
objects like spheres, boxes, and cylinders. When placing them we prevented overlaps of
more than 15% and we applied a 3d Gaussian filter. The phantom was then fed to the
simulation which calculates the light field. The ground truth depth map can be directly
calculated from the phantom. We created light field images of size 989×989 with a depth
range of [−50, 50] and depth step of 5. This means the light field distinguishes 21 depths

2 THEORETICAL BACKGROUND 6

which is close to the 17 to 19 in our real data. The lense spacing was set to 23 pixels. The
resulting light fields have a size of 23× 23× 43× 43, where the first two are the angular
dimensions and the second two the spatial dimensions.

2.4 Data augmentation

At the beginning, we did not have many data and generating data takes quite a long time,
so we decided to use some data augmentation techniques to get more data. Therefore we
implemented the same techniques used in EPINET [14], which are view shifting (on the
sub-images - 9x9, 7x7 and 5x5), scaling by 1/N (N = 1, 2, 3, 4), rotating by 90, 180 and
270 degrees, flipping, color scaling [0.5, 1.2] and gamma adjustment [0.8, 1.2]. With these
techniques, we could increase the number of images to as many as we wanted because we
selected the values randomly. Unfortunately, it turned out that most of the techniques
are not useful for our problem, so in the end, we only used the rotation.

2.5 Deconvolution and artifacts

Deconvolution layers are often used in deep CNN architectures. A well-known problem
is they often introduce checkerboard artifacts into the result. Odena et al. [10] show
that this problem was found in many research papers. The reasons for these artifacts are
usually poor choices for stride and kernel size of layers. To prevent the problem, the stride
should divide the kernel size along every dimension. This ensures that all output pixels
sum up the same number of activations. But even in this case, there is the possibility
that the kernel learns weights in a way that introduce these artifacts. While in theory,
the network can learn to prevent them. This will reduce the capacity of the network.
Therefore in the paper, they suggest to smooth out the artifacts using convolutions with
stride one and a kernel size larger than the artifacts. Deconvolutions can also be replaced
by nearest neighbor or bilinear interpolation followed by convolutions.

Figure 4: Sub-pixel layer defined in [12].

2.6 Hyperparameter optimization

We have implemented three different optimization strategies: grid search, random search,
and greedy search. Grid search tries out all possible combinations, leading to combi-
natorial explosion. Random search samples from a predefined space, e.g. uniform or

2 THEORETICAL BACKGROUND 7

Published at IEEE International Conference on 3D Vision (3DV) 2016

Figure 2. From up-convolutions to up-projections. (a)
Standard up-convolution. (b) The equivalent but faster
up-convolution. (c) Our novel up-projection block, fol-
lowing residual logic. (d) The faster equivalent version
of (c)

We further extend simple up-convolutions using
a similar but inverse concept to [7] to create up-
sampling res-blocks. The idea is to introduce a
simple 3 × 3 convolution after the up-convolution
and to add a projection connection from the lower
resolution feature map to the result, as shown in
Fig. 2(c). Because of the different sizes, the small-
sized map needs to be up-sampled using another
up-convolution in the projection branch, but since
the unpooling only needs to be applied once for
both branches, we just apply the 5 × 5 convolu-
tions separately on the two branches. We call this
new up-sampling block up-projection since it ex-
tends the idea of the projection connection [7] to
up-convolutions. Chaining up-projection blocks al-
lows high-level information to be more efficiently
passed forward in the network while progressively
increasing feature map sizes. This enables the con-
struction of our coherent, fully convolutional net-
work for depth prediction. Fig. 2 shows the dif-
ferences between an up-convolutional block to up-
projection block. It also shows the corresponding
fast versions that will be described in the following
section.

Fast Up-Convolutions. One further contribution
of this work is to reformulate the up-convolution
operation so to make it more efficient, leading to a
decrease of training time of the whole network of

Figure 3. Faster up-convolutions. Top row: the com-
mon up-convolutional steps: unpooling doubles a fea-
ture map’s size, filling the holes with zeros, and a 5 × 5
convolution filters this map. Depending on the position
of the filter, only certain parts of it (A,B,C,D) are mul-
tiplied with non-zero values. This motivates convolv-
ing the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to ob-
tain the same output, while avoiding zero multiplications.
A,B,C,D only mark locations and the actual weight val-
ues will differ

around 15%. This also applies to the newly intro-
duced up-projection operation. The main intuition
is as follows: after unpooling 75% of the result-
ing feature maps contain zeros, thus the following
5 × 5 convolution mostly operates on zeros which
can be avoided in our modified formulation. This
can be observed in Fig. 3. In the top left the origi-
nal feature map is unpooled (top middle) and then
convolved by a 5 × 5 filter. We observe that in an
unpooled feature map, depending on the location
(red, blue, purple, orange bounding boxes) of the
5×5 filter, only certain weights are multiplied with
potentially non-zero values. These weights fall into
four non-overlapping groups, indicated by different
colors and A,B,C,D in the figure. Based on the fil-
ter groups, we arrange the original 5 × 5 filter to
four new filters of sizes (A) 3 × 3, (B) 3 × 2, (C)
2× 3 and (D) 2× 2. Exactly the same output as the
original operation (unpooling and convolution) can
now be achieved by interleaving the elements of the
four resulting feature maps as in Fig. 3. The corre-
sponding changes from a simple up-convolutional
block to the proposed up-projection are shown in
Fig. 2 (d).

Figure 5: Different ways of upsampling.
Image courtesy of [8].

Published at IEEE International Conference on 3D Vision (3DV) 2016

Figure 2. From up-convolutions to up-projections. (a)
Standard up-convolution. (b) The equivalent but faster
up-convolution. (c) Our novel up-projection block, fol-
lowing residual logic. (d) The faster equivalent version
of (c)

We further extend simple up-convolutions using
a similar but inverse concept to [7] to create up-
sampling res-blocks. The idea is to introduce a
simple 3 × 3 convolution after the up-convolution
and to add a projection connection from the lower
resolution feature map to the result, as shown in
Fig. 2(c). Because of the different sizes, the small-
sized map needs to be up-sampled using another
up-convolution in the projection branch, but since
the unpooling only needs to be applied once for
both branches, we just apply the 5 × 5 convolu-
tions separately on the two branches. We call this
new up-sampling block up-projection since it ex-
tends the idea of the projection connection [7] to
up-convolutions. Chaining up-projection blocks al-
lows high-level information to be more efficiently
passed forward in the network while progressively
increasing feature map sizes. This enables the con-
struction of our coherent, fully convolutional net-
work for depth prediction. Fig. 2 shows the dif-
ferences between an up-convolutional block to up-
projection block. It also shows the corresponding
fast versions that will be described in the following
section.

Fast Up-Convolutions. One further contribution
of this work is to reformulate the up-convolution
operation so to make it more efficient, leading to a
decrease of training time of the whole network of

Figure 3. Faster up-convolutions. Top row: the com-
mon up-convolutional steps: unpooling doubles a fea-
ture map’s size, filling the holes with zeros, and a 5 × 5
convolution filters this map. Depending on the position
of the filter, only certain parts of it (A,B,C,D) are mul-
tiplied with non-zero values. This motivates convolv-
ing the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to ob-
tain the same output, while avoiding zero multiplications.
A,B,C,D only mark locations and the actual weight val-
ues will differ

around 15%. This also applies to the newly intro-
duced up-projection operation. The main intuition
is as follows: after unpooling 75% of the result-
ing feature maps contain zeros, thus the following
5 × 5 convolution mostly operates on zeros which
can be avoided in our modified formulation. This
can be observed in Fig. 3. In the top left the origi-
nal feature map is unpooled (top middle) and then
convolved by a 5 × 5 filter. We observe that in an
unpooled feature map, depending on the location
(red, blue, purple, orange bounding boxes) of the
5×5 filter, only certain weights are multiplied with
potentially non-zero values. These weights fall into
four non-overlapping groups, indicated by different
colors and A,B,C,D in the figure. Based on the fil-
ter groups, we arrange the original 5 × 5 filter to
four new filters of sizes (A) 3 × 3, (B) 3 × 2, (C)
2× 3 and (D) 2× 2. Exactly the same output as the
original operation (unpooling and convolution) can
now be achieved by interleaving the elements of the
four resulting feature maps as in Fig. 3. The corre-
sponding changes from a simple up-convolutional
block to the proposed up-projection are shown in
Fig. 2 (d).

Figure 6: Efficient way of doing faster
up-convolution. Image courtesy of [8].

log-uniform for numerical values, for a predefined number of steps. Greedy search opti-
mizes parameters in a certain order by selecting the best value at each step and fixing
it for the next step. We have tried optimizing different parameters, including but not
limited to: optimizer, learning rate, kernel size, number of filters, and pooling type.

2.7 Losses

We found a few quite interesting loss functions which might help optimize our network -
especially sharpen the edges of the objects in our prediction since we had many problems
with them. We implemented the following three loss functions.

1. VommaNet [9]

lMAE =
N∑
i=1

|Di|
N

; lgrad =
N∑
i=1

|∇x(Di)|+ |∇y(Di)|
N

, (1)

lnormal = 1−
N∑
i=1

cos < −→n d
i ,
−→n g

i >

N
, (2)

−→n d
i = (−∇ydi,−∇xdi, 1),−→n g

i = (−∇ygi,−∇xgi, 1), (3)

LV ommaNet = λ1lMAE + λ2lgrad + λ3lnormal, (4)

Di = di − gi is the difference between network estimation and its ground truth at
the ith pixel. N is the total number of pixels,∇x is the spatial gradient in x-axis, ∇y

is the spatial gradient in y-axis. λi, i ∈ {1, 2, 3} are weights. The first term lMAE

is the mean absolute error. The second term aims to penalize the error around the

2 THEORETICAL BACKGROUND 8

edges. The last measures and penalizes the accuracy of the normal to the surface
of the prediction concerning the ground truth.

2. Loss Blog [1]

LBlog =
1

N

N∑
i=1

d2i −
1

2N2
(

N∑
i=1

di)
2 +

1

N

N∑
i=1

[(∇xdi)
2 + (∇ydi)

2], (5)

di = log(Predicted depth map) − log(Ground truth depth map) for pixel i. N is
the total number of pixels. The first part is the mean squared error of the logs.
The second function credits errors that are in the same direction, so it is more
important for the prediction whose mistakes are consistent. The last term penalizes
the difference in gradients.

3. Loss Self-Build:

lgrad =
1

2N

N∑
i=1

(∇xdi + (∇xdi ◦ λ1 · ei)− (∇xgi +∇xgi ◦ λ1 · ei) (6)

+
1

2N

N∑
i=1

(∇ydi + (∇ygi ◦ λ1 · ei)− (∇ygi +∇ygi ◦ λ1 · ei), (7)

LSelf =λ2

N∑
i=1

(Di)
2

N
+ λ3lgrad, (8)

∇xdi are the gradients of the network estimation, ∇xgi of the ground truth, ei is the
edge mask at pixel i, λi ∈ {1, 2, 3} are weights. With Loss Self-Build we wanted to
weight the edge mask highly so that the edges become smoother.

Unfortunately, all three loss functions - even if the idea behind them seems very reasonable
- did not help at any network because our data for example don’t have reflection and
texture-less area.

3 NETWORKS 9

3 Networks

The depth estimation can be treated either as a classfication task or a regression task. In
the classification setting, we tried to predict per-pixel probabilities of falling into prede-
fined depth bins. Classification setting can also be seen as a form of semantic segmenta-
tion, with the difference being that our classes also have an order. In this setting, we do
not make use of this additional information; the number of depth bins was set to 50, since
it seemed like a good middle ground between the granularity of the prediction and hard-
ness of the task. As in semantic segmentation, pixel’s value is heavily influenced by the
values of neighboring pixels. To get a better prediction, a solution based on conditional
random fields (CRF) is usually used, either as a post-processing step [7] or even during
training. Our idea was to start with the former and see if we can achieve positive results
and if so, switch to the latter approach. However, during our project, we have found out
that the classification approach didn’t yield promising results (as seen below), so we have
primarily focused on the regression problem. All of our depth maps are 256x256. All the
figures from the classification networks were not post-processed by CRF.

3.1 Epinet

Epinet [14] proposes an architecture for depth estimation using light field images. To pre-
vent overfitting problem, they use general data augmentation techniques such as scaling
and flipping. Moreover, they develop own strategies for light field data, shifting center
viewpoints and rotation.
Instead of the whole angular information, only 4 angular directions are fed into the net-
work. They use a multi-stream network, as shown in 7, to process the stacked information
of viewpoints. Each subflow in the multistream network consists of three convolutional
blocks. The subflows are merged to pass the eight convolutional blocks. The first few
blocks are with a Conv-Relu-Conv-BN-Relu structure, whereas the last layer has a Conv-
Relu-Conv structure.
Their training data is from 4D Light Field Benchmark [4] with reflection, refraction and
textureless regions masked out.

Figure 7: EPINET structure [14]

At first, we implemented EPINET as it was done it the paper. Unfortunately, it turned

3 NETWORKS 10

out that we can not just directly use their structure and parameters as the results look
quite bad 8. Then, we downloaded its pre-trained version [13]. We tried the pre-trained
EPINET with and without frozen weights, as suggested by general transfer learning tech-
niques [6]. But as shown in the result, their network was not really suitable for our
problem 8.

Figure 8: Epinet - ground truth (a), from scratch (b), without frozen weight (c), with
frozen weights (d).

We decided to optimize the EPINET structure. In the end, we did not use data augmen-
tation techniques since they were not useful for us. More specifically, EPINET used the
view shifting because they could not fit all the sub-aperture images in the memory due to
their high spatial dimension. Since our spatial dimension is very low, this was not neces-
sary for us. Furthermore, the networks improve with more number of input views [14]. We
did not use the rotations since it did not improve the network in terms of generalization
and slowed down the training process. The less angular directions and therefore subnet-
works we used, the worse the results were. We decided to use the horizontal, vertical and
diagonals views at the end. Each subnetwork in the multistream network consists of three
convolutional blocks. The subflows are merged to pass the five convolutional blocks. The
first few blocks are with a Conv-Relu-Upsampling-Conv structure, whereas the last layer
has a Conv-Upsamping-Conv structure. Parameters can be seen in the Appendix. In the
end, the network had 2.4 million parameters. Although the loss converges very nicely,
unfortunately, the network does not work well for our problem. It estimates the shape
of the objects more or less well but it is still very blurry around those. Furthermore, it
does not truly recognize the depth in a good way 9. After two-third of our project time
without getting good results albeit a lot of trying, we decided to concentrate on other
networks.

0 50 100 150 200 250 300
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Training
Validation

Ground truth Predicted depth map

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Traning/validation curve and predition on an image from test set.

3 NETWORKS 11

3.2 3D Convolution

Another approach we used was 3D-Convolution. We built two subnetworks with another
angular resolution as a channel. In the subnetworks, we used different number of layers,
kernels as well as filters and tried different network architectures. In the last version, each
subnetwork contained five 3D convolution layers, then the subnetworks were concatenated,
upsampled with deconvolution and in the end smoothed with another 3D convolution
layer. The activation function is ’Leaky ReLU’, the learning rate is 10−4 and error function
is the mean absolute error. In general, it turned out that all networks with 3D-Convolution
had much worse results than the one with 2D-Convolution (Fig.10). Therefore we had
decided to focus our attention on 2D-Convolution.

Figure 10: 3D-Convolution, on the left: ground truth, on the right: network estimation.

3.3 Lenslet Network

Figure 11: General encoder-decoder CNN style architecture.1

1This figure has been created by https://github.com/gwding/draw_convnet.

https://github.com/gwding/draw_convnet

3 NETWORKS 12

This type of network operates on the lenslet image, whose original size 989 × 989 was
downsampled to 512 × 512 using nearest-neighbor interpolation. It follows a general
encoder-decoder CNN architecture as in Fig. 11, which is a de-facto a standard in similar
[5, 16] or different tasks, such as biomedical image segmentation [11]. The encoder-
decoder architecture consists of 2 parts: contracting and expansive. The contractive
part downsamples the spatial dimensions of the input, while increasing the number of
features every layer (usually number of channels of a convolutional block). The expansive
part upscales the spatial dimension, reducing the number of features, until the desired
dimensions are reached. In most of the encoder-decoder networks, some form of skip
connections are present to increase the information/gradient flow between the encoder
and the decoder, e.g. channels from the encoder are concatenated to the channels of the
decoder with the corresponding spatial dimensions. Other networks [3] try to predict their
target at smaller resolutions and concatenate the intermediate prediction to the channels
of next upsampling layer. When trying out this approach, we observed no significant
difference in terms of the quality of the prediction. Our encoder consists of 4 parts, each
followed by a max-pooling layer. The first two parts consist of two inception-resnet-v2-
35x35 blocks each, the second two parts consist of two inception-resnet-v2-17x17 blocks.
Each of these blocks has been scaled in terms of number of channels since the original
[15] was too large for our dataset. It shall be noted that we have also experimented with
a scaled-down version of the Inception-ResNet-v2, but the objects in the predicted depth
map appeared to fused together. This can either arise from the stem block, 8 block or
the conversion blocks (35to17 or 17to8). We have decided not to investigate this matter
further, given the shortness of time. The encoder transforms the input into 64× 64× 512
features, which are then fed into the decoder.
The decoder consists of 2 upsampling layers, the first layer having 256 channels, the
second 128. Furthermore, we also predict the intermediate depth maps (of dimensions
64x64, 128x128) and concatenate these predictions to the channels of the next layer,
similarly as in [3].
In the course of the network design, we have tried different upsampling strategies, as
mentioned in Section 2.5. For the lenslet network, we observed that in terms of reducing
checkerboard artifacts. They have opted for the up-projection as our go-to upsampling
block because the fast up-convolution and fast up-projections layers introduce too many
parameters, which do not improve our results.

0 50 100 150 200 250 300
Epoch

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Training
Validation

Ground truth Predicted depth map

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Traning/validation curve and predition on an image from test set.

3 NETWORKS 13

3.4 Views Network

529
43

43

256

1

1

256

2

2

256

4

4

128

4

4

128

256

256

64

16

16

32

4

4

1

1

1

Figure 13: Left to right, Input, 4 convolution layers, upscaling by nearest neighbor inter-
polation, 3 convolution layers.

The views network receives the full light field image as input. The light field is prepro-
cessed by extracting all views and stack them as image channels. Therefore the input
for our network is an image of dimension 43 × 43 with 232 channels, on which we can
directly apply 2D convolutions. The network architecture is shown in figure 13. The views
stack first goes trough 4 convolutions. Then we upscale the channels by nearest neighbor
interpolation. After upscaling a convolution with a large 18 × 18 kernel smooth out up-
scaling errors. Finally, 2 more convolutions are used to reduce the channel size to 1 and
we receive as output the predicted depth map. The inspiration from the network comes
from EPINET (see section3.1). EPINET also uses stacked views as input but instead
of using the full light field image only a subset is actually used. In the views network,
the whole light field is given as input. Furthermore, the first layer is a 1× 1 convolution
which allows the network to select the channels that it wants to use, i.e. it can learn
which views are the most important ones. EPINET then uses one subnetwork for each
input stack, combines the outputs and feeds it to another network. Here we always work
on the full light field instead. The upscaling by nearest neighbor interpolation and the
following convolution layer were chosen because they introduced no checkerboard artifacts
as discussed in section 2.5. Each layer except the last one uses a leaky ReLU activation
function. The kernel parameters are initialized with the glorot uniform distribution and
the bias with zero. The network has around 4.1 million parameters. The network was
trained using the ADAM optimizer with a learning rate of 10−6. As error function, we
used the absolute error between the predicted depth map and the ground truth depth
map rescaled to 256× 256 pixels.

l (x, y) =
256∑
i=1

256∑
i=1

∣∣∣(y)i,j − (f (x))i,j

∣∣∣
The loss function is then the average over the batch of size 32.

L (X, Y) =
1

32

32∑
i=1

l (Xi, Yi)

3 NETWORKS 14

Since the gradients sometimes exploded we used gradient clipping by norm. In detail, we
first grouped the kernel and bias variables of each layer. Then, we applied an L2-norm
gradient clipping where we allowed the norm of the gradients to be at most the number
of weights in the group.

0 50 100 150 200 250 300
Epoch

2000

4000

6000

8000

10000

12000

14000

Ab
so

lu
te

 D
iff

er
en

ce

Training
Validation

Ground truth Predicted depth map

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: The first figure shows the views network training and validation loss over 300
epochs. The images on the right show the ground truth and predicted depth map for one
example from the test set.

3.5 Classification

3.5.1 Lenslet Classification

Since we did not get the results we wanted, we started to implement classification net-
works. First, we built the ’Lenslet classification’ network. In the beginning, we used the
same architecture as at the ’Lenslet’ network used. The training result looked promising.
The data was predicted very well and the loss looked promising. However, the prediction
on the real data was not good at all. Especially for the fisheye, the classification network
only predicted zeros and ones.
Then we decided to implement fast upconvolution as upsampling technique [8]. The
network were too big, so we had to downsize it. The final network architecture is as follows:
2× 35x35 inception block and a max pooling layer, followed by 2× 17x17 inception block
and yet another max pooling layer. Then we upsampled the features 2×, followed by 4
convolution blocks and 3 fully connected layers. Parameters can be seen in the Appendix.
The final network has around five million parameters. The training data and the loss
looked even more promising. But testing the network on the real data had the same
problems we had before, even if the MSE and bad pixel ratio increased a little bit (see
Fig. 15).

3.5.2 Inception Classification

Another classification network we implemented is inception classification which consists of
3 different types of inception blocks and fast convolutional upsampling blocks. The archi-
tecture is (2x) inception-resnet-v2-35x35 – (2x) inception-resnet-v2-17x17 – (2x) inception-
resnet-v2-8x8 – (4x) fast convolutional layers – resize layer with nearest neighbor inter-

3 NETWORKS 15

0 50 100 150 200 250 300
Epoch

1

2

3

4
Cr

os
s E

nt
ro

py

Training
Validation

Ground truth Predicted depth map

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Traning/validation curve and predition on an image from test set.

polation to 256× 256. The training process resembles the training process of the lenslet
classification network. It first learns to predict the central part of one object, then re-
fines the edges. Similar to the lenslet classification, although the predicted depth on the
synthetic training data keeps improving, the network fails to give a meaningful depth
prediction on the real fisheye data. We also compared the network with and without any
fast convolutional layers. Without any fast convolutional blocks, even the prediction on
the training data looks quite low resolution since we choose nearest neighbor as the resize
strategy. With 4 fast convolutional blocks, the geometry of the fisheye appears and then
quickly disappears due to overfitting on the training data. Therefore we have ultimately
decided to abandon this network.

3.5.3 Views Classification

Since the Views Network has quite promising results, we tried out its classification version
to see whether the depth prediction would be better than other classification networks.
We also tried different numbers of fast upconvolutional layers. The more upconvolutional
layer it has, more complicate structure it can predict on the real data. But with 3
upconvolutional layers, the prediction quality on the real image decays earlier than the
networks with fewer upconvolutional layers. The training on the synthetic data cannot
be transferred to the real images.

3.6 Autoencoder

Figure 16: Reconstruction of an EPI.
Left: original. Right: reconstruction. Figure 17: Depth map prediction using

43× 32× 66 input. Left: ground truth.
Right: predicted depth map.

4 COMPARSIONS 16

Lastly, we have tried an entirely different approach. Since EPIs are highly structured,
we thought we can capture this structure using a lower-dimensional representation z. We
have implemented 2 different autoencoders: convolutional and fully-connected. As our
loss, we define lAE(x, y, x̂, ŷ) = λ ∗MSEreconstruction(x, x̂) + (1 − λ) ∗MSEprediction(y, ŷ)
and taken λ = 0.6. For the MSEprediction, we downscaled the target depth map to 43×43
and for a specific EPI taken a row corresponding to the fixed spatial dimension as our
target y. Size of the latent vector z was 66 and 64 for convolutional and fully-connected
AE, respectively. For our training data, we have generated all horizontal EPIs (all 0’s
removed), yielding ∼ 250000 samples. The AEs were trained for only five epochs, the best
one (convolutional) achieving MSEreconstruction = 2.18×10−3, MSEprediction = 6.39×10−6.
We then stitched the latent vectors for each sample into 23×43×66 shaped array and fed
them to smaller version of Views network to predict 128×128 depth map. Unfortunately,
this approach didn’t really work, since the AE didn’t manage to fully capture the structure
of the EPIs, as seen in Fig. 16.

4 Comparsions

Based on Table 1, it would seem like the EPINET is the winner, both in terms of MSE
and BPR on the test set. However, upon further inspection, it can be seen in 18 that its
prediction on real data is not as good as Views or Lenslet network. This further reinforces
our belief that our generated data is too far from the biological ground truth, which is the
ultimate goal of our task. Even on the spheres image, which is not biologically plausible,
EPINET does not seem to work very well.
Lenslet network achieves second to best numerical results, but similarly to EPINET,
it does not generalize well on the test data (albeit subjectively better than EPINET).
Possible reasons for the poor test performance might be the large number of parameters
or the upsampling transformation.
The Views network achieves arguably the best results after 300 epochs, despite being the
simplest architecture. Furthermore, we noticed that this network achieves better results
after prolonged training time. We trained the network for 120 hours. The performance
on the test set steadily increased, while the performance on the real data got worse after
a certain point. During the end of training the prediction on the fish eye was similar to
the epinet prediction.
We can also safely conclude, that Lenslet (cls) network, after 300 epochs, does not manage
to produce any meaningful result, which positively correlates with results in Tab. 1. As
expected it performs better on the test set, since it comes from the same distribution as
the training set. However, on the real test data, it completely fails, as seen in Fig. 18. We
omit other two classification networks because Lenslet (cls) is already representative. Our
best network, in terms of the real test data, is the Views network. It achieves reasonably
good performance in terms of MSE and BPR, compared to Lenslet network.

5 Conclusions

Simulating data to train a network is better than training on light field photography data
because of following two observations. First, while inputting our real data into EPINET

5 CONCLUSIONS 17

Bad Pixel Ratio
Network MSE δ = 0.05 δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3
Epinet 0.0049958 0.18671 0.08947 0.04304 0.02457 0.01540 0.01078
Views 0.0122427 0.26309 0.18338 0.12022 0.07845 0.05044 0.03348
Lenslet 0.00595414 0.21105 0.11301 0.05586 0.03027 0.01930 0.01290

Lenslet (cls) 26.9925 0.99803 0.99610 0.99521 0.99436 0.99392 0.99370

Table 1: Mean squared error and average Bad Pixel Ratio for test set after 300 epochs.

Epinet Views

Lenslet Lenslet (cls)

0.0

0.2

0.4

0.6

0.8

1.0

Epinet Views

Lenslet Lenslet (cls)

0.0

0.2

0.4

0.6

0.8

1.0

Ground Truth Epinet Views

Lenslet Lenslet (cls)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18: Comparison of predictions of different networks for spheres (a), fish eye (b)
and a random image from test set (c).

5 CONCLUSIONS 18

trained on light field photography data, the result was either unusable or the network saw
”double”. A possible reason for this is that the baseline of light field microscopy images
have narrow baseline compared to light field photography images. Secondly, even small
changes in the configuration of generating light field images seems to change the data a
lot, making the generalization difficult. We can use the settings exactly as needed while
we generate data. The remaining difficulty is to make the scene realistic enough.
While our generated datasets did not enable our networks to generalize to real data, they
still outperformed networks trained on light field photography data. This is because the
simulation does create realistic light field microscopy images. The problem lies in the
objects chosen in the simulation. First of all, we used geometric objects that are not
biologically plausible. Despite the fact that they were randomly rotated and placed in
the scene, the resulting images looked very similar. Furthermore, our objects were all
solid and not transparent and the scene contained no noise. The generated data was too
different from the real data that was in our possesion.
There are several approches which are less helpful for the progress. The first one is the
data augmentation from EPINET. The techniques for color images did not carry over
well to gray scale. Flipping, scaling and rotating could still have been used but ultimately
were not used, since the data we had generated already consumed almost our whole RAM.
The second one is the research on loss functions. MSE as an error function already suffies
to improve the results and the problems other loss functions solve do not match with out
simulated data. The third one is the classification version of the problem. Nevertheless,
it is just a trial which turned out to be unviable.
Deep learning for depth prediction on light field images is possible, as shown by [14]
and [9]. So we modified EPINET to handle light field microscopy images and trained
it successfully on our synthetic dataset. The Views and Lenslet networks also achieve
similar results on the test set.
While working with light field (LF) microscopy images, we noticed some parallels and
differences compare to LF photography images. Both of them benefit from a bigger size
of the input data. Therefore we choose to give to our networks as many views as possible
as input. Different from LF photograph images, LF microscopy has a much smaller spatial
resolution (43× 43 in our case) so that the whole light field can be given as input to the
network easily. Another difference is the size of depth prediction. EPINET and other
networks predict depth map whose resolution is equal to the spatial resolution of the
light field. For LF microscopy images, the resolution is too small. Therefore, we aimed
for a depth map resolution that is close to the one of the camera used to take the LF
microscopy image, in our case 989 × 989. Due to computational restrictions, we used a
even smaller resolution of 256× 256, but it is still much larger than the spatial resolution
of the light field.
The small spatial resolution were also a hindrance while using networks based on general
image processing architectures. They are not able to take advantage of the structure in the
data. In LF photography, this is not a problem because the spatial dimension is sufficiently
large. Networks which process general images are not able to take advantage of the
structure in the data because of small spacial resolution. This is why networks which works
good with light field photography images fail to produce reasonable results with light field
microscopy images. The small spatial resolution makes upscaling a necessity. Upscaling
was a problem at the beginning because it introduced artifacts into the predictions. But

6 FUTURE WORK 19

this problem was solved with strategies demonstrated by Odena et al. [10] (described in
section 2.5).

6 Future Work

We did not attempt our ambitious goal of predicting the light field reconstruction using a
reconstruction guess and the depth estimate. The reason was the time constraint for our
project and the lacking performance of the real data samples. Yet we still think a decent
estimation can be achieved through further improvement on the training dataset. We
suggest creating a more realistic dataset with configurations similar or equal to the real
images. For the synthetic data we generated, we can add biologically plausible geometries
which are simple for the computation the target depth estimation by hand, such as tubes
and rings. Also, we can predefine how they scatter in the space. For example, a sparse
distribution of small objects is close to the real data of spheres. The generated data
should have a high heterogeneity so that it can generalize to the real data. Ideally, a
real dataset with a ground truth depth map would be needed for the training, but often
the light field images are given without the depth estimation. Alternatively, a simulation
for biologically plausible scenes could help to complete the otherwise very realistic data
generation pipeline.

REFERENCES 20

Bibliography

References

[1] Omar Barakat. Depth estimation with deep Neural networks part 1. 2018. url:
https : / / medium . com / @omarbarakat1995 / depth - estimation - with - deep -

neural-networks-part-1-5fa6d2237d0d (visited on 07/20/2019).

[2] Michael Broxton et al. “Wave optics theory and 3-D deconvolution for the light field
microscope”. In: Optics express 21.21 (2013), pp. 25418–25439.

[3] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional net-
works”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2758–2766.

[4] Katrin Honauer et al. “A dataset and evaluation methodology for depth estima-
tion on 4d light fields”. In: Asian Conference on Computer Vision. Springer. 2016,
pp. 19–34.

[5] Po-Han Huang et al. “DeepMVS: Learning Multi-View Stereopsis”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2018.

[6] Andrej Karpathy. CS231n Convolutional Neural Networks for Visual Recognition.
2019. url: https://cs231n.github.io/transfer-learning/ (visited on 07/20/2019).

[7] Andrej Karpathy. Image Segmentation with Tensorflow using CNNs and Conditional
Random Fields. 2019. url: https://warmspringwinds.github.io/tensorflow/
tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-

and-conditional-random-fields/ (visited on 07/26/2019).

[8] Iro Laina et al. “Deeper depth prediction with fully convolutional residual net-
works”. In: 2016 Fourth international conference on 3D vision (3DV). IEEE. 2016,
pp. 239–248.

[9] Haoxin Ma et al. “VommaNet: an End-to-End Network for Disparity Estimation
from Reflective and Texture-less Light Field Images”. In: arXiv preprint arXiv:1811.07124
(2018).

[10] Augustus Odena, Vincent Dumoulin, and Chris Olah. “Deconvolution and Checker-
board Artifacts”. In: Distill (2016). doi: 11.23915/distill.00003. url: http:
//distill.pub/2016/deconv-checkerboard.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: (2015). Ed. by Nassir Navab et al.,
pp. 234–241.

[12] Wenzhe Shi et al. “Real-Time Single Image and Video Super-Resolution Using an
Efficient Sub-Pixel Convolutional Neural Network”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016), pp. 1874–1883.

[13] Changha Shin. Epinet: A fully-convolutional neural network using epipolar geometry
for depth from light field images. 2018. url: https://github.com/chshin10/
epinet (visited on 07/20/2019).

https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d
https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d
https://cs231n.github.io/transfer-learning/
https://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/
https://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/
https://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/
https://doi.org/11.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://github.com/chshin10/epinet
https://github.com/chshin10/epinet

REFERENCES 21

[14] Changha Shin et al. “Epinet: A fully-convolutional neural network using epipolar
geometry for depth from light field images”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 4748–4757.

[15] Christian Szegedy et al. “Inception-v4, inception-resnet and the impact of residual
connections on learning”. In: Thirty-First AAAI Conference on Artificial Intelli-
gence. 2017.

[16] Jure Zbontar, Yann LeCun, et al. “Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches.” In: Journal of Machine Learning Re-
search 17.1-32 (2016), p. 2.

Appendix

Hyperparameter Epinet Views Lenlset Lenslet (cls)

Epochs 300 300 300 300
Loss MSE AE MSE Cross Entropy

Batch size 32 32 4 4
Optimizer RMSProp Adam Adam Adam

Learning rate 10−4 10−6 5 ∗ 10−6 5 ∗ 10−6

Learning rate decay None None Exp(0.96) Exp(0.96)
Upsampling NN NN up-projection up-projection
Pool type None None max max
Pool size None None 2x2 2x2

Activation ReLU LeakyReLU LeakyReLU LeakyReLU
Regularization None None L2 L2

Table 2: Hyperparameters of our networks.

	Abstract
	Introduction
	Problem definition and goals of the project

	Theoretical Background
	Light Field Microscopy
	Light Field Microscopy Data
	Datasets
	Data augmentation
	Deconvolution and artifacts
	Hyperparameter optimization
	Losses

	Networks
	Epinet
	3D Convolution
	Lenslet Network
	Views Network
	Classification
	Lenslet Classification
	Inception Classification
	Views Classification

	Autoencoder

	Comparsions
	Conclusions
	Future Work
	Bibliography
	Appendix

