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Abstract

Large-scale model training on massive data is a way to achieve top-tier accuracy, but
training of such models is di�cult due to memory constraints and communication over-
head when scaling out to multiple devices. Much of ongoing research in scalable machine
learning is currently limited to giant transformer models such as Bert or GPT-3. How-
ever, other types of models benefit as well from scaling up the architectures and model
parameters, in particular Graph Neural Networks (GNN) for atomic simulations. In our
work, we use optimizations from Microsoft DeepSpeed, a toolkit for e�cient training of
large-scale models, to scale and e�ciently train GNNs for predicting energies and forces of
catalysts. Our integration of DeepSpeed into GNN architectures includes mixed precision
training, o✏oading of optimizer states and parameters to CPU or non-volatile memory,
and most notably the Zero Redundancy Optimizer (ZeRO) to reduce the amount of repli-
cated states during data parallel training. We evaluated our optimizations by increasing
the size of the two most successful GNN architectures for atomic simulations, DimeNet
and GemNet, to several hundred million parameters and measuring memory usage as well
as epoch runtime. As dataset we used catalysts labeled with energy and forces from the
OC20 dataset of the Open Catalyst Project. The performed optimization of our approach
shows up to 50% less reserved memory and 87% less allocated memory on GemNet. How-
ever, we also observe weaknesses in ZeRO such as increased communication costs and
slower runtimes when using o✏oading strategies.
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1 Introduction

1.1 Motivation

Training large-scale models is the Formula 1 of the machine learning research community:
Large labs and corporations with almost unlimited resources compete to outperform each
other in model size and accuracy improvements to the decimal points. Consequently,
in recent years there has been a surge of more e�cient and scalable methods to train
deep learning models in parallel on multiple GPUs or even multiple machines. Most of
the methods are designed for large language models, however also o↵er general solutions
to problems such as linear scalability, memory e�ciency and communication reduction.
With graph machine learning gaining ever more prominence in physics-focused prediction
tasks and simulations, we adopted some of these scaling methods and applied them to
machine learning models that operate on graphs.

Graphs o↵er a powerful way to structure connected data by elevating the relation-
ships in-between data points. Fundamentally a graph consists of a set of nodes, which
are connected to each other by a set of edges. Both nodes and edges may contain fea-
tures to further describe the entity represented by a node or the relationship between
entities. Graphs are used in a wide range of application areas such as social analysis
by representing people and their relationship to each other as graphs, or in the medical
domain by modeling population graphs for disease prediction, or using molecular graphs
for drug discovery. Graphs also have a long history of applications in quantum chem-
istry [Gil+17], representing molecular structures and the energy as well as forces of the
structure as graphs.

In recent years, geometric deep learning, a machine learning approach to bring deep
learning models to the graph domain, is getting more and more popular since they achieve
comparable or even better results than traditional analytical graph algorithms often at
much lower computational costs. Graph Neural Networks (GNNs) are currently the dom-
inant architecture for designing geometric deep learning models, most of which are based
on the message passing paradigm, where nodes gather features from neighbors, transform
them via di↵erentiable functions and scatter to outgoing neighboring nodes. Especially
for molecular predictions, GNN-based architectures are orders of magnitudes faster than
traditional methods from quantum chemistry. Meta AI introduced the Open Catalyst
Project (OCP) [Cha+21] in 2020 to provide unified baseline models and datasets for force
and energy predictions of molecular structures, more specificially Catalysts. There has
been a number of high-quality GNN based model submissions [KGG20; GBG21; Sri+22]
to the project which we will describe further in Section 2.2.

1.2 Problem definition

Although GNNs allow faster prediction of the outcome of molecular simulations, they are
still computationally intensive to train. Meta AI used a cluster of 256 GPUs to scale out
the training of the most recent top-performing GNN model which contained a few hundred
millions of parameters. The training of one configuration of this model still took over 5
years of summed-up GPU runtime. So, although GNN models have been very successful
for molecular predictions, the problem remains that training, even on high-end hardware
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and multiple GPUs, takes a long time and has extremely high memory requirements. In
addition, using hyper-optimization requires many iterations with di↵erent parameters to
find the optimal model. Any memory and runtime savings will result in days to weeks of
less training time and significantly reduced costs.

Since 2020, Microsoft is developing DeepSpeed, which is designed to reduce computing
costs and memory requirements of large distributed models through better parallelization
and minimal state replication. DeepSpeed runs on top of PyTorch and thus integrates
into existing model training pipelines. However, DeepSpeed was developed for large trans-
former models and, to the best of our knowledge, never applied to large-scale training of
GNNs.

In our work, we forked the OCP project to integrate DeepSpeed into the training
pipeline of the most widely-used and successful models in energy and force predicition of
catalysts. We benchmark our approach by performing an abloation analysis the epoch
runtime and memory usage of the GNN architectures GemNet and DimeNet++ using
DeepSpeed on the OC20 dataset.

1.3 Contributions

Our main contributions are:

1. We scaled force and energy predictions in atomic simulations of catalysts with GNNs
by integrating Microsoft DeepSpeed into the Open Catalyst Project. 1

2. We evaluated the e↵ectiveness of DeepSpeed features, in particular the Zero Re-
dundancy Optimizer, on real-world graph models in contrast to only applying it to
large-scale transformer models.

3. We developed a profiling module for the OCP codebase to allow deeper investigations
of CPU/GPU memory usage and model runtimes.

1.4 Structure

Our final report is structured as follows: Section 2 follows with an overview of impor-
tant preliminary background topics of our work. Section 3 describes important scaling
techniques from DeepSpeed and our work to integrate them into the OCP repository.
In Section 4, we provide benchmark data for our changes and evaluate them in detail.
Section 5 presents similiar literature to our work, while Section 6 gives a brief review of
our project organization. Finally, Section 7 wraps up the report with a conclusion.

2 Preliminaries

2.1 Graph Neural Networks

In most of the contemporary supervised machine learning tasks, we are given datasets
D := {(xi,yi)}

n
i=1

with xi 2 Rd, yi 2 Rk, where the inputs xi are assumed to be drawn

1
https://github.com/TUM-DI-Lab-Graph-Scaling/ocp

https://github.com/TUM-DI-Lab-Graph-Scaling/ocp
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independently from an identical distribution and we want to generally predict the labels
y from x. However, for many complex structured non-Euclidean types of data, these
assumptions might not be the best fit. For example, just consider the two following
settings:

• Suppose we are given molecule structures as input graphs xi and, as an outcome,
we want to predict the energy yi of the respective structures. Clearly, there is no
straightforward way to embed a molecule into some Rd.

• Suppose our inputs xi are features of users in a social network and we want to
predict interaction yi with some new content. In this case, the iid assumption of
the individual data points (xi,yi) is unreasonable because users themselves might
share common interests or make each other aware of the content. Therefore it would
be sensible to consider the existing connections between the data points.

Surely, one could find some representation of the above input data and try to use some
conventional method (i.e. try to let a neural network learn these structures on its own),
however this would be very ine�cient or even unfeasible for many large datasets.

For simpler structured data like sequences or images, neural network architectures
that exploit their intrinsic structure have been successful for quite some time, the most
prominent examples including Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) respectively.

Sequence

Image

Figure 1: Structured data
as graphs.

Graph Neural Networks (GNNs) can now be regarded as
a generalization of CNNs and RNNs to general graph struc-
tures. More precisely, we can say that GNNs exploit the
structure of the input graph(s) by incorporating reasonable
assumptions about its predicting functions like equivariance
(in the case of node prediction) or invariance (for global pre-
dictions) with respect to permutations of the input nodes.

We express GNNs via the Graph Network (GN) frame-
work introduced in [Bat+18], which defines a common lan-
guage for a quite general class of graph-input functions made
out of individual building blocks. EGNs (Extended Graph
Networks) [Sri+22], which we will introduce afterwards, are
even more expressive than normal GNs as they also model
higher-order interactions between nodes (i.e. interactions
between 3 or more nodes, or—alternatively—between two
edges). Particularly recent GNNs for atomic simulations that make use of such higher-
order interactions, as the ones we will describe in Subsection 2.2, [KGG20; GBG21], can
be expressed with EGNs.

2.1.1 Graph Networks

Most of this section is an outline of [Bat+18, Section 3.2]. Within the GN framework, a
graph is modeled as a 3-tuple

G = (u, V, E),
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where u 2 Rdu is a global attribute of the graph. V and E are the set of nodes and set
of edges respectively;

V = {vi}
nv

i=1
, vi 2 Rdv ;

E = {(ek, rk, sk)}
ne

k=1
, ek 2 Rde , rk, sk 2 {1, . . . , nv} ;

where vi represents the node attributes and ek is the attribute of an edge going from sk
to rk. In many cases, these attributes are also called embeddings.

A GN block now consists of the update functions �e, �v and �u for edges, nodes, and
attributes respectively, as well as aggregation functions ⇢e!v, ⇢e!u, and ⇢v!u, with

e
0
k := �e(ek,vrk ,vsk ,u), e

0
i := ⇢e!v(E

0
i),

v
0
i := �v(e

0
i,vi,u), e

0 := ⇢e!u(E
0),

u
0 := �u(e

0,v0,u), v
0 := ⇢v!u(V

0);

where E 0
i := { (e0

k, rk, sk) | k = 1, . . . , ne, rk = i } is the set of incoming edges at node
i, E 0 := {(e0

k, rk, sk)}
ne

k=1
contains all updated edges, and V 0 := {v

0
i}

nv

i=1
consists of the

updated nodes of the graph. All in all, this results in the updated graph G0 = (u0, V 0, E 0)
being the output of the GN block. The computations performed by a GN block can also
be described in terms of the following phases:

Edge Update: The edges are updated based on their respective edge attribute, their
source and receiver node attributes, and the graph’s global attribute using the up-
date function �e.

Edge Aggregation: The new edge attributes are aggregated on each node as well as the
whole graph using the aggregation functions �e!v and �e!u respectively.

Node Update: The nodes are updated based on their respective node attributes, the
newly aggregated messages from the incoming edges, and the graph’s global at-
tribute using the update function �v.

Node Aggregation: The new node attributes are aggregated on the entire graph via
the aggregation function �v!u.

Global Update: The graph’s global attribute is updated based on its predecessor and
the newly aggregated edge and node attributes.

Furthermore, the aggregation functions have to be invariant w.r.t. permutations of
the input nodes or edges. In many cases, these aggregation functions are kept simple and
are just a sum or mean operation. A GN is just a sequence of such GN blocks which
successively updates the input graph’s attributes. A GNN is simply a GN whose blocks
use neural networks to implement the update functions �e, �v, �u. Note that global graph
prediction, node prediction as well as edge prediction can be performed with a GNN as
just the corresponding attribute of the GNN output graph (or some final transformation
of it) can be seen as the network output.
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u

vrk

vsk e0
k

Edge Update

u

vi

e0
i

u

e0

Edge Aggr.

u

e0

v0
i

e0
i

Node Update

u

e0

v0

Node Aggr.

u0

e0

v0

Global Update

Figure 2: Schematic depiction of the GN block computation phases. Orange
attributes are updated or created while blue ones contribute to the update.

2.1.2 Extended Graph Networks

The Extended Graph Network (EGN) framework [Sri+22, Section 2.1] is a generalization
of GNs to graphs which incorporate higher-order interactions: In the EGN framework, a
graph is defined as

G := (u, V, E, T )

with u, V , and E as before, as well as

T :=
n

(tm, e
(m)

1
, . . . , e(m)

lm
)
ont

m=1

, tm 2 Rdt , e(m)

1
, . . . , e(m)

lm
2 {1, . . . , ne} , (1)

where tm represents the attribute of an interaction between the lm edges indexed by
e(m)

1
, . . . , e(m)

lm
.

In an EGN block, these higher-order interactions are now taken into account by suc-
cessively updating the interactions starting from the highest order: The interactions of a
certain order l are first updated individually and then aggregated at each interaction of
order l�1, whereafter the same is carried out for the interactions of order l�1, and so on.
In the special case of only 3-order interactions, i.e. triplets of nodes or pairs of edges, this
would mean that the usual GN computation phases are preceded by a Triplet Update

and a Triplet Aggregation phase. In Subsection 2.2, we will use this EGN framework
to introduce some of the most recent and well-performing GNN architectures for atomic
simulations—so, for now, think of edge attributes as the distance between two atoms in
a molecule and of the triplets as the bond angle between two chemical bonds.

2.2 GNNs for Atomic Simulations

2.2.1 General

Suppose one has information about the chemical and spatial structure of a molecule and
would like to predict properties of this very molecule, e.g. its energy (at the current point
in time or after some evolution) or the forces acting on the individual atoms. Some of
these properties might be directly computable using quantum mechanical methods—like
Density Functional Theory (DFT) [BT14]. However, quantum mechanics based methods
often come with significant drawbacks as they are extremely expensive from a computa-
tional standpoint, imposing the necessity to either optimize these conventional methods
as far as possible or use completely di↵erent approaches.

One alternative approach is to compute or predict such molecule properties using
supervised machine learning in order to learn a function that maps molecule structures
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to their respective properties. For this task, Graph Neural Networks (GNNs) are very
well suited not only because a molecule can naturally be expressed as a graph (e.g. us-
ing its structural formula and interatomic distances), but also because in this case, the
assumption of invariance w.r.t. permutations of the atoms or the assumption that the
update rules do not di↵er between nodes or edges and that one is hence learning somewhat
universal functions, seem very reasonable.

From now on, we define a molecule consisting of n atoms by its atomic numbers z and
its positions X, where

X := {x1, . . . ,xn} , xi 2 R3 and z := {z1, . . . , zn} , zi 2 N. (2)

Suppose E(X, z) is the energy of the whole molecule structure, then one can immediately
obtain the forces acting on the individual atoms indexed by i 2 {1, . . . , n} as

F i :=
@E(X, z)

@xi
2 R3.

If we now want to simultaneously predict the energy E and forces F i of a molecule
structure, there are two options: In energy-centric models, a global graph feature which
models molecule energy is regarded as the GNN output and the forces are obtained by
di↵erentiating w.r.t. the atom locations. In contrast, force-centric models predict both
energy and forces directly as a global attribute and node embeddings respectively.

In many cases there is still some arbitrariness in the choice of the exact positions X:
Energies of molecule structures might be invariant w.r.t. translations and rotations, or
forces might be invariant w.r.t. translations and equivariant w.r.t. rotations. Rather
than letting the model figure out these fundamental invariants of its predicting functions
on its own (e.g. by data augmentation), they are often directly incorporated into the
model to reduce complexity. One approach to achieve this is to compute pairwise dis-
tances dij between the atoms and use them instead of the individual atomic locations
X. However, this might not always be su�cient to completely characterize the spatial
structure of a molecule: Since the interatomic distances are only kept for a part of the
pairs of nodes, there exist pairs of di↵erent molecules which cannot be distinguished with
this approach [KGG20, Appendix A]. In the following subchapters, we will introduce two
GNN architectures that were initially proposed by Gasteiger et al. and overcome this
problem.

2.2.2 DimeNet and DimeNet++

DimeNet (“Directional Message Passing Neural Network”) [KGG20], which was proposed
by Gasteiger et al. in 2020, is an energy-centric GNN architecture for predicting energies
and forces of molecule structures. DimeNet does not only consider pairwise distances
between atoms, but also takes advantage of directional information. In the EGN language
(see 2.1.2 and [Sri+22]), 3-way interactions between nodes are modeled.

Just as in (2), the network receives the positions X and atomic numbers z of a
molecule as inputs. At first, define the pairwise distances and relative direction vectors

dij := kxj � xik2 , ~xij := xj � xi.
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In the beginning, a molecular graph is given or it is defined by connecting the atoms with
distance below some threshold c. Denote by Ni ✓ {1, . . . , n} the neighborhood of the
atom i. Directional information is now leveraged by also taking the angles

↵kji := ] (~xjk, ~xji)

between neighboring edges ( , k, j) and ( , j, i) into account. The distances and angles
are then transformed to a representation which is related to DFT calculations [KGG20,
Section 5] by using radial and spherical Bessel functions:

e
(ji)
RBF

:= eRBF(dji), a
(kji)
SBF

:= aSBF(dkj,↵kji).

In an embedding phase, edge embeddings m
(1)

ji and outputs t(1)i or a global attribute

t(1) =
Pn

i=1
t(1)i are initialized based on the atomic numbers z and e

(ji)
RBF

. Both node em-
bedings hi :=

P
j2Ni

mji and triplet embeddings are handled implicitly (i.e. the Triplet

Update and Node Update outputs from 2.1.1, 2.1.2 do not depend on their respective
predecessors). From now on, we denote implicit or irrelevant embeddings by “ ”.

In the EGN language, the initial graph is defined as follows:

G = (t(1), V (1), E(1), T (1))

with nodes, edges and triplets

V (1) :=
n
h

(1)

i

��� i 2 {1, . . . , n}
o
,

E(1) :=
n

(m(1)

ji , i, j)
��� i, j 2 {1, . . . , n} , dji  c

o
,

T (1) :=
n

( , (m(1)

kj , j, k), (m(1)

ji , i, j))
��� i, j, k 2 {1, . . . , n} , dji, dkj  c

o
;

i.e. the triplets are all possible paths of length two on the edges of G.
After this initial graph embedding has been computed, a series of EGN blocks, here

called interaction blocks, are applied to the graph.
Within such an interaction block, the edge embeddings are updated as follows (i.e.

corresponds to Edge Update):

m
(l+1)

ji = fupdate

 
m

(l)
ji ,

X

k2Nj\{i}| {z }
Triplet Aggr.

fint
⇣
m

(l)
kj , e

(ji)
RBF

,a(kj,ji)
SBF

⌘

| {z }
Triplet Update

!
,

where fint and fupdate are implemented by neural networks. These edge embeddings are
then directly aggregated to the new node embeddings

h
(l+1)

i =
X

j2Ni

m
(l+1)

ji

and the outputs t(l+1)

i as well as the global attribute t(l+1) are updated (based on another
Edge Aggregation step). Finally, the global output t that represents the molecule’s
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energy is aggregated over all interaction block outputs. The whole DimeNet architecture
as depicted in its original paper [KGG20] can be seen in Figure 3.

Model:

Embedding: Interaction: Output:

Residual:

dji

e
(ji)

RBF

SBF

dkj ↵(kj,ji)

a
(kj,ji)

SBF

z

Embedding

Interaction

Interaction

Interaction

Interaction

Interaction

Interaction

P t

e
(ji)

RBF zj , zi

W⇤ Embedding

h
(0)

j
h
(0)

i

k

�(W⇤+b)

Output
t
(1)

im
(1)

ji

Directional
message passing

e
(ji)

RBF a
(kj,ji)

SBF m
(l�1)

kj

k 2 Nj\{i}

m
(l�1)

ji

�(W⇤+b)�(W⇤+b)

�W⇤

⇤T W⇤W⇤
P

k
+

Residual

�(W⇤+b)

+

Residual

Residual

Output
t
(l)

im
(l)

ji

e
(ji)

RBF m
(l)

ji

j 2 Ni

W⇤

�

P
j

�(W⇤+b)

�(W⇤+b)

�(W⇤+b)

W⇤

t
(l)

i

mji

�(W⇤+b)

�(W⇤+b)

+

RBF

Figure 3: The original DimeNet architecture as depicted in [KGG20].

DimeNet++ [Gas+20] is an upgraded version of DimeNet that increases the e�ciency
of training without impacting the quality of results. These improvements include replacing
the bilinear layer in the directional message passing step by a simpler Hadamard product,
downprojecting the embeddings into lower dimensions in computation-intensive parts of
the model and up-projecting them back to the original dimensions after these layers, and
using less interaction layers.

2.2.3 GemNet

Gasteiger et al. also authored GemNet (“Geometric Message Passing Neural Network”)
[GBG21] as an improvement over DimeNet and DimeNet++ (see [KGG20; Gas+20] and
2.2.2) that o↵ers the flexibility for both energy-centric and force-centric predictions as
well as 3-way or 4-way message passing.

Just like DimeNet and DimeNet++, GemNet takes the positions X and atomic num-
bers z of a molecule (defined in (2)) as inputs. For a, b 2 {1, . . . , n} write

dab := kxb � xak2 and ~xab := xb � xa

in specific directions r̂i. If we look at recent models, we see that they implicitly use the directions to
each atom’s neighbors for this purpose, i.e. they embed the edges in the molecule’s graph. These
directions define an equivariant mesh that circumvents the aliasing effects that would arise from
fixed grids [36]. Schütt et al. [54] flexibly define the directional mesh in each layer by aggregating
directions, while Gasteiger et al. [29] and others use a fixed mesh for each atom. We can refine
this mesh of directions e.g. by using more neighbors or by interpolating between directions. The
approximation error of this directional mesh is related to the spherical harmonic expansion via the
mesh norm and the separating distance between directions [33, 34]. Note that depending on the
discretization scheme the resulting mesh might not provide a universal approximation guarantee.

Eq. (3) only defines the relationship for a fixed direction, while models commonly use different
directional meshes for the input and output. To incorporate this we add a convolution with a learned
filter F2, which can only improve the model’s expressiveness. Since the input and output are spherical
functions, the used filter F2 has to be zonal, i.e. it can only depend on one angle. This can be
expressed as [17]

H̃
dir
a

(X,H)(r̂o) = ✓Ha(r̂o) +

Z

SO(3)

X

b2Na

Fsphere(xba,Rn̂)

X

i2Rb

Hbi�(Rn̂� r̂i)F2(R
�1

r̂o) dR

= ✓Ha(r̂o) +

X

b2Na

X

i2Rb

Fsphere(xba, r̂i)HbiF2(]r̂or̂i),

(6)

where Rb denotes the directional mesh of atom b with mesh directions denoted by r̂i, and r̂o specifies
the output direction. The integral vanishes due to the Dirac delta �.

General filters. To see the relationship to GNNs we furthermore need to generalize the filter
Fsphere(xba, r̂i). This filter only depends on the angle ]r̂ix̂ba since it is rotationally invariant:
Lemma 1. Fsphere(Rx,Rr̂) = Fsphere(x, r̂) for any rotation matrix R.

We can therefore substitute Fsphere with a general learnable filter F1 that is parametrized by this
relative angle. Since Fsphere arises as a special case we do not lose expressivity. We thus obtain

H̃
gem
a

(X,H)(r̂o) = ✓Ha(r̂o) +

X

b2Na

X

i2Rb

F1(xba,]r̂ix̂ba)F2(]r̂or̂i)Hbi. (7)

We have now arrived at a message passing scheme that has universal approximation guarantees and is
only based on relative directional information. To see the connection to GNNs we interpret these
discretized spherical representations as edge embeddings pointing towards r̂o and r̂i. Eq. (7) then
corresponds to two-hop message passing between the edge embeddings of r̂o and r̂i via the edge
x̂ba. Interestingly, the central learnable part of Eq. (7) is the product of the filters F1(xba,]r̂ix̂ba)

and F2(]r̂or̂i) with the input representation, which is strikingly similar to the Hadamard product
used in modern GNNs [28, 53] – except that these only use one-hop message passing.

5 Geometric message passing

'cab 'abd

mca
mdb

(rotate)

✓cabd

a b

c d

a,b

c d

Figure 1: Angles used in geo-
metric message passing. The di-
hedral angle ✓cabd becomes vis-
ible when rotating the molecule
so that atoms a and b lie on top
of each other (right).

Geometric representation. We now develop a specific two-hop
message passing scheme based on Eq. (7). We use embeddings
based on interatomic directions, and embed all atom pairs with
distance xca  cemb. r̂o and r̂i are thus instantiated as the inter-
atomic directions x̂ca and x̂db. We denote directional embeddings
as mca = Ha(x̂ca). Message passing is thus based on quadruplets
of atoms – two atoms are interacting (a and b) and two atoms define
the directions (c and d). We denote the angle between directions by
'abd = ]x̂abx̂db. To improve empirical performance we addition-
ally use the dihedral angle ✓cabd = ]x̂cax̂db ? x̂ba and substitute
]r̂or̂i = ]x̂cax̂db with 'cab. Fig. 1 illustrates the three angles
'cab, 'abd, and ✓cabd we use for updating the embedding mca

based on mdb. To ensure that all angles are well-defined we ex-
clude overlapping atom quadruplets, i.e. a 6=b 6=c 6=d. We represent
the relative directional information using spherical Fourier-Bessel

5

Figure 4: [GBG21]

for the distance and relative direction from xa to xb respec-
tively. In GemNet, two graphs are considered: an interaction
graph and an embedding graph. The molecule’s interaction
graph does not change during the forward pass of the net-
work and two atoms interact if their distance is below some
cuto↵ cint. In addition to this interaction graph, all atom
pairs whose distance is below some threshold cemb are em-
bedded—and, thus, edges of the embedding graph.

In contrast to DimeNet, the 3- or 4-way interactions for message passing are used in a
slightly di↵erent way: Consider pairwise di↵erent a, b, c, d 2 {1, . . . , n}, where ( , a, b) are
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interacting and ( , c, a), ( , d, b) are embedded. Set

'cab := ] (~xca, ~xab) and 'abd := ] (~xab, ~xdb) ,

as well as
�cabd := ] (⇧~xca,⇧~xdb) , ⇧ := I3 � ~xab~x

>
ab,

where ⇧ is the orthogonal projection on the orthogonal complement of ~xab (see Figure 4).
Similarly to DimeNet, this relative directional information is then encoded by the

transformations

e
(ca)
RBF

= eRBF(dca), e
(cab)
CBF

= eCBF(dca,'cab), e
(cabd)
SBF

= eSBF(dca,'cab,�cabd)

which are related to DFT calculations. These three quantity types e(ca)
RBF

, e(cab)
CBF

, e(cabd)
SBF

can
now be regarded as the (constant) features of the molecule that are used by GemNet for
updating the input graph. In GemNet, the higher-order interactions are

T := { ( , c, a, b) | c, a, b 2 {1, . . . , n} , dca  cemb, dab  cint } (3)

[ { ( , c, a, b, d) | c, a, b, d 2 {1, . . . , n} , dca  cemb, dab  cint, ddb  cemb } ; (4)

where the higher-order attributes are indexed by the involved nodes (contrary to the
definition in (1)), and all appearing a, b, c, d are assumed to be pairwise di↵erent.

GemNet admits the following variants:

• GemNet-T is an energy-centric variant of GemNet that only uses the 3-way inter-
actions from (3), which are updated using e

(ca)
RBF

and e
(cab)
CBF

. In Figure 5, this is
indicated by the T-MP block.

• In contrast, GemNet-Q is an energy-centric version of GemNet that also successively
updates the 4-way interactions (4), taking the entirety of e(ca)

RBF
, e(cab)

CBF
and e

(cabd)
SBF

into
account. In Figure 5, this is represented by the Q-MP block.

Force-centric versions of GemNet-T and GemNet-Q are called GemNet-dT and GemNet-
dQ respectively.
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Figure 5: Complete architecture of GemNet as depicted in [GBG21, Appendix F].
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2.3 Open Catalyst Project

Catalysis plays a crucial role in the chemical industry, including energy storage and con-
version in fuel cells or the production of ammonia for fertilizers by enabling new reactions
and improved process e�ciencies [Cha+21]. Problematic is that the number of materials
that can be used or modified in catalysis is very large and modeling of materials during
reactions is very complex and compute-intensive.

In recent years, machine learning methods and in particular GNNs have shown great
success in catalyst discovery: Being able to e�ciently and accurately predict the forces
and energy of inorganic and organic interfaces for use in catalysis avoids the computational
bottlenecks of traditional simulation tools (see 2.2.1).

The Open Catalyst Project2 [Cha+21] is a joint e↵ort by Facebook AI and Carnegie
Mellon University’s Department of Chemical Engineering which was launched in 2020
and aims to provide a unified dataset and baseline models for predicting forces and en-
ergy in molecular simulations of catalysts. The project provides the Open Catalyst 2020
(OC20) dataset, which contains about 1.2 million relaxations of molecular adsorptions
onto surfaces simulated with DFT. Fundamentally this precomputed dataset opens the
door for precise predictions through machine learning models and allows for large-scale
explorations of new catalysts.

Furthermore, the Open Catalyst Project o↵ers unified implementations of DimeNet
2.2.2 and GemNet 2.2.3, as well as its subvariants. Developers can clone the repository
and select an model to be trained or evaluated on force-centric or energy-centric tasks with
precomputed simulations of catalysts. New models can be submitted to the evaluation
server and get listed with their metrics on the OCP leaderboard3.

Recently, the OCP team released a new version version of the dataset, Open Catalyst
2022 (OC22) [Tra+22].

2.4 Scalable Machine Learning

Training data is getting increasingly larger and model architectures are getting more
complex with increasing numbers of parameters. Scaling and parallelization of large-scale
machine learning models play a key role in reaching peak performance and accuracy. In
this chapter, we will discuss scaling strategies for deep learning models.

2.4.1 Scaling up vs. Scaling out

Before scaling the training of a machine learning model, the question in which form the
scaling should happen has to be answered. There are two fundamental types of scaling:
scaling up and scaling out. When only the resources of the existing machine, on which
the model is trained, are expanded in order to achieve better performance, we speak of
scaling up.

On the other hand, if an increase in resources of a single machine is no longer techni-
cally possible or not possible for other reasons, the underlying resources must be increased
in a di↵erent way. Distributing the training pipeline over several processes presents a way

2
https://github.com/Open-Catalyst-Project/ocp

3
https://opencatalystproject.org/leaderboard.html

https://github.com/Open-Catalyst-Project/ocp
https://opencatalystproject.org/leaderboard.html
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to further scale, whereby the processes can also be distributed over multiple machines.
This is known as scaling out.

A single machine multi-GPU setup is an interesting middle ground between scaling
up and scaling out. Although the entire pipeline is executed on only one machine, we
still employ a multi-process system since each of the GPUs is used through independent
processes.

2.4.2 Data, Model and Pipeline Parallelism

In our work, we used a scaling out approach to scale the existing pipelines. Three common
scaling-out strategies have emerged in recent years for machine learning models. With a
large amount of training data, long training on only a single machine becomes unfeasi-
ble. To scale the training to multiple devices, data parallelism is used to partition and
distribute the training data while replicating the model on each machine. Gradients are
exchanged across machines after the backward pass, ensuring that all models will be in
the same state at optimizer updates.

When the model size exceeds the memory capacities of a single device, model paral-
lelism [Sha+18; Sho+19] can be used to split model parameters among multiple processes,
devices or even machines. A neural network architecture can be horizontally and verti-
cally partitioned, whereby in horizontal partitioning each device holds di↵erent layers of
the model and in vertical partitioning layers are cut internally and each device holds a
part of each layer.

A disadvantage of the näıve implementation of model parallelism is the sequential
execution of forward and backward passes through the layers. All other machines are
forced to wait when a single machine is performing computations, often referred to as
bubble overhead in literature. To avoid bubble overhead, a more advanced form of model
parallelism known as pipeline parallelism was developed, in which the model is split hor-
izontally and the communication between layers gets overlapped through micro-batches.
Popular implementations of pipeline parallelism include G-Pipe [Hua+18] and PipeDream
[Har+18]. G-Pipe pipelines the execution of micro-batches accross machines, e↵ectively
overlapping executions of batches during forward and backward passes, while PipeDream
intersperses the execution of forward and backward passes through more complex schedul-
ing algorithms.

2.5 Microsoft DeepSpeed

Microsoft DeepSpeed4 is a deep learning training optimization library built on top of
PyTorch enabling large-scale distributed neural network training and making training on
multiple devices (or machines) more memory- and time-e�cient. Particularly for large-
scale training of transformer models like Megatron-LM [Sho+19], DeepSpeed has already
been used extensively and proven very useful5. As we will dive deeper into DeepSpeed’s
optimizations and their integration into the OCP codebase in the following chapter 3, this
section is merely intended as a high-level overview of the optimizations that DeepSpeed
o↵ers.

4
https://github.com/microsoft/DeepSpeed

5
https://github.com/microsoft/Megatron-DeepSpeed

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
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At the heart of DeepSpeed lies the Zero Redundancy Optimizer [Raj+19; Ren+21;
Raj+21], or short ZeRO, which is a sophisticated and broad parallelization strategy com-
bining data, model and pipeline parallelism paradigms. As it was already implied in the
previous section 2.4.2, both model and data parallelism separately have their own flaws:
While data parallelism is memory ine�cient as there is a lot of redundancy in storing
a copy of the whole model in each data-parallel process, model parallelism can impose
significant communication overheads.

At this point, let us just briefly remind ourselves of the types of memory consumption
that occur when training neural networks: The main components that consume memory
are the model itself (including parameters, gradients and optimizer states), the current
data batch, as well as residual state memory, namely activations that are computed during
the forward pass or temporary bu↵ers.

ZeRO, as introduced initially in [Raj+19], optimizes both model memory consumption
and residual memory consumption in the following ways:

• ZeRO-DP (“data parallelism”) is based on standard data parallelism and is designed
for large models with significant memory footprints. ZeRO-DP can be seen as a
combination of data and model parallelism in which (parts of) the model states
are partitioned among the data-parallel processes, while a dynamic communication
schedule ensures relatively low communication overhead. Various stages determining
the scope of the model state partitioning can be progressively activated, like stage
1 (partitioning of optimizer states among the processes), stage 2 (partitioning of
optimizer states and gradients) as well as the final stage 3 (partitioning of optimizer
states, gradients, and parameters) which corresponds to full model parallelism.

• ZeRO-R (“residual memory”) tackles residual memory consumption: Generally,
activation memory consumption can be decreased by activation checkpointing, which
means that certain activations are released from memory after computation in the
forward pass and recomputed when needed in the backward pass—at the cost of this
additional computation time. Inter alia, ZeRO-R now also partitions such activation
checkpoints across the data-parallel processes and gathers them again when needed;
apart from that, activations might also be moved to CPU memory.

ZeRO-O✏oad [Ren+21] and ZeRO-Infinity [Raj+21] are feature extensions of ZeRO
that were added at a later point in time to enable o✏oading of model states to CPU
memory for very large models in order to further increase GPU memory savings. While
ZeRO-O✏oad enables o✏oading of optimizer states in stage 2 of ZeRO-DP, ZeRO-Infinity
enables both o✏oading of model parameters and optimizer states in stage 3.

The specific demands of parallelization strategy in modern-day large-scale model train-
ing have furthermore given rise to custom extensions to DeepSpeed such as EleutherAI’s
DeeperSpeed 6 and the addition of custom highly-optimized kernels.

6
https://github.com/EleutherAI/DeeperSpeed

https://github.com/EleutherAI/DeeperSpeed
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3 Implementation

3.1 Usage of DeepSpeed

Our goal for this project was to use the DeepSpeed engine to speed up and scale GNNs.
The Open Catalyst Project presents the ideal benchmark for our acceleration approaches
since it contains several model definitions for GNNs in the context of molecular simu-
lations. Previous research has shown that scaling OCP models to multiple hundreds of
millions of parameters leads to better accuracies but requires ever larger infrastructure
and ever more time for training [Sri+22]. Therefore we want to utilize DeepSpeed to scale
beyond standard data parallelism and enable training of billion parameter models.

We took multiple steps to integrate DeepSpeed into the OCP project, which we will
describe in the following section. All of our changes are available on GitHub in our
organization fork of OCP7.

To start o↵, we initialized the DeepSpeed engine. The initialization in our code looks
roughly like this:

self.model , self.optimizer , _, _ = deepspeed.initialize(

config=self.config["deepspeed_config"],

model=self.model ,

model_parameters=self.model.parameters (),

optimizer=self.optimizer ,

)

DeepSpeed provides a model and optimizer wrapper to o↵er the same PyTorch API
as before, but performs optimizations under the hood when forward, backward and step
functions are invoked. Furthermore, we had to replace the original distributed environ-
ment setup with DeepSpeed’s distributed setup. An example of why DeepSpeed needs
a custom distributed environment is to spawn CPU worker processes for optimizer or
parameter o✏oading. We will dive deeper into this optimization in Section 3.4.

To enable or disable specific features of the optimizer engine, DeepSpeed is configured
using an extra JSON file. We extended the previous OCP configuration code to handle the
DeepSpeed config as additional argument and pass it through to the DeepSpeed engine
at the beginning of training. This also allows us to make feature specific changes to the
codebase, since we also parse the config and make it available at runtime.

An example DeepSpeed configuration file looks like this:

{

"train_batch_size": 16,

"train_micro_batch_size_per_gpu": 2,

"gradient_accumulation_steps": 1,

"bf16": {

"enabled": true

},

"zero_optimization": {

"stage": 3,

"contiguous_gradients": true

}

}

7
https://github.com/TUM-DI-Lab-Graph-Scaling/ocp

https://github.com/TUM-DI-Lab-Graph-Scaling/ocp
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In this configuration, train micro batch size per gpu refers to the batch size pro-
cessed by one GPU in one step. gradient accumulation steps refers to the number of
steps to accumulate gradients before averaging and applying them. train batch size is
the e↵ective batch size per accumulation step, so

train batch size = # GPUs · train micro batch size per gpu

· gradient accumulation steps.

We introduce the other configurations in later sections. fp16 and bf16 are mixed-
precision configurations and are explained in Section 3.2. All the configurations in
zero optimization are introduced in Section 3.3 and amended in Section 3.4 by o✏oad
features.

3.2 Mixed Precision Training

Mixed precision training uses lower bit floating point types for optimizer states, gradients
and model parameters to reduce the memory footprint during model training.

PyTorch o↵ers out-of-the-box support for two types of mixed precision training: Float-
ing point with 16 bits (FP16) and brain floating point with 16 bits (BFloat16) which we
will introduce in the next subsections and explain our integration into the OCP project.

3.2.1 FP16

FP16 is a floating-point number format which uses 5 bits for the exponent, 10 bits for
the fraction and 1 bit for the sign. This halves the used memory compared to the default
single-precision floating-point format which uses 8 bits for the exponent and 24 bits for the
fraction. The specification of FP16 can be found in the o�cial IEEE 754-2008 standard8.
FP16 lowers the precision and reduces the range of numbers that can be represented,
making calculations less accurate and increasing the risk of overflows/underflows.

PyTorch and DeepSpeed o↵er automatic mixed precision for gradients. Developers
can define regions with context managers to allow PyTorch to automatically choose the
precision for GPU operations. Even though autocast worked for learnable parameters of
the model as well as gradients, we had to convert input data and all constants defined
in the models to half precision manually. With our adaptions, FP16 can be used by just
setting the fp16 flag in the DeepSpeed configuration.

3.2.2 BFloat16

As mentioned before, the use of FP16 leads to a higher risk of overflows and underflows.
We experienced many overflows of gradients when using FP16 with DeepSpeed. To avoid
overflows, DeepSpeed o↵ers support for the Bfloat16 9 number format which allocates more
bits to the exponent to extend the range of representable numbers while lowering precision.
As with FP16, we had to include manual type casts in the OCP codebase to integrate
Bfloat16 support. Bfloat16 can also be enabled from the DeepSpeed configuration using
the bf16 flag.

8
https://standards.ieee.org/ieee/754/4211/

9
https://cloud.google.com/tpu/docs/bfloat16

https://standards.ieee.org/ieee/754/4211/
https://cloud.google.com/tpu/docs/bfloat16
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Figure 6: Comparison of the FP16 and the Bfloat 16 formats.

3.3 Zero Redundancy Optimizer (ZeRO)

The Zero Redundancy Optimizer (ZeRO) is a scaling engine on top of data-parallel train-
ing for machine learning models. In short, ZeRO removes memory redundancies by parti-
tioning states which are used accross all processes such as the optimizer states, gradients
and model parameters. Since all processes only have to maintain a shard of states, ZeRO
should use less memory while retaining computational granularity and communication
overhead compared to traditional data parallelism.

DeepSpeed contains three levels of ZeRO that progressively partition and distribute
more and more states of the model. We will go through all stages, explain them and
shortly explain our integration into OCP.

GPU 0 GPU 1 GPU m�1

D0Data D1 Dm�1

Model

Gradient

Optimizer

Stage 0: Standard data parallelism

GPU 0 GPU 1 GPU m�1

D0 D1 Dm�1

ZeRO stage 1

GPU 0 GPU 1 GPU m�1

D0Data D1 Dm�1

Model

Gradient

Optimizer

ZeRO stage 2

GPU 0 GPU 1 GPU m�1

D0 D1 Dm�1

ZeRO stage 3

Figure 7: GPU memory utilization with di↵erent stages of ZeRO activated. The
data D is distributed evenly among the m GPUs into D0, . . . ,Dm�1.

3.3.1 Stage 1 (OS)

Stage 1 of ZeRO enables optimizer state partitioning. Each GPU only holds a shard of
optimizer states. All GPUs do a normal training step over their data subset, however
during the optimizer step, each GPU only updates and stores optimizer states of its own
shard. After the update, all GPUs synchronize by an all-gather communication collective
to update parameters accross all devices.
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Stage 1 required FP16 or Bfloat16 integration for the OCP codebase. As mentioned
in the previous section, we encountered overflow problems with FP16, so we mainly used
Bfloat16 to enable ZeRO-1.

3.3.2 Stage 2 (OS+G)

Stage 2 of ZeRO partitions both optimizer states and gradients. ZeRO-2 generally fol-
lows the following execution path for each step: Each GPU holds a replica of the entire
model (all parameters), however only a mutually exlusive portion of the parameters are
updated on each of the devices. The GPUs only store the shard of gradients and optimizer
states which they need for their particular portion of parameters during the forward and
backward pass. After doing the optimizer step, the GPUs update each other through an
all-gather NCCL communication collective.

Stage 2 is very tighly connected to Stage 1 regarding its implementation in DeepSpeed.
Fortunately for us, this meant that after integrating Stage 1, Stage 2 worked out-of-the-
box without any problems.

3.3.3 Stage 3 (OS+G+P)

Stage 3 of ZeRO partitions optimizer states, gradients and model parameters, thus merg-
ing the traditional data parallelism approach with model parallelism. Optimizer states
and gradients are partitioned and synchronized as mentioned in Stage 1 and 2. The model
parameter partitioning works with the following principles: Each GPU is assigned a shard
of parameters. When model parameters outside the shard are required for the forward
or backward pass, the GPU that owns the shard containing the parameters shares them
via broadcast. This leads to far more communication overhead, however further reduces
GPU memory requirements of the overall model.

The integration of ZeRO-3 was fraught with many problems. GemNet, for example,
accesses the parameters of the layers directly in the model definition, which leads to
problems with DeepSpeed since it replaces the tensors with its own wrapper classes that
contain parameters only latently (parameters that are not in the shard of the GPU must
first be loaded via NCCL). For this, we had to extend GemNet to first perform an all-
gather operation on the parameters so that these are locally available with all GPUs
before using them inside the model directly.

Another problem occurred with DimeNet where ZeRO did not automatically partition
the model parameters. Our solution was to explicitly pass all model parameters as external
parameters to the DeepSpeed engine. This does not provide optimal partitioning of the
parameters, but at least lets the Zero-3 engine run.

After our integration, the ZeRO optimization can be enabled for all OCP models in
the Deepspeed configuration file. The specification is as follows:

"bf16": {

"enabled": "true"

}

"zero_optimization": {

"stage": [1|2|3]

}
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Note that the current DeepSpeed implementation requires Bfloat16 floating point pre-
cision to be enabled.

3.4 O✏oading Optimizations

To further reduce GPU memory usage, DeepSpeed contains optimizations to o✏oad data
and compute from the GPU to CPU or even Non-Volatile Memory express (NVMe) mem-
ory.

O✏oading optimizations in DeepSpeed were introduced in ZeRO-O✏oad [Ren+21].
ZeRO-O✏oad builds on top of the ZeRO Stage 2 optimizer which partitions gradients
and optimizer states. With o✏oading enabled, each GPU o✏oads part of its partition
to the CPU. The o✏oad engine automatically determines gradients and optimizer states
which can be computed on the CPU while minimizing communications between CPU and
GPU and maximize memory savings on the GPU.

To determine the o✏oad strategy, the o✏oad engine represents the model as data-
flow graph with nodes are model states (parameters, gradients and optimiter states) and
edges are communication volume between that flows through the model during training.
ZeRO-O✏oad uses a two-way partitioning scheme to split the graph into CPU and GPU
partitionings while trying to optimize CPU-CPU computation overhead, communication
overhead and memory savings.

Generally speaking, o✏oading is a scale-up approach to utilize as much resources on
each machine as possible, including CPU cores and memory. O✏oading should reduce
GPU memory consuption at the cost of CPU memory and core utilization, while the
overall runtime increases.

ZeRO-O✏oad for Zero Stage 2 is enabled by specifing the o✏oad optimizer configura-
tion inside of the ZeRO configuration:

"zero_optimization": {

"stage": 2,

"offload_optimizer": {

"device": "[cpu|nvme]"

}

}

ZeRO-Infinity [Raj+21] adds further features to ZeRO-O✏oad by building on top of
ZeRO-3 (Stage 3) and also introducing NVMe o✏oading.

ZeRO-Infinity builds on top of the o✏oad engine of ZeRO-O✏oad by also mapping
the model to a data-flow graph as described above. However, the novel infinity o✏oad
engine also allows assigning data-flow partitions to NVMe memory and extends the graph
by including activation memory hence also allowing o✏oading activation checkpoints to
CPU memory or NVMe. ZeRO-Infinity also introduces the concept of memory-centric
tiling for working memory to split larger layers in the model into smaller tiles, allowing
the o✏oad engine to further improve the partitioning scheme and prevent GPU memory
overflows with single large layers which often occured before in large language models.
To sum it up, ZeRO-Infinity allows models that are significantly larger than the GPU
memory to be trained as long as enough CPU or NVMe is available.

Similiar to ZeRO-O✏oad, after our integration of ZeRO-3 into the OCP code base,
infinity o✏oading worked out-of-the-box. ZeRO-Infinity’s o✏oad engine can be enabled
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in Stage 3 using the two ZeRO configurations offload optimizer and offload param to
o✏oad either optimizer states or entire parts of the model:

"zero_optimization": {

"stage": 3,

"offload_optimizer": {

"device": "[cpu|nvme]"

},

"offload_param": {

"device": "[cpu|nvme]"

}

}

4 Evaluation

4.1 Datasets

The OC20 dataset [Cha+21] contains training and evaluation data of roughly 1.2M DFT
relaxations using a range of di↵erent materials, surfaces and adsorbates. Jointly with
the dataset, three di↵erent challenges for the community were published: IS2RE (Initial
Structure to Relaxed Energy), S2EF (Structure to Energy and Forces) and IS2RS (Initial
Structure to Relaxed Structure). In our work, we focused on the first two.

4.1.1 Initial Structure to Relaxed Energy (IS2RE)

The Initial Structure to Relaxed Energy (IS2RE) task takes an initial atomic structure
as input and predicts the energy after relaxation of the structure [Cha+21; Tra+22].

OC20 provides three dataset scaling factors for the IS2RE task: 10k, 100k and all
structures + relaxations. Each dataset is a subset of the next higher-scaled dataset.

4.1.2 Structure to Energy and Forces (S2EF)

The Structure to Energy and Forces (S2EF) task takes an atomic structure and predicts
energy of the structure and per-atom forces [Cha+21; Tra+22]. Four metrics are tracked
during the S2EF task: Mean Absolute Error for the energy and forces (MAE), Force
Cosine similarity, and energy as well as forces within a threshold (EFwT).

OC20 provides three dataset scaling factors for the S2EF task: 200k, 2M, 20M, and
all. The scaling factor determines the number of atomic structures and pre-computed
energy and per-atom forces with DFT. The input structures are provided as compressed
trajectory files, so we had to locally uncrompress the files and embedded the structures
into Lightning Memory-Mapped Databases (LMBDs). Similiar to the datasets in IS2RE,
each dataset is a subset of the next higher-scaled dataset.

4.2 Evaluation Setup

We evaluated all models on a single machine with 2 AMD Epyc 7542 (32 CPU-Cores each),
528 GB memory, and 8 Nvidia RTX A6000 with 48 GB GDDR6-memory. The GPUs
were not connected by NVLink, so we used P2P communication through PCI for NCCL
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communication collectives. Practically speaking, this means that we set NCCL P2P LEVEL

to PIX.

GemNet The first model we evaluated with our DeepSpeed enhancements was the force-
centric GemNet-dT scaled up to roughly 292 million parameters corresponding to
Gemnet-XL [Sri+22]. The model consists of 6 interactions blocks, an atom embed-
ding size of 128, an edge embedding size of 1536, and triplet embedding size of 384.
All other hyperparameters are equal to Gemnet-dT as it was configured for the OCP
benchmark evaluation.

DimeNet++ Furthermore we evaluated the energy-centric DimeNet++ with the config-
uration defined in [Sri+22]. The model has 4 interaction blocks, a hidden dimension
of 2048, an output block of 1536, and triplet dimension of 256, amounting to ap-
proximately 216 million parameters. Again, all other hyperparameters are equal to
DimeNet++ as it was configured for the OCP benchmark evaluation.

For detailed analysis we gathered metrices from all our experiment runs regarding
epoch runtimes, CPU memory usage, GPU memory usage, as well as GPU memory re-
served or allocated by PyTorch directly. We collected the data with a custom profling
framework for PyTorch which we present in more detail in Appendix A. In addition, we
used the integrated PyTorch profiler10 to collect step-by-step performance metrics, in-
cluding information about communcation collectives and volume or breakdown of calls
to CUDA operations. PyTorch profiler also includes plugins to load and visualize the
profiling data in Tensorboard, which allowed us to do ad-hoc profiling even when the
experiment was still running.

4.3 Results

4.3.1 GemNet

We evaluated the GemNet model on the S2EF task with the 200k dataset and the IS2RE
task with the 100k dataset. For both tasks, we trained for one epoch using a batch size
of 16 (since data parallelism was activated in all of the runs, this implies that each of the
8 GPUs received 2 molecules per forward pass).

We evaluated the GPU memory consumed by CUDA tensors and runtimes for Gem-
Net training with 8 di↵erent configurations of DeepSpeed: The so-called DeepSpeed
ZeRO stage 0 served as baseline for evaluations, in which all DeepSpeed optimizations
are deactivated—i.e. stage 0 corresponds to basic data-parallel training. As a second
configuration, we trained GemNet in half precision without any ZeRO optimizations in
order to make sure that potential memory savings by ZeRO are actually caused by the
model state partitioning and not merely by reducing the model parameters’ precision.

Apart from this, we evaluated two configurations of each stage of ZeRO-DP to bench-
mark them against the two baselines. More precisely, for stage 1, we did one run with and
without overlapping communication each, while overlapping communication was activated
throughout stage 2 and stage 3. In order to investigate potential memory savings by CPU
o✏oading, we conducted standard stage 2 and stage 3 runs as well as runs in which the

10
https://pytorch.org/docs/stable/profiler.html

https://pytorch.org/docs/stable/profiler.html


4 EVALUATION 23

respective maximal CPU o✏oading ability was exploited. The exact configurations and
results can be seen in Figure 8, where “OC” stands for overlapping communication, “OO”
for optimizer o✏oading and “PO” for parameter o✏oading.
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forward 00:35:43 00:21:36 00:21:59 00:21:57 00:21:58 00:21:57 00:54:57 00:54:32
backward 03:11:31 01:53:35 01:39:38 01:38:45 01:56:29 03:09:20 02:05:26 03:52:43
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Figure 8: Memory consumption and runtimes for GemNet. Memory is in GB,
runtimes in the h:m:s format.

While enabling half precision training on stage 0 does significantly reduce reserved
memory, allocated memory is only marginally a↵ected. Nevertheless, a decrease of runtime
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by about 40% (S2EF) and 41% (IS2RE) can be observed.
When comparing stage 0 with half precision to standard stage 1, a significant decrease

both in allocated GPU memory and reserved GPU memory can be observed (S2EF: -67%
allocated, -23% reserved; IS2RE: -78% allocated, -12% reserved). This drop in memory
consumption has to be caused by optimizer state partitioning among the GPUs since this
is the only di↵erence between the configurations. Both for the S2EF task and the IS2RE
task, forward and backward pass are marginally faster with stage 1 activated. However,
especially for the S2EF task, it is also clearly visible that communication overhead between
the GPUs rises for stage 1: The part of the total epoch runtime which neither belongs
to one of the tracked stages (calles “rest” in Figure 8) and thus mainly encompasses
communication, increases by 219% (S2EF) and 58% (IS2RE).

Additionally, CPU o✏oading saves memory—most notable is a 58% decrease of al-
located GPU memory with IS2RE when optimizer o✏oading is activated in stage 2.
Nevertheless, in all of the observed cases this came at the cost of increased runtime.

Among all DeepSpeed configurations that we tested out, stage 2 with CPU o✏oading
reduced allocated memory most both on S2EF and IS2RE, while also reserving the least
(or almost the least) memory.

Stage 3 seems to be ine↵ective for GemNet as neither memory footprints nor runtime
are improved. Likewise, communication overlapping (which we had hoped would reduce
runtime) did not have the desired e↵ect as can be seen from the comparison between the
two stage 1 runtimes.

4.3.2 DimeNet++

Similiarly to GemNet, we also evaluated DimeNet++ on S2EF with the 200k dataset and
IS2RE with the 100k dataset. Both tasks were trained for one epoch on 8 GPUs with an
e↵ective batch size of 16 (each GPU receives 2 molecules per forward pass).

Baseline and DeepSpeed configurations were identical to our GemNet evaluation. With
DimeNet++, as with GemNet, there is an improved runtime of 45% (S2EF) and 40%
(IS2RE) by enabling mixed-precision, but the memory savings in the reserved memory are
only marginal this time. Unusual behavior occurred after activating stage 1 and stage 2,
as the runtime deteriorated compared to the baseline. The additional runtime was mainly
due to very long reduce NCCL operations. Unfortunately, we could not debug why these
operations took significantly longer on DimeNet++ and thus had a large impact on the
runtime. However, it must be dependent on the model architecture, since this behavior
was not observed with GemNet. Stage 2 on the S2EF tasks even encountered NCCL
timeouts during reduce operations resulting in even longer runtimes. Both stage 2 runs
on S2EF were aborted with an out-of-time error after a threshold of 6 hours.

Other results of DimeNet++ were very similiar to our observations from GemNet.
Stage 3 seems ine↵ective for the low number of GPUs. Optimizer and parameter o✏oading
leads to increased runtime as seen in the comparison of both stage 3 runs. For the S2EF
task, Stage 1 had the lowest memory consumption with 78% less allocated CUDA memory
and almost 67% less reserved memory than the baseline. For the IS2RE task, stage 2
with optimizer o✏oading had the lowest memory consumption with 87% less allocated
CUDA memory and 39% less reserved memory than the baseline. In both tasks, stage
0 with mixed-precision achieved the best runtime due to the tremendous communication
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overhead of all stage 1 and 2 runs. Detailed information about the individual runs can
be found in Figure 9.

S0 S0+fp16 S1 S1+OC S2+OC S2+OO

+OC

S3+OC S3+PO

+OO+OC

0

10

20

30

40

m
e
m

o
r
y

in
G

B

S2EF GPU memory consumption

allocated GPU CUDA memory

reserved GPU CUDA memory

0 1 2 3 4

runtime in h

S0

S0+fp16

S1

S1+OC

S2+OC

S2+OO

+OC

S3+OC

S3+PO

+OO+OC

S2EF runtimes

dataloading time

forward time

backward time

rest

S2EF S0 S0+fp16 S1 S1+OC S2+OC
S2+OO

+OC
S3+OC

S3+PO

+OO+OC

memory
allocated 3.46 3.47 0.76 0.76 – – 1.44 1.0
reserved 35.82 33.83 11.87 11.87 – – 15.59 15.67

runtimes

epoch 03:54:52 02:09:22 03:56:28 04:02:47 OOT OOT 02:33:25 03:34:34
dataloading 00:00:26 00:00:28 00:01:39 00:01:44 OOT OOT 00:00:17 00:00:19
forward 00:40:09 00:24:52 00:19:14 00:19:41 OOT OOT 00:43:02 00:43:50
backward 02:56:26 01:36:06 01:23:00 01:24:09 OOT OOT 01:45:56 02:46:15
rest 00:17:49 00:07:54 02:12:33 02:17:11 OOT OOT 00:04:08 00:04:10

S0 S0+fp16 S1 S1+OC S2+OC S2+OO

+OC

S3+OC S3+PO

+OO+OC

0

10

20

30

40

m
e
m

o
r
y

in
G

B

IS2RE GPU memory consumption

allocated GPU CUDA memory

reserved GPU CUDA memory

0 1 2

runtime in h

S0

S0+fp16

S1

S1+OC

S2+OC

S2+OO

+OC

S3+OC

S3+PO

+OO+OC

IS2RE runtimes

dataloading time

forward time

backward time

rest

IS2RE S0 S0+fp16 S1 S1+OC S2+OC
S2+OO

+OC
S3+OC

S3+PO

+OO+OC

memory
allocated 3.46 3.47 0.76 0.76 0.76 0.46 1.44 1.0
reserved 26.92 26.25 21.08 21.08 16.07 16.2 26.68 26.82

runtimes

epoch 01:11:14 00:42:37 01:42:24 01:45:05 01:46:43 02:12:14 01:01:56 01:31:00
dataloading 00:00:10 00:00:12 00:00:50 00:00:52 00:00:47 00:00:43 00:00:06 00:00:08
forward 00:07:47 00:05:32 00:06:42 00:06:47 00:06:43 00:06:46 00:17:29 00:17:31
backward 00:58:40 00:32:46 00:30:28 00:30:38 00:34:37 00:58:13 00:42:07 01:11:02
rest 00:04:34 00:04:05 01:04:22 01:06:46 01:04:35 01:06:31 00:02:12 00:02:18

Figure 9: Memory consumption and runtimes for DimeNet++. Memory is in
GB, runtimes in the h:m:s format. Red runs went out of time.
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5 Related Work

Scaling of machine learning models has a rich scientific research history, mainly since
the field represents an interesting and active collaboration between high performance
computing, distributed systems, and deep learning communities. In this section we will
highlight literature in the area of accelerating deep learning that are similar to our project
or complement our work.

A. Sriram et al. [Sri+22] from Meta FAIR propose a very di↵erent approach to scaling
Message Parsing Graph Neural Networks for atomic simulations, wherein the automata
structures are internally partitioned across multiple GPUs. In their approach, known as
graph parallelism, the highest-order interactions—which are triplets in their work—are
partitioned so that each GPU receives a subset of the triplets and updates and aggregates
them locally. The triplet messages are then gathered on all GPUs, allowing subsequent
edge and node-level layers to be computed as before. Using graph parallelism, the authors
scaled up DimeNet++ and GemNet, referring to their large models as DimeNet++-XL
and GemNet-XL. GemNet-XL, containing close to 300 million model parameters, is the
largest known model fully trained on OC20 for the OCP benchmark to date, and was also
at the top of the leaderboard for both IS2RE and S2EF until the release of Gemnet-OC.

For more general purpose Graph Neural Network architectures like Graph Attention
Networks [Vel+17] or GraphSAGE [HYL17], sampling is mostly used to avoid neigh-
borhood explosions when building the message flow graphs. To also allow training on
large-scale graphs, both popular geometric deep learning frameworks PyTorch Geomet-
ric (PyG) [FL19] and Deep Graph Library (DGL) [Wan+19] o↵er support for scale-out
strategies. For PyG, there is Torch Quiver11, which optimizes and scales single-node
multi-GPU training. In DGL, multi-GPU training and optimizations are directly inte-
grated into the codebase. In first iterations of our project, we evaluated both Quiver on
Pytorch Geometric and DGL. In short, Torch Quiver is unfortunately very poorly main-
tained and currently not useable from our point of view. DGL o↵ers great support for
multi-GPU and our tests were very positive, however most atomic simulations models
are implemented on top of PyTorch Geometric. Consequently, we decided against DGL
because the e↵ort of reimplementing DimeNet, GemNet, and GemNet-OC in DGL would
have been too costly.

Moving away from atomic simulation and Graph Neural Network specific optimiza-
tions, several toolkits for more memory-e�cient training of large models have been de-
veloped in recent years, either complementary or as alternatives to DeepSpeed. Fairseq
[Ott+19], developed by Meta AI, was originally developed to allow smaller labs and de-
velopers to fine-tune pre-trained language models. Nowadays, the toolkit also includes
support for mixed precision training, parameter o✏oading to CPU, and multi-GPU op-
timizations such as parameter and optimizer state sharding. A direct competitor to
DeepSpeed is FairScale [Bai+21]. FairScale is also developed by Meta AI and contains
optimizations similar to Zero-1, Zero-2 and Zero-3, combined with features for CPU of-
floading, FP16, and activation checkpointing. Another alternative to DeepSpeed is the
Fully Sharded Data Parallel (FSDP)12 module newly introduced in PyTorch 1.11. FSDP
is a native integration of a subset of DeepSpeed and FairScale features directly into Py-

11
https://github.com/quiver-team/torch-quiver

12
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

https://github.com/quiver-team/torch-quiver
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
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Torch without the need to install external modules. The implementation of FSDP heavily
borrows from FairScale while bringing a more intuitive and streamlined API for develop-
ers.

6 Project Organization

All work in this project was realized within the TUM Data Innovation Lab in collaboration
with the Chair of Aerodynamics and Fluid Mechanics. Special thanks go to our Scientific
Lead PhD candidate Ludger Pähler, as well as our Project Lead and Co-Mentor Dr.
Ricardo Acevedo Cabra.

Our project was structured in 4 phases:

1. Literature review (4 weeks): We read through important papers in the topics of our
project such as Graph Learning, Graph Neural Networks, Graph Sampling, Message
Passing for Quantum Chemistry, and Scalable Machine Learning; and discussed
them weekly.

2. Baseline (3 weeks): After getting into the topic theoretically, we started looking
at the OCP project and elaborating the current state of the project to see what
baseline we are comparing against.

3. Implementation (4 weeks): After defining the baseline, we integrated and tested all
DeepSpeed stages in the OCP project during our implementation phase.

4. Evaluation and Final report (3 weeks): In the final weeks of the project, we con-
ducted baselines and DeepSpeed experiments and recorded our observations and
analysis. In addition, we focused on the final report in this phase.

Our team met twice each week on Monday and Friday to discuss progress and define
next steps. Most of the time, individual team members met two to three additional times
during the week to discuss specific tasks in their area of activity. For organizational
purposes, team and personal conversations, we used a private Slack channel.

For version management of our code we created a GitHub organization13 where we
placed multiple projects like our own fork of the OCP project, evaluation scripts and
also the source files for the final report. We tracked problems and errors we encountered
as issues in the corresponding projects and worked with a branch structure to avoid
disrupting the work of our teammates.

7 Conclusion

In this work, we scaled force and energy predictions of organic molecules on potential
catalyst surfaces for a wide variety of recently proposed GNN architectures in the domain
of atomic simulations. This was achieved by integrating Microsoft DeepSpeed into the
OCP project, facilitating the exploration and use of DeepSpeed optimizations for the
GNN models that are part of the OCP repository. This does not only include GemNet and

13
https://github.com/TUM-DI-Lab-Graph-Scaling

https://github.com/TUM-DI-Lab-Graph-Scaling
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DimeNet++, but also—as of recently—the current state-of-the-art GemNet-OC [Gas+22].
Additionally, we developed a module for OCP that enables comprehensive tracking of
memory- and runtime-related metrics.

We evaluated memory and runtime savings on scaled-up versions of GemNet-dT
(⇠292M parameters) and DimeNet++ (⇠216M parameters) which correspond to GemNet-
XL and DimeNet++-XL [Sri+22], the state-of-the-art on the OCP leaderboard when our
project phase began.

For our GemNet setup, we observed that using DeepSpeed’s ZeRO optimization can
significantly reduce memory footprints during training, resulting in almost 50%/50% less
reserved memory or 75%/87% less allocated memory on the S2EF and IS2RE tasks respec-
tively (depending on the configuration of DeepSpeed) compared to standard data parallel
training. In terms of runtime, however, in almost all of our evaluations we were not able
to speed up training as communication overhead increased when nontrivial DeepSpeed
features were activated. Runtime-wise, just training in half precision has mostly yielded
the best results.

In our GemNet evaluation, stage 3 of the ZeRO optimizer which corresponds to full
model parallelism on top of data parallelism did not outperform the simpler stages 1 and 2
neither with respect to memory nor runtime. We suspect that for stage 3, being originally
designed for trillion-parameter transformer models that cannot even be stored on single
GPUs, our models were simply too small to see any memory savings.

In contrast, our results for DimeNet++ were rather unexpected as communication
between the processes got very slow when we activated stage 1 and 2 of ZeRO. We ruled
out various potential problems related to our DeepSpeed configuration and the model
itself and suspect that this might be a problem related to the NCCL communication on
our evaluation machine.

Since each configuration was only trained for one epoch and not all of the OC20 data
was used for training due to time constraints, it would be interesting to see in the future if
our results also prove true for longer training. It also remains yet to be evaluated whether
our parallelization optimizations resulted in decreased model performance, as none of the
two models was fully trained to completion and tuned for top-performance. In addition,
it could also be very interesting to explore if the results we obtained for our GemNet
setup can be transferred to the current state-of-the-art architecture, GemNet-OC, which
does not only consider 3- but also 4-way interactions. Apart from all of this, we would be
curious to see some of the DeepSpeed features being combined with other parallelization
strategies in the domain of atomic simulations, like graph parallelism [Sri+22] which was
also added to OCP recently during our project phase.
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Appendices

A Profiling Framework

We implemented a custom profiling framework for PyTorch to collect data for detailed
runtime and memory usage analysis. Our profiler contains three components:

1. Resource monitor thread : Runs in parallel to the data parallel training processes
and tracks CPU memory usage, as well as memory usage on each GPU. The monitor
takes snapshot at a configurable time interval (2 seconds for all our runs).

2. Phase clocking component : Tracks runtime of all phases during each training step,
as well as total epoch time. The phases include time spent on fetching data from
the dataloader, forward pass, and backward pass. All phase times are tracking
through clocks which are activated when the training script enters a specific phase
and deactivated when it leaves the phase.

3. PyTorch internal memory tracker : Tracks allocated and reserved memory from
PyTorch directly. This allows the profiler to detect how much GPU memory is used
only for tensors and not any other components of the framework.

The profiler is implemented as part of the OCP codebase. The implementation of each
component is located in the tracking package14.

Our profiler is not an alternative to the o�cial PyTorch profiler, but rather a comple-
mentary module to gather data on long running experiments. For shorter experiments,
which just run over the span of a few training steps, the PyTorch profilier o↵ers far more
detailed data collection and better visualization support through a Tensorboard plugin.

14
https://github.com/TUM-DI-Lab-Graph-Scaling/ocp/tree/main/ocpmodels/tracking
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B Per-Experiment Memory Usage

The figures below show memory utilization for CUDA tensors averaged over all GPUs
over time. Allocated memory is blue, while reserved memory is orange.
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Figure 10: GPU memory consumption for GemNet on the S2EF task.
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Figure 11: GPU memory consumption for GemNet on the IS2RE task.
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Figure 12: GPU memory consumption for DimeNet++ on the S2EF task.
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Figure 13: GPU memory consumption for DimeNet++ on the IS2RE task.
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