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Abstract

Particle-based fluid mechanics simulations play a crucial role in understanding and pre-
dicting complex fluid dynamics phenomena. However, the computational challenges posed
by the multi-scale nature of these phenomena demand innovative approaches to enhance
efficiency and accuracy. In this project, we aim to explore the potential of equivariant
Graph Neural Networks (GNNs) in a multi-resolution framework for particle-based fluid
mechanics simulations.
Our machine learning pipeline, developed from scratch to be independent of any specific
deep learning framework, offers flexibility and compatibility with various backends. We
aim to incorporate E(3) equivariant inputs, our model learns to exploit the rotational
and translational symmetries inherent in fluid dynamics, leading to more meaningful
representations and improved accuracy in predicting fluid behavior.
A key feature of our pipeline is the multi-resolution component, capable of handling vary-
ing numbers of particles in the temporal dimension while maintaining static shapes. This
allows for the effective processing of fluid dynamics simulations with different levels of
detail, enhancing adaptability and accuracy. Specialized data structures tailored specifi-
cally for fluid dynamics applications optimize performance and seamlessly integrate with
the model.
Furthermore, we integrate a classical multi-resolution Smoothed Particle Hydrodynamics
(SPH) solver into our framework. This provides a baseline for validation and benchmark-
ing, enabling comparisons with machine learning-based predictions and further enhancing
our understanding of fluid dynamics phenomena.
Looking ahead, our work opens avenues for further exploration and innovation in the field
of fluid dynamics prediction with machine learning. The optimization of performance by
computing the connectivity list directly on the GPU and exploring new neighborhood
computation algorithms holds promise for improving computational efficiency. Addition-
ally, computing coarse scores directly from latent information and investigating the use of
steerable Multi Layer Perceptrons (MLPs) present exciting directions for future research
and development.
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1 Introduction

Problem Definition and Goals of the Project In the realm of particle-based fluid
mechanics simulations, the utilization of equivariant Graph Neural Network techniques in
a multi-resolution framework holds immense promise for advancing the efficiency and ac-
curacy of complex physical systems’ representations. From stellar collisions with sparsely
populated regions to multi-phase flows encountered in additive manufacturing, particle-
based Computational Fluid Dynamics (CFD) has emerged as the preferred approach.
However, the multi-scale nature of these phenomena poses computational challenges, de-
manding substantial resources due to the vast number of particles required to resolve all
relevant spatial and temporal scales.
To tackle these challenges, Coarse-Graining (CG) has been recognized as a potential solu-
tion. By employing larger particles, CG enables more extensive time steps while respect-
ing the Courant-Friedrichs-Lewy (CFL) condition, leading to faster simulations without
sacrificing accuracy. Remarkably, similarities in algorithmic principles between particle-
based CFD and Molecular Dynamics (MD) simulations have been identified, paving the
way for the adaptation of GNN-based CG techniques recently demonstrated in molecular
simulations [1].
While [1] focused on CG in molecular simulations, the current work aims to extend their
advancements to the field of fluid mechanics. The proposed equivariant GNN-based multi-
resolution simulator seeks to harness the inherent algorithmic similarities between particle-
based CFD and MD, providing a novel approach to accelerate fluid dynamics simulations.
Moreover, the conventional uniform coarse-graining approach treats all regions equally,
which may not fully exploit the potential efficiency gains. To address this limitation, this
project explores the concept of multi-resolution coarse-graining, selectively refining regions
with large variations while coarsening those with homogeneous properties. This strategy
aims to optimize both efficiency and accuracy in fluid mechanics simulations, promising
significant advancements in studying complex phenomena across varying scales.
This project presents a framework, leveraging equivariant GNN techniques within a cus-
tom multi-resolution framework for particle-based fluid mechanics simulations. By fusing
these cutting-edge methodologies, we envision substantial improvements in computational
efficiency and accuracy.
In the traditional multi-resolution SPH (MR-SPH) solver , several challenges may arise.
Firstly, the determination of appropriate resolution levels for different regions of the fluid
domain poses a significant hurdle. Achieving an optimal balance between accuracy and
efficiency requires careful consideration, as overly coarse regions may lead to loss of critical
details, while excessively fine regions may lead to unnecessary computational overhead.
Secondly, maintaining accuracy in the transition between different resolution levels is
another key challenge. Handling particle interactions across boundaries where the reso-
lution changes can introduce errors or artifacts, if not appropriately managed. Finally,
accounting for dynamic changes in fluid properties and evolving flow features throughout
the simulation presents an ongoing challenge, as regions initially considered homogeneous
may become heterogeneous over time. Addressing these challenges requires sophisticated
algorithms to fully exploit the potential benefits of a multi-resolution approach while
delivering accurate and reliable results in particle-based fluid mechanics simulations.
Our primary objective was to develop a machine learning pipeline from scratch that



1 INTRODUCTION 4

remains independent of any specific deep learning framework, ensuring flexibility and
compatibility with various backends. We also aimed to leverage E(3) equivariant inputs
to incorporate rotational and translational symmetries, allowing the model to learn and
exploit these symmetries present in fluid dynamics.
Our comprehensive pipeline includes a multi-resolution component capable of handling
varying numbers of particles over time while maintaining static shapes throughout. This
multi-resolution feature enables the model to effectively process and analyze fluid dynam-
ics simulations with different levels of detail, enhancing adaptability and accuracy.
Additionally, to support fluid dynamics applications specifically, we have implemented
data structures tailored precisely for our needs. These specialized data structures are
designed to efficiently handle multi-resolution information, optimizing performance and
ensuring seamless integration with the model.
In addition to the machine learning pipeline, we also aimed to develop a classical multi-
resolution SPH solver which can serve as a baseline for comparison with the machine
learning-based predictions, enabling validation, benchmarking, and enhancing our under-
standing of fluid dynamics phenomena.

State-of-the-art Approaches In recent years, the MR-SPH solvers have gained a lot
of traction. The majority of the methods differ in how they treat the coupling between
the fine and coarse regions. In [2], the same smoothing kernel was used for both fine and
coarse particles, this had an inherent downside of computational overhead in the fine par-
ticle region. When each region was assigned its own smoothing kernel, it brought down
the computational cost significantly but it needed additional treatment at the interface
as shown in [3] where an information exchange layer was implemented at the interface.
In [4], correction matrices were incorporated which made the scheme consistent across
the interface eliminating the need for an information exchange layer. This reference was
used in this project for developing the traditional solver for dual resolution SPH consist-
ing of particles with two discrete resolutions in the fluid domain. An extension of this
work includes adaptive particle resolution [5] in the same domain. There has also been
research interests in grid-based multi-resolution techniques for addressing fluid-structure
interaction problems recently [6].
To the best of our knowledge, the exploration of multi-resolution particle-based methods
leveraging GNNs for fluid dynamics prediction using machine learning remains an un-
charted territory. However, neighboring techniques have exhibited promising outcomes in
related fields. For instance, [7] presents an innovative approach that harnesses adaptive
meshes, resulting in remarkable speed-ups of up to an order of magnitude when compared
to conventional ground truth solvers. By dynamically adjusting the resolution of the
mesh, this method optimizes computational efficiency while preserving the accuracy of
the fluid dynamics simulation. Building on top of this, [8] employs reinforcement learning
to learn the mesh adaption, being the first architecture that learns multi-resolution in an
end-to-end fashion On the other hand, [9] adopts an alternative strategy by incorporating
coarse-graining during an embedding step. However, a notable distinction is that they do
not retain any fine particles during the simulation process. This approach still exhibits
merits in certain scenarios, but it diverges from the notion of preserving multi-resolution
particle-based information throughout the simulation.
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2 Traditional Multi-Resolution Particle Solver

2.1 Smoothed particle hydrodynamics

In CFD, there are two fundamental approaches to representing fluid flow: the Eulerian
approach and the Lagrangian approach. These approaches differ in how they discretize
and track the fluid properties within a computational domain.
The Eulerian approach involves dividing the computational domain into a fixed mesh,
where the fluid properties such as velocity, pressure etc. are defined at each grid point.
The governing equations of fluid dynamics, such as the Navier-Stokes equations, are then
solved numerically on this fixed grid to simulate the flow behavior.

(a) Eulerian vs Lagrangian Approach (b) Gaussian Kernel

Figure 1: Basic blocks of SPH formulation [10]

On the other hand, the Lagrangian approach offers an alternative method to represent
fluid flow by following the motion of individual fluid particles or ’parcels’ throughout
the computational domain. Instead of dividing the domain into a fixed grid, Lagrangian
methods track the position, velocity, and other properties of discrete fluid particles over
time. In contrast to the Eulerian methods, the Lagrangian methods naturally handle
moving boundaries, free-surfaces and can simulate fluid-solid interactions with relative
ease. Figure 1 depicts the key difference between the Lagrangian and the Eulerian scheme.
The SPH is a Lagrangian method to simulate and analyze fluid flows. This method
discretizes the fluid domain into a set of particles that move with the fluid flow. Each
particle carries macroscopic properties such as position, velocity, and density, allowing
for a natural representation of fluid motion and deformation. This method was initially
developed by Monaghan and Gingold [11] in 1977 and independently by Lucy [12] for
astrophysical simulations.
As the simulation progresses, for a given particle, a kernel function is used which weights
the macroscopic properties of neighbouring particles based on distance and assigns it to
the particle in concern. The simplest kernel function is a Gaussian function as shown in
Figure 1 with a fixed cut-off radius. Other kernel functions popularly used in SPH are
the Wendland Quintic Spline and the Cubic Spline. The details on the basic SPH theory
is mentioned in Appendix F for curious readers.
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2.2 Neighbors Search

Neighbor search algorithms play a crucial role in SPH. We discuss their utility for both
single-resolution and multi-resolution problems, highlighting the benefits of different cutoff
radii. Below mentioned are some standard methods of utilizing the neighbor search.

(a) Cell list grid division (b) k-d tree method

Figure 2: (a) Grid division with cell list and (b) kdtree method [13]

2.2.1 Cell Lists, Stencils and Tree Methods

Cell lists divide the simulation space into cells and maintain a list of particles within each
cell. By checking neighboring cells, particles within the cutoff radius can be efficiently
identified. Cell lists provide advantages such as reduced search space, improved cache
utilization, and decreased time complexity, especially for simulations with low particle
density [14]. Stencil uses a similar approach to the cell lists but the search area for each
particle is fixed width cell, in contrast to the cell list which uses a cutoff radius.
A k-d tree, short for a k-dimensional tree, is a tree data structure. It organizes points
or particles in a hierarchical structure, dividing the space into hyperplanes along each
dimension. This allows for efficient search operations by recursively partitioning the
space and narrowing down the search region. At each node, a splitting plane is chosen
perpendicular to one of the dimensions, dividing the points into two child nodes. This
process continues until each leaf node contains several points, forming a tree-like structure.
The k-d tree enables efficient nearest neighbor search by pruning branches that are unlikely
to contain the nearest neighbor. By traversing the tree based on spatial relationships, the
algorithm efficiently identifies the closest points or particles [15]. Figures 2a and 2b show
the difference between the two search methods.

2.2.2 Comparison of Neighbor Search Methods for Use in Multi-Resolution
SPH

In terms of effectiveness, cell lists typically outperform k-d trees in neighbor search per-
formance, especially in simulations with a lot of particles. By segmenting the simulation
domain into cells, cell lists provide a localized search strategy that can speed up the de-
tection of nearby particles. For large-scale simulations, k-d trees can be slower since they
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need a hierarchical traversal of the tree structure. Additionally, cell lists are able to man-
age particles with varied radii more readily than k-d trees in multi-resolution scenarios,
i.e., variable radii. Based on the particle radii, alternative cell sizes or cutoff distances can
be assigned using cell lists. This makes it possible to conduct effective neighbor searches
within the range required for each particle size. k-d trees, on the other hand, frequently
have a set partitioning structure based on the spatial distribution of the particles, which
might not be able to adjust adequately to changing particle radii. Finally, cell lists typ-
ically use less memory than k-d trees in terms of memory use. While k-d trees require
memory to store the tree structure, this requirement might grow large for lengthy simu-
lations, whereas the memory requirements for cell lists are proportionate to the number
of cells.

2.2.3 Current Neighbor Search Open-Source Implementations

Current neighbor search open-source implementations, (refer Table 1) include Matsicpy,
JAX-MD, scipy.kdtree, MDAnalysis, and HOOMD Blue.
The two candidates with the best chances are JAX-MD and scipy.kdtree. On the positive
side, it is possible to jit the JAX-MD neighbor list update function, improving speed
performance, significantly as the number of particles increase, but the downside is that
the static type architecture and absence of a variable radii option. The second candidate is
scipy.kdtree, which can build a uni-directional neighbor list in contrast to other candidates
who employ cell lists, and can satisfy all the requirements of the current project, including
variable radii. For instance, if a coarse particle X having a large cutoff radius has a fine
particle Y in its vicinity with a small cutoff radius, then Y is a neighbor of X but not
necessarily the other way around. A new check using Y ’s cutoff radius should be performed
to determine whether X is in the neighborhood of Y . This uni-directional relationship
between particles is essential for a multiresolution domain.

Table 1: Neighbor search package comparison where N is the number of particles and k
is the number of particles per cell

Package Neighborhood Search Method PBC Library Var Radii Avg Complexity

Matsicpy cell list Yes c backend yes O(kN)
JAX-MD cell list Yes JAX no O(kN)

scipy.kdtree tree Yes scipy yes O(N logN)
MDAnalysis tree Yes scipy yes O(N logN)
HOOMDBlue cell list/stencil/tree Yes c backend yes all1

2.3 Multi-Resolution Approaches

In SPH, to accurately capture high gradients of field variables, we need sufficiently many
fine particles in these regions of high gradients. But discretizing a domain with a single
fine resolution requires a huge amount of memory overhead and it is a significant waste of

1The HOOMD Blue search methods involve both complexities: O(kN) and O(N logN). The actual
complexity depends on the specific method.

https://github.com/libAtoms/matscipy
https://github.com/jax-md/jax-md
https://github.com/scipy/scipy
https://github.com/MDAnalysis/mdanalysis
https://github.com/glotzerlab/hoomd-blue
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resources in regions of low gradients. This is the motivation to proceed to multi-resolution
schemes i.e. to discretize the regions of interest with fine resolution and to have coarse
particles elsewhere in the domain.
In our proposed approach following [4], the domain has particles of only two discrete
resolutions: fine and coarse. The fine particles have a smaller cut-off radius hH and the
coarse particles have a bigger cut-off radius hL. As shown in Figure 3, all particles are
placed initially in a regular lattice with fine particles having a spacing of ∆xH and the
coarse particles having a spacing of ∆xL. The resolution ratio γLH = ∆xL

∆xH
is set to 2 in

our solver.

Figure 3: Initial particle configuration of the MR-SPH setup [4]
.

We implement dynamic splitting and merging of particles. As the particles advect with
the flow, some fine particles may enter a coarse region which have to be merged or some
coarse particles may enter the fine region where they need to be split.

2.3.1 Splitting

When a coarse particle moves into the fine particle region, it is split into 4 fine particles
following the procedure described in Algorithm 4.

Figure 4: Refinement in 2D: Splitting a coarse particle into four fine particles [4].
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Algorithm 1: Splitting Algorithm

1: At the position of the coarse particle, replace it with 4 fine particles each having the
velocity and density of the big particle.

2: Move the fine particles such that they have an equal spacing of ∆xH as shown in
Figure 4.

3: Correct the density of the fine particles using Equation 11.
4: Update the pressure of the fine particles using Equation 13.

2.3.2 Merging

The merging algorithm is a bit more involved than the splitting algorithm.

Figure 5: Coarsening in 2D: Merging four fine particles into a coarse particle [4].

Algorithm 2: Merging Algorithm

1: Determine the fine particles that have entered the coarse region and enter their IDs
into a list

2: Sort this list of fine particle IDs based on how much they have penetrated the coarse
region, the further they are inside the coarse region, the more priority is given to
merge them.

3: Now determine the three nearest neighbors of these fine particles which are in this
sorted list, they may lie in either the fine region or the coarse region.

4: Determine the Center of Mass (COM) of these particle groups and merge these
particles only if the COM lies inside the coarse region.

5: Average the velocities of the four fine particles and assign it to the coarse particle.
6: Correct the density of the coarse particle using Equation 11.
7: Update the pressure of the coarse particle using Equation 13.

2.4 Results From the Traditional Solver

A 2D Reverse-Poiseuille Flow (RPF) test was setup for testing the implementation for
the Multi-resolution solver. This test case was specifically chosen because it has Periodic
Boundary Conditions (PBC) in both directions reducing the additional complexity of
dealing with wall particles.
The domain was initialized with a total of 8000 particles out of which 6400 particles had
a fine resolution and the rest 1600 had a coarse resolution. A time step, dt = 10−7, was
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chosen respecting the CFL conditions. Figure 6 shows the velocity profile of the above
chosen configuration. This parabolic profile is an expected outcome for this laminar case.
Even though there is no dynamic merging and splitting occurring for this low Reynolds
number flow scenario, it is a first proof that multi resolution SPH actually works.

Figure 6: RPF test setup for Re = 0.015
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3 Machine Learning Code-Base

3.1 Literature Review

Graph Neural Networks Graph neural networks have become prevalent in molecular
dynamics and adjacent fields. They serve as the foundation for Graph Network-based Sim-
ulators (GNS) introduced in [16], which forms the basis of our machine learning pipeline.
The GNS is composed of three key components: an Encoder, a Processor, and a Decoder.
Each part plays a specific role in the simulation process:

• Encoder : This component constructs a meaningful latent graph from the input
state. It utilizes Multi-Layer Perceptrons (MLPs) to process the nodes indepen-
dently, without considering neighboring nodes or edge information. The Encoder’s
primary function is to capture essential features and create a latent representation
of the input graph.

• Processor : The Processor is a message passing layer, as described in [17]. It
consists of two MLPs: an edge MLP and a node MLP. The edge MLP processes
edge latent vectors, taking as input the latent vectors of the two nodes connected
by the edge, as well as the edge latent vector. The output is the new latent vector
for the edge. On the other hand, the node MLP takes the aggregated edge latent
vectors and its own latent vector as input. The aggregation function has to be a
permutation invariant function, such as mean or max or summation, which we use.
The node MLP outputs the new latent vector for the node.

• Decoder : This component extracts relevant information from the final latent graph
representation. Similar to the Encoder, the Decoder is also implemented as an MLP
that operates independently on the nodes, without considering edge or neighboring
node information.

By combining the power of MLP-based Encoders and Decoders with message passing
in the Processor, the GNS can effectively simulate complex molecular dynamics systems
[9, 7, 16].

Group-Equivariant Deep Learning E(3) equivariance, i.e. rotational and transla-
tional equivariance, is a critical concept that our model should learn, given that the laws
of physics governing fluid dynamics exhibit E(3) equivariant properties. By incorporat-
ing E(3) equivariant methods into our model architecture, we can take advantage of the
fact that the same patterns and properties can be recognized in different orientations or
translations, reducing the number of unique configurations the model needs to learn. This
results in enhanced sample efficiency and faster convergence during training.
Additionally, symmetry-aware representation plays a crucial role in understanding molec-
ular systems. By incorporating E(3) equivariance into the model architecture, the model
becomes more aware of the symmetries present in molecular structures and interactions.
This can lead to more meaningful and concise representations of molecular systems, ulti-
mately enhancing the model’s predictive capabilities.
To achieve these goals, E(3) equivariant neural networks have been developed. One exam-
ple is EGNN [18], a message passing GNN with restrictions on the initial latent vectors.



3 MACHINE LEARNING CODE-BASE 12

The initial latent vectors have to be E(3) invariant, and distances and relative differences
are chosen to ensure this invariance. This approach has been adapted throughout our
code-base to maintain E(3) equivariance. The message passing step itself is still invariant
though.
Furthermore, SEGNN [19] builds upon this work by incorporating steerable MLPs. Steer-
able MLPs interleave linear mappings with non-linear activation functions, just like regular
MLPs, but use linear transformations conditioned on geometric information. Additional
care has to be taken on selecting a non-linear activation function that works with steerable
vectors. This technique allows for full exploitation of E(3) equivariant properties.

3.2 Framework Comparison

Firstly, we go through the main reference paper [1] at the beginning of the project and try
to understand the underlying fundamental concepts, theories and various methodologies
related to simulation of time-integrated coarse-grained molecular dynamics(CGMD). The
codebase for this paper [1] implements multi-scale GNN simulators without the need of
force or energy. Python 3.8, PyTorch 1.11 and CUDA 11.3 were all used to test this
implementation.
PyTorch itself provides a lot of flexibility however it can sometimes lead to boilerplate code
and make it challenging to maintain structured and scalable projects. Pytorch Lightning
framework is used for organizing and simplifying PyTorch code. It aims to alleviate above
issues by providing a lightweight abstraction over PyTorch, making it easier to organize
code, separate concerns, and improve readability. It introduces a standard structure for
organizing models, training loops, and data handling, allowing researchers and engineers
to focus more on the high-level logic of their models.
The overall overview of codebase with various components related to data preprocessing,
GNNembeddings, clustering, DynamicsGNN is shown in figure 7. During the prepro-
cessing steps, an MD system is embedded and coarse-grained to a coarse-level graph..
The CG MD simulator featurizes historical data using the featurizer before the Dynamics
GNN forecasts the positions for the following step. A Score GNN is an option for further
fine-tuning the projected placements.
We planned to implement the codebase in PyTorch 2.0 [20](without using PyTorch Light-
ening framework) and in JAX [21] to compare the inference speed and performance be-
tween those frameworks.

3.2.1 Pytorch 2.0

Performance comes in second place to flexibility and hackability in the PyTorch concept.
Since PyTorch’s debut in 2017, hardware accelerators like GPUs have dramatically in-
creased in speed. Parts of PyTorch’s internals were transferred into C++ in order to
retain high-performance eager execution, which decreased hackability and raised the bar
for code contributions.
Performance comes in second place to flexibility and hackability in the PyTorch concept.
Since PyTorch’s debut in 2017, hardware accelerators like GPUs have dramatically in-
creased in speed. Parts of PyTorch’s internals were transferred into C++ in order to
retain high-performance eager execution, which decreased hackability and raised the bar
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for code contributions. PyTorch compiler is develop to improve the performance with-
out losing in PyTorch experience. A new feature torch.compile is added in PyTorch 2.0
[20]. It provide fundamental support for TorchDynamo, AOTAutograd, PrimTorch and
TorchInductor. In addition, [22] discuss about deep learning compiler technologies that
powers PyTorch 2.0 and the different phases of the compilation process.

3.2.2 JAX

JAX [21] is an open-source Python library developed by Google Research that provides
an ecosystem for high-performance numerical computing and machine learning. JAX
was designed to address some of the limitations of traditional automatic differentiation
libraries and to leverage the full potential of hardware accelerators, such as GPUs and
TPUs. It is built on top of NumPy and incorporates elements from various research
projects like Autograd and XLA (Accelerated Linear Algebra).
Some of the key features of JAX are Numpy compatibility, automatic differentiation,
functional programming and XLA integration.

3.2.3 Comparison between PyTorch 2.0 and JAX

Both PyTorch 2.0 and JAX are just-in-time compilable, support fully functional program-
ming, and have been employed in major production systems, such as ChatGPT and Bard
respectively, making them seemingly similar at a glance. However, there are significant
differences in priorities and design decisions between these two frameworks.
In PyTorch, JIT compiling using Torch.compile is more straightforward compared to
JAX’s jax.jit. The ease of JIT compilation in PyTorch is due to its support for both
data-dependent control flow and dynamic shapes. On the other hand, JAX requires
programs to be written in a purely functional manner, with static shapes and limited
data-dependent control flow.
PyTorch’s TorchDynamo plays a crucial role in JIT compiling arbitrary Python code into
FX graphs. By dynamically modifying Python bytecode just before execution through
hooks into the frame evaluation API in CPython, TorchDynamo handles data-dependent
control flow by employing graph breaks and extracting different FX graphs. This feature
ensures almost complete backward compatibility with PyTorch 1.x, albeit with a trade-off
of convenience for performance.
One notable advantage of PyTorch is its experimental support for dynamic shapes, which
generally perform better than static shapes when compiled with PyTorch [20].
In contrast, JAX prioritizes different aspects. It is described on the JAX website as
bringing together Autograd and XLA. JAX is a purely functional framework heavily
based on the Numpy API. The powerful intermediate language, XLA, employed by JAX
has the disadvantage of requiring static shapes. As a result, JAX is more restrictive
compared to PyTorch, necessitating more effort to handle padding.
However, this restrictiveness allows JAX to generate much faster compiled code. Although
JAX does not have graph breaks, it provides a somewhat similar functionality in the form
of external callbacks. Nevertheless, the downside is that external callbacks in JAX will
always be executed on the host side.
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3.3 Methodology

In the domain of fluid dynamics, existing tools in JAX are predominantly designed with a
focus on molecular dynamics applications, making them sub-optimal for our needs. Fur-
thermore, our research project aimed to create a code base that seamlessly integrates
with both JAX and PyTorch, facilitating a meaningful and robust comparison between
these two frameworks in the context of fluid dynamics prediction. To accomplish this,
we adopted a deliberate approach of avoiding the use of Jraph and JAX-MD completely.
Instead, we undertook the development of custom data structures and connectivity com-
putation methods tailored precisely to the specific demands of fluid dynamics simulations.
While coming at the cost of having to build a lot of code from scratch, this decision al-
lowed us to fine-tune our solutions to the task at hand, yielding superior performance and
ensuring our code remains well-organized and maintainable.

3.3.1 Data Handling

Dataset Our dataset comprises a comprehensive long-term reverse poison flow simu-
lation, spanning a total of 20, 001 timesteps. Each timestep includes particle positions,
alongside particle types that, for our specific case, hold no significance and are uniformly
set to zero.
To extract meaningful information from the dataset, we adopt a time window approach.
Specifically, we load a stack of n + 1 consecutive timesteps and calculate the velocity of
particle positions through finite differences:

Vt+n
t =

Xt+n
t+1 −Xt+n−1

t

∆t
(1)

where, Vt+n
t represents the velocity computed between timestep t and t + n, while Xt+n

t

denotes the positions of particles from timestep t to t+n. The parameter dt corresponds
to the time step size.
Furthermore, our dataset preprocessing includes an option to compute the initial graph
connectivity during the data loading.

Dataloader For our dataloader implementation, we designed a custom padding func-
tion, distinct from the Jraph library, tailored to leverage our custom GraphsTuple data
structure, as described in the subsequent section. The padding function efficiently accom-
modates inputs of varying lengths, ensuring seamless processing during data preparation,
even though this is not actually needed for our dataset at hand. Subsequently, we collate
the data and perform the conversion from Numpy data structures to the required backend,
which could be either JAX, PyTorch, or Numpy, depending on the specific use case.
To optimize compatibility and ease of use, we opted to employ the standard PyTorch
dataloader. PyTorch’s dataloader has native support for numpy arrays, facilitating a
seamless integration of our custom data structures into the data pipeline.

3.3.2 Basics

Data Structures Our GraphsTuple is tailored to seamlessly integrate with JAX as
a PyTree while also maintaining native compatibility with PyTorch. It adapts many
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of Jraph’s GraphTuple’s attributes, adapting them to our needs. It encompasses the
following attributes:

• nodes: A named tuple holding the node attributes. Some of these attributes may
not have values attached to them during all processing steps, allowing for flexibility.

• edges: A named tuple containing the edge attributes.

• senders: An array containing the sender node indices for the edges.

• receivers: An array containing the receiver node indices for the edges.

The attributes of our nodes are as follows:

• latent: The latent vectors of the nodes.

• position: The positional history Xt+n
t of the nodes, with the time dimension lead-

ing.

• velocity: The velocity history of the nodes Vt+n
t , with the time dimension leading.

• acceleration mean: The predicted mean of the multivariate normal acceleration
distributions.

• acceleration covariance: The predicted covariance of the multivariate normal
acceleration distributions.

• mass: The masses of the nodes, where a value of 1 denotes fine-resolution nodes,
and 4 indicates coarse nodes.

• is coarse: The coarse mask of the nodes.

• is padding: In contrast to jraph, we employ padding masks to keep track of padded
nodes. This allows us to freely permute the nodes while retaining information about
which nodes are padding nodes. This is essential during the multi-resolution call.

• target position: The target position xt+n+1.

• coarse score: The probability that the particle is a coarse node or a fine node.
This score is used to generate the merge and split assignments.

Layers We decided on building all layers from scratch, with the exception of the basic
multi-layer perceptron, which we leveraged from existing implementations such as Haiku
or Torchvision. By doing so, we ensured that our code base remains highly adaptable,
allowing for easy substitution of the standard MLP with more specialized versions, such
as steerable MLPs, as needed.
An essential aspect of our implementation strategy was to make our code base compatible
with both PyTorch and JAX. To accommodate any differences in function names or key-
word arguments between the two frameworks, we introduced wrapper functions wherever
needed, that bridge the gap, enabling smooth integration of equivalent functions in their
respective backends.
We incorporated the encoder-processor-decoder architecture introduced in [16].
The message passing layers in the processor are designed to operate in three distinct
modes:
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• Weight Sharing: In this mode, the layers share the same weight, reducing the
amount of parameters needed at the cost of possibly less expression power.

• IndependentWeights: Alternatively, layers can operate with independent weights,
providing more expressive power, albeit increasing the model’s parameter count.

• Mixed Mode: We also implemented a mixed mode, where specific layers have new
weights, and the processor performs multiple message passing steps. This approach
combines the advantages of weight sharing and independent weights, resulting in a
total of n · k message passing steps, where n is the number of layers with shared
weights, and k is the number of message passing steps performed by each layer with
new weights.

YAML configuration loader The YAML configuration loader plays an important role
in neural networks by providing a flexible and user-friendly way to specify and manage
various aspects of the network’s configuration. By using a configuration loader, we can
load the YAML file and adjust the network settings based on specific requirements or ex-
periments. This flexibility is particularly useful when conducting hyperparameter tuning
or comparing different network configurations. Configuration loader are implemented for
following modules: Dataloader, Wandb logger, EmbeddingGNN, DynammicsGNN.

3.3.3 Multi-Resolution Kit

The multi-resolution kit manages the merging and splitting of particles in the graph, along
with the computation of neighborhoods. Given the necessity for data-dependent control
flow in this context, the kit incorporates an external callback that operates independently
of JAX. Instead, we have predominantly implemented the callback using Numpy and
Scipy, offering a seamless transition to Numba in the future. By adopting Numba, we
could effortlessly vectorize the function, presenting a promising avenue for performance
optimization.
During the multi-resolution process, we leverage the positions that were initially used to
compute the coarse scores. These positions precisely correspond to the predicted positions
of the next time step before applying the merge and split function. This approach ensures
that subsequent operations are executed based on accurate, predicted positions, bolstering
the reliability and precision of our merging and splitting decisions.

External Callback The external callback generates the merge assignments, split as-
signments, and new edge connectivity while preserving the static output of the graph.
Ensuring static output necessitates maintaining a constant number of merges and splits.
Specifically, after splitting, the number of nodes becomes:

|V | ← |V | − 3 · |num merges|+ 3 · |num splits| (2)

when splitting and merging four nodes at once.
To accommodate a dynamic number of merges and splits, we employ padding. If there
aren’t enough merges or splits, we merge or split padding nodes instead. However, we
must be cautious about potential padding underflows, as the number of padding nodes is
limited. We track underflows and overflows in the state to ensure proper handling. To
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work in the JAX framework, we modify the merge and split assignments to maintain a
consistent output regardless of whether under or overflows occur.
Initially, we compute the split and merge assignments based on the coarse scores. Sub-
sequently, we calculate the merged positions, and finally, we determine the connectivity
using kd-trees with different cutoff radii, based on the mass, for the new positions.
The external callback enables dynamic adjustments without compromising the model’s
overall performance, enhancing the model’s capacity to handle diverse fluid dynamics
scenarios with precision and accuracy.

On-Device To preserve gradients and ensure seamless integration with the deep learn-
ing framework, we execute the actual merging and splitting operations directly on the
device within the model. Initially, we compute the split pattern, which has the potential
to be predicted from the latent features of the coarse-grained nodes. However, for now,
it is represented as a simple axis-aligned square.
With the the external callback outputs, we proceed to perform the splitting and merging
of particles on the device. This on-device execution ensures that gradients remain intact
throughout the model’s operations, maintaining consistency during both forward and
backward passes.
Additionally, the on-device function can be just-in-time (JIT) compiled, given that it is
not data dependent and exhibits predictable shape outputs.

3.4 Software Engineering

Unit Tests Ensuring the robustness and correctness of our implementation, we have
crafted unit tests for all layers. These tests rigorously assess the returned shapes, as well
as validate static shapes, ensuring that the code can be successfully JIT-compiled.
Moreover, we have constructed a comprehensive test case for the multi-resolution kit.
These tests not only validate shapes but also assess the correctness of the merge and split
actions, guaranteeing that the kit functions as intended. We also ensure that it can be
successfully JIT-compiled, in order to be able to be incorparated in our models.
To streamline the testing process, all unit tests are automatically triggered with each push
to the git repository. This automated testing system allows us to promptly identify and
address any issues, promoting continuous integration and reliable code development.

Documentation Ensuring clarity and accessibility for our codebase, we have created
extensive documentation. Our documentation is built using Sphinx, a powerful and pop-
ular documentation generation tool. It provides a structured, easily navigable format,
and can be viewed as an HTML file in any standard web browser.
Through our documentation, we aim to provide in-depth insights into our code architec-
ture, design choices, function descriptions, and usage guidelines.

3.4.1 Model

Pre-processing The pre-processing stage is responsible for transforming the fine-resolution
graph into a mixed-resolution graph, setting the foundation for subsequent model opera-
tions.
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Figure 7: Overview of the model architecture. The model pipeline consists of two main
steps: a pre-processing step and a simulation step. The blue boxes represent separate
files in the code base. Dark orange layers contain learnable parameters, while the lightly
shaded ones are pure functions, without any learnable parameters.

Firstly, additional padding is applied to the graph. While the graph is already padded,
the mixed-resolution process might require further padding to accommodate the merge
and splits accurately, preventing any potential underflows.
Subsequently, the pre-processing stage computes the coarse scores, which play a pivotal
role in the subsequent multi-resolution computations. These coarse scores are derived
based on the distance to the nearest interface. Each particle is assigned a binary classi-
fication in the form of a positive or negative coarse score, depending on whether it lies
within the coarse region or not. The coarse score is positive if the particle is within the
coarse region and negative otherwise, representing a binary classification for each particle.
Finally, to facilitate further processing and ensure that the coarse scores lie within the
(0, 1) interval, a sigmoid function is applied.

f(xi) =

{
1, if xi ∈ Coarse Region

−1, otherwise

csi = σ (f(xi) ·min{||xi − fj|| | fj ∈ Interfaces}) (3)

In future versions, we aim to learn the coarse scores directly. This approach is feasible
due to the multi-resolution kit’s ability to handle proper gradient flow through the coarse
scores, even though the splitting assignments are computed in the external callback.
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Featurizer The featurizer computes the initial latent vectors for both nodes and edges,
forming the foundation for subsequent computations within the model. For nodes, the
initial latent vector comprises two key components. Firstly, the flattened velocity history
of the particles is incorporated, capturing the dynamic movement patterns of each particle
over time. Secondly, a one-hot encoding of the particle type is included, indicating whether
the particle is coarse-grained or fine-grained. By leveraging this information, the model
can distinguish between different particle types, enabling more accurate and context-aware
predictions.
On the other hand, for edges, the initial latent vector is determined based on two factors:
the displacement and distance between the two connected nodes. This representation
captures the spatial relationship between nodes, providing crucial geometric information
that contributes to accurate edge computations.

Dynamics The dynamics module is the heart of our model, where the majority of
the actual computations occur. It processes the latent vectors from the featurizer and
performs all steps to predict the fluid dynamics behaviors.
The dynamics-GNN plays a crucial role by mapping the latent vectors from the featurizer
to a new latent representation. This mapping extracts essential features that effectively
capture the underlying dynamics of the fluid system, enabling the model to gain a deeper
understanding of the fluid behavior.
Next, the acceleration is computed using the acceleration-distribution MLP. The weights
of the MLP are frozen at this stage. The accelerations are then sampled from the resulting
distribution, and this information is doubly integrated to obtain the positions of the
current time step.
These positions are then used to compute the coarse scores for the subsequent multi-
resolution computation. Additionally, the same positions are used to compute the connec-
tivity in the multi-resolution function, ensuring accurate merging and splitting operations
based on the positional information before the merge and split operation.
Following the merging and splitting operations, the acceleration-distribution is recom-
puted using the acceleration-distribution MLP. This step is essential as we cannot merely
merge the acceleration distributions obtained earlier due to the non-linear nature of the
acceleration distribution MLP. Subsequently, we sample from the new distribution and
integrate twice to predict the velocities and positions, respectively.
Finally, we update the sequence, using the position and velocity history of the T most
recent time steps as input for the next simulation step.
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4 Refinements with Diffusion

This section deals with score-based refinement methods for long MD simulations and is
based on the reference paper [23], which we adapted to our particle framework.

Motivating Refinement Procedures In MD simulations, one often faces stability
issues along the simulated MD trajectories [23]. In particular, the predicted particle
positions may not be optimal or at worst even infeasible from a physics point of view.
One approach to dealing with this problem would be to ’correct’ the predicted particle
positions using refinement methods, which is also explored by the reference paper.

4.1 Literature Review

Score refinements The reference paper [23] addresses the stability problems in long
simulations by following a predict-then-refine procedure. A two-step scheme is applied,
where the Dynamics GNN is used to predict the forward step particle positions. Next,
the learned scores are applied to refine (’denoise’) the predicted particle positions. The
training of the score model follows the noise conditional score network (NSCN) framework
with denoising score matching [24]. Starting from the ground truth state, noise at different
scales is added to the particles. The score model is then trained to predict the added noise.

[25] derives a concept for the pre-training of molecular structure data for down-stream
representation tasks. By learning an associated force field, the model allows for refinement
steps resulting in close-to-equilibrium or lower-energy structures, hence ’relaxing’ the
structures. The resulting learning objective is equivalent to the objective applied in [23].

Diffusion models In [26], the authors aim to predict ligand-to-protein docking poses.
For this purpose they apply a diffusion generative model that generates a sample of candi-
date ligand poses. The proposed ligand-to-protein poses are then ranked by a confidence
model based on their RMSD2 score, reflecting the likelihood of a pose being feasible.

[27] introduces a learning framework based on diffusion probabilistic models that allows
both for (image) generation and denoising refinement steps. In stark contrast to score
refinements, the diffusion-based approach does not rely on learning the scores. Instead a
’reverse process’ is trained to reverse a diffusion that gradually adds noise to the data.
The learned denoising transition steps can then be applied to refine the current states.

Our ideas to potentially improve the framework in [23] are:

• define an energy function over the number of bead-collisions or the MSE of particle
distances and train towards low-energy particle positions (inspired by [25])

• pre-train a Score GNN on ’relaxed’ (equilibrium) particle positions (following [25])

• generate multiple candidate refinements and add a confidence model to assess the
likelihood that the refined particle positions are feasible (adapted from [26])

• replace the Score GNN by a diffusion model and combine diffusion-based refinement
steps with a confidence model to assess the predicted positions (see [26] and [27])

2The root-mean-square deviation (RMSD) is a measure of the average distance between atoms.
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4.2 Methodology

Please note that we did not implement any of the ideas for potential improvements over
the reference paper due to time limitations. In this section, we therefore cover the frame-
work of the reference paper. Note that we provide an educative minimal working example3.

Before introducing the methodology of the NSCN framework, we want to showcase how
the learned scores are applied to refine and denoise particle positions.

4.2.1 Score refinements: annealed Langevin dynamics

Suppose that p(x) ∈ Rn is the distribution of particle positions in equilibrium4. Then the
corresponding score-function is defined as

∇x log p(x) =
(

∂ log p(x)
∂x1

, . . . , ∂ log p(x)
∂xn

)T

,

where p(x) denotes the density5 and log p(x) is the log-density function.

Given the score function, one can apply a concept called ’Langevin dynamics’ to sample
from the distribution p(x). This is an iterative MCMC procedure that allows us to draw
a sample from p(x) by using only its score function ∇x log p(x).

Algorithm 3: Langevin dynamics

Input:

• learned scores: ∇x log p(x)

• parameters: # of iteration steps K, step size ε > 0

• starting point: x0 ∼ π (arbitrary prior distribution)

for i = 0, 1, . . . , K do

zi ∼ N (0, I)

xi+1 ← xi + ε∇x log p(x) |x=xi
+
√
2ε zi

end

Output:

• sample xK with approximate distribution p(x)

Under enough regularity, when ε ↓ 0 and K → ∞, the distribution p̂(xk) of the iterated
sample xK converges to p(x). This yields a theoretical basis and motivation for the score-
based refinement steps to be applied to the potentially erroneous particle positions [23].

3See git@github.com:CLongoTUM/pre-training-via-denoising.git.
4We refer to Appendix Pre-training via Denoising for further reading. In [25], the authors introduce

a physical distribution to describe the statistical behavior of physical systems in equilibrium.
5The data distribution and density are often both denoted interchangeably by p(x) (e.g. see [24]).

https://github.com/CLongoTUM/pre-training-via-denoising
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4.3 Score-matching with multiple noise perturbations

We refer to the appendix for a gentle introduction to score models and score match-
ing. Further, we make the remark that score matching has limitations when it comes to
estimating scores in low data density regions, due to the potential lack of sample data [24].

Noise perturbation. To overcome difficulties with low data density regions, so-called
noise conditional score networks apply noise perturbations at different scales, to ’fill’ low
sample data regions. We can define a set of different noise-scales by

S =
{
σ1, . . . , σL

∣∣∣ σ1

σ2

= . . . =
σL−1

σL

> 1 for i = 1, . . . , L− 1
}
.

For each noise-level σi ∈ S, we perturb the data x ∈ RD by adding Gaussian noise

x̃ = x+ σiεi, where εi ∼ N (0, 1).

The distribution of the perturbed data x̃ is given as

qσi
(x̃) =

∫
p(t)N (x̃ | t, σ2I) dt.

Training. Following [24], the NCSN sθ(x, σ) is trained by jointly estimating the scores
of all perturbed data distributions,

sθ(x, σi) ≈ ∇x log qσi
(x) ∀ i = 1, . . . , L.

The NCSN can be trained via denoising score matching.

Learning objective. The process of perturbing the input data with noise at scale σi

can be described as a diffusion process6 with transition probabilities

qσi
(x̃ | x) = N (x̃ | x, σ2I).

The scores are given by

∇x̃ log qσi
(x̃ | x) = ∇x̃

( 1

(2σiπ)n/2
−

n∑
j=1

(x̃j − xj)
2

2σ2
i

)
=

x̃− x

σ2
i

=
1

σi

εi

and hence, the model is trained to predict the added noise over the scales σ1, . . . , σL by
minimizing a function7 of residues of the form

||sθ(x, σi)−
x̃− x

σ2
i

|| = ||sθ(x, σi)−
1

σi

εi||.

Yet again we end up with a score-model that is trained to predict noise for denoising.
In the next section, we focus on the implementation of the diffusion framework in JAX.

6This diffusion-based view falls in line with [27]. We refer to the diffusion section.
7We refer to the reference paper [23] for the exact definition of the objective function.
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4.4 Implementation

The score-based refinement method[28] is constructed using the JAX and Haiku libraries
for efficient neural network operations. It involves iteratively refining the positions of par-
ticles using annealed Langevin dynamics. During each iteration, the model preprocesses a
score graph based on the current positions and history latent representation augmented as
uncertainty embeddings. The obtained scores are then used to adjust the positions, and
Langevin noise is added to explore the solution space effectively. This iterative process is
performed multiple times for different sigma values, allowing the model to progressively
improve the accuracy of its predictions.

4.4.1 Data Augmentation

To capture the temporal relationships among embeddings generated by a dynamic model,
we propose augmenting the learned embeddings in the representation space with an un-
certainty estimation technique[29]. We then apply masked mix-up to the augmented em-
beddings to further enhance the diversity of the data. To ensure more robust predictions,
we utilize contrastive learning to constrain both the original and augmented embeddings.

After obtaining the interaction embeddings from dynamic encoder, we characterize the
embeddings as uncertainty distributions, which are used to generate augmented embed-
dings. Specifically, denote a batch of interaction embeddings encoded by the dynamic
encoder as Z ∈ RB×D = (z1, ..., zB) , where B is the batch size and D is the embedding
size. zi ∈ R1×D represents the embeddings of i − th interaction. We first calculate the
embeddings mean and standard deviation of each event, which can be formulated as:

µ(zi) =
1

D

D∑
d=1

zdi , σ2(zi) =
1

D

D∑
d=1

(
zdi − µ(zdi )

)2
. (4)

Denote the statistics µ(Z) ∈ RB = (z1, ..., zB) and σ(Z) ∈ RB = (z1, ..., zB) as the
embedding mean and standard deviation of all events in the batch. The uncertainty
estimation of the embedding mean µ and standard deviation σ are calculated as:

Σ2
µ(Z) =

1

B

B∑
b=1

(µ(zb)− Eb[µ(zb)])
2 , Σ2

σ(Z) =
1

B

B∑
b=1

(σ(zb)− Eb[σ(zb)])
2 . (5)

Finally, the uncertainty embeddings Zun ∈ RB×D are generated as follows:

Zun = (σ(Z) + fϵσΣσ(Z))

(
Z − µ(Z)

σ(Z)

)
+ (µ(Z) + fϵµΣµ(Z)) (6)

where ϵµ and ϵσ both follow the standard Gaussian distribution, f is a hyper-parameter
to control the scope of uncertainty estimation. The uncertainty estimation based on the
training data observations can provide an appropriate and meaningful variation range
for each interaction’s embedding, which does not harm model training but can simulate
diverse and reasonable potential shifts.
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4.4.2 Score Refinement

The model structure consists of a score-based prediction with Dynamics GNN and refine-
ment approach with Score GNN. It begins with an initialization step, where parameters
and attributes are set up. A range of sigma values is created to be used for annealed
Langevin dynamics during the refinement process. A score GNN is instantiated to refine
the predicted positions.

Prediction. The prediction step takes input historic positions, particle types, bonds,
and weights. Preprocessing is performed to obtain a history graph representation. The
history graph is fed into a Dynamics GNN to predict the next time stamp positions. The
predicted positions are split into mean and standard deviation components. The stan-
dard deviation is adjusted using a non-linear activation function. If deterministic mode is
enabled, the mean is used as the prediction; otherwise, a sample is drawn from a normal
distribution defined by the mean and standard deviation. The predicted positions are
then decoded to obtain the current positions.

Refinement. During the refinement process, reverse diffusion using annealed Langevin
dynamics is applied to improve the predicted positions. The current positions are ini-
tialized with the decoded positions and undergo iterative updates. The score graph is
constructed using the current positions, history latent representation, and other input
parameters. Scores for position refinement are obtained from a score graph neural net-
work. Langevin noise is added to the current positions to simulate diffusion.

Training. The training step involves processing input sequences, next positions, particle
types, bonds, and other optional arguments. Preprocessing is performed to prepare the
data for training. The positions are augmented with noise to introduce diversity into
the training data. Target values for the score-based loss are calculated based on the
difference between the noisy next positions and the original next positions, normalized
by the sampled sigmas. The history graph and predicted mean and standard deviation
values are obtained using the Dynamics GNN. The standard deviation is adjusted using
a non-linear activation function. Target values for the accuracy loss are calculated based
on the inverse of the decoder post-processor. The score graph is constructed using the
noisy next positions, history latent representation, and other input parameters. Scores
for position refinement are obtained from a score graph neural network and rescaled by
the inverse of the sampled sigmas. The score loss is calculated as the mean squared error
between the scores and the target values. If a property prediction network is included,
property predictions are obtained and the property loss is calculated. The overall loss is
a combination of the accuracy loss, score loss, and property loss.

In summary, the model structure involves predicting initial positions using a Dynamics
GNN and then refining the positions using reverse diffusion with annealed Langevin dy-
namics. The model is trained with a combination of accuracy loss, score loss, and property
loss.
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5 Conclusions

This project aimed to explore the potential of equivariant graph neural networks in a
multi-resolution framework for particle-based fluid mechanics simulations.
The development of a machine learning pipeline from scratch, independent of any specific
deep learning framework, allows for flexibility and compatibility with various backends.
Incorporating E(3) equivariant inputs enables the model to learn and exploit rotational
and translational symmetries present in fluid dynamics, leading to more meaningful rep-
resentations. If full E(3) equivariance is needed, our architecture facilitates changing the
GNNs to SEGNNs by simply exchanging the MLPs with steerable MLPs. This is achieved
by changing a single config parameter.
Our multi-resolution component, capable of handling varying numbers of particles in the
temporal dimension while maintaining static shapes, empowers the model to process fluid
dynamics simulations with different levels of detail effectively. The specialized data struc-
tures tailored for fluid dynamics applications further optimize performance and integration
with the model. The development of the machine learning pipeline for particle-based fluid
mechanics simulations turned out to be a more intricate task than anticipated. The com-
plexity of the project grew, resulting in a substantial amount of code. In fact, we ended
up writing approximately 6,000 lines of code dedicated solely to the machine learning
pipeline, even after removing redundant or outdated code.
The extensive documentation of our code base, coupled with the Continuous Integration
and Continuous Deployment (CI/CD) pipeline, guaranteed maintainable and robust code.
Additionally, the inclusion of a classical multi-resolution SPH solver complements our
machine learning-based approach, providing a baseline for validation and benchmarking.

Looking Ahead our work opens up exciting opportunities for further exploration and
innovation in the field of fluid dynamics prediction with machine learning. Notably, we
have identified specific areas that hold great potential for enhancing the efficiency and
performance of our current implementation.
One significant area for improvement lies in optimizing the computation of the connectiv-
ity list transfer from the CPU to the GPU. Currently, this process represents one of the
most computationally expensive tasks in our code-base. Exploring and implementing new
neighborhood computation algorithms, such as the promising approach introduced in [30],
could yield substantial benefits. These algorithms should be adaptable to work within
the bounds of static shapes and without data-driven control flow, potentially being JAX
jit compilable, while mitigating the memory footprint issues associated with JAX-MD.
By computing the connectivity directly on the GPU, we could significantly improve the
overall efficiency and speed of our simulations.
Another avenue for enhancement lies in directly computing the coarse scores from the
latent information. Our code-base was designed with this in mind, making it well-suited
for this approach. By directly deriving the coarse scores from the latent vectors, we
can potentially adapt the multi-resolution approach to more difficult problems than the
Reverse-Poiseuille Flow.
Additionally, exploring the addition of steerable MLPs is a promising. This would prac-
tically change all of our GNNs to SEGNNs.
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Appendix

A Introducing score models

We follow [31] for the sake of introducing score models.

Given the sample data x1, . . . , xN
i.i.d.∼ p(x), the task is to fit a model to the data distri-

bution p(x) and to compute the scores.

An intuitive way of modeling the data distribution is via energy-based models.

A.1 Energy-based Models

For a parametric family of energy functions {Eθ : D → R, θ ∈ Θ}, we define a density by

pθ(x) =
e−Eθ(x)

Zθ

with total energy Zθ =

∫
D

e−Eθ(x) dx.

In this setup θ ∈ Θ is a learnable parameter which may be obtained by maximizing the
log-likelihood function ℓ(x) : Θ 7→ R, θ 7→∑N

k=1 log pθ(xk) of the sample x1, . . . , xN .

However in order to compute the pdf pθ(x), one is required to evaluate the corresponding
normalizing constant Zθ, which is intractable for general fθ(x). Thus, to make maximum
likelihood training feasible, one needs to either restrict the model to make Zθ tractable
or approximate the normalizing constant, which may be computationally exhaustive.

By introducing score-based models, we can sidestep intractable normalizing constants.

A.2 Score models and score matching

For θ ∈ Θ, we define a score model sθ by

sθ(x) = ∇x log pθ(x) = −∇xEθ(x)−∇x log Zθ︸ ︷︷ ︸
= 0

= −∇xEθ(x).

Hence, the score-based model is independent of Zθ.

In this setup θ ∈ Θ is a learnable parameter which may be obtained by minimizing the
Fisher divergence between the model and the data distribution, defined by

Ep[ ||∇x log p(x)− sθ(x)||22 ] =
∫

p(x) ||∇x log p(x)− sθ(x)||22 dx.

The Fisher divergence measures the ℓ2 distance between the score-based model and the
ground-truth data score ∇x log p(x).
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B Pre-Training via Denoising for molecular property prediction

[25] derives a concept for the pre-training of molecular structure data to generate useful
representations of 3D molecular structures for downstream prediction tasks. By learn-
ing an associated force field, the model allows for refinement steps resulting in close-to-
equilibrium or lower-energy structures.

Figure 8: Illustration. This figure was taken from [25] Fig. 1

Learning Objective Surprisingly, the corresponding learning objective is equivalent to
the denoising score matching objective in [24] that is also applied in the reference paper.

Relevance This allows for a different perspective view on the concept of ’denoising’ as
relaxing the particle system into an ’equilibrium state’. Following [25], one could argue
to either add a pre-training of the score model to our framework or to replace it at all
by a pre-trained version. However, a potential limitation for our use-case is that the pre-
training in [25] would require a dataset of ’equilibrium structures’. In particular, it is not
clear how an ’equilibrium’ would look like for particles, neither there is a dataset available.
A potential idea would be to define an energy function over the number of bead-collisions
or the MSE of particle distances and looking at low-energy ’particle positions’.

C Diffusion steps, twists, and turns for molecular dockin

In [26], the authors aim to predict ligand-to-protein docking poses. For this purpose they
apply a diffusion generative model that generates a sample of candidate ligand poses. The
proposed ligand-to-protein poses are then ranked by a confidence model based on their
RMSD8 score, reflecting the likelihood of a pose being feasible.

Relevance An idea that could be applied to our framework is the use of a confidence
model to assess the likelihood that the refined particle positions are feasible. This would
add a confidence step to our model that consists of generating n independent refined
structures and ranking them based on an appropriate metric like particle collisions or
distances, which could lead to an improvement over the reference paper.

8The root-mean-square deviation (RMSD) of atomic positions is a measure of the average distance
between the atoms of a molecular structure.
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D Diffusion models

In [27] diffusion probabilistic models are introduced. They are parameterized Markov
chains that model how data points transition through the latent space and can be written
as a mixture of the latent variables x1, . . . , xT ,

pθ(x0) =

∫
pθ(x0, x1, . . . , xT ) dx1 . . . dxT .

The task is to learn pθ by learning the joint distribution pθ(x0, x1, . . . , xT ).

Diffusion process A diffusion process is a Markov chain that gradually adds noise to
a starting point x0 [27]. In the context of diffusion models, one assumes that by moving
through the latent space, more and more Gaussian noise is added to x0.
Thus, by construction, a diffusion process q has Gaussian transition probabilities

q(xt | xt−1) = N (xt;
√
1− σt xt−1, σt I) for t = 1, . . . , T.

Learning the reversed process Assume that the transition of the data through the
latent space can be described by a diffusion process (’forward process’) q with Gaussian
transition probabilities. By the Markov property, learning the so-called ’reverse process’
pθ(x0, x1, . . . , xT ) can be simplified to learning the transition probabilities pθ(xt−1 | xt),

pθ(x0, x1, . . . , xT ) = p(xT )
T∏
t=1

pθ(xt−1 | xt), with

p(xT ) = N (xT ; 0, I) and pθ(xt−1 | xt) = N (xt−1;µθ(xt, t); Σθ(xt, t)).

x0 . . . xt−1 xt . . . xT

q(xt | xt−1)

pθ(xt−1 | xt)pθ(x0 | x1)

q(x1 | x0) q(xT | xT−1)

pθ(xT−1 | xT )

Figure 9: Illustration of the diffusion process and reverse process

It can be shown that the training objective is equivalent to the NCSN objective [24].

Relevance There is a fundamental difference between the previous score-based frame-
works and a diffusion model. While the previous methods learn the scores and apply
score-based refinements, the diffusion framework yields a generative model (the learned
’reverse process’ pθ). In particular, using the reverse process and xT ∼ p(xT ), one can
directly generate a sample x0 ∼ pθ(x0). It is also possible to include small refinement
steps by iteratively applying the transition probabilities to a current state.

An improvement of the reference paper, could be replacing the score-based refinement
steps by applying transition steps to sample a relaxed particle position. However, this
could potentially be error-prone and one should consider connecting this with a confidence
model as discussed in the molecular docking framework [26].
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E Refinement Algorithm

Algorithm 4: Refinement Step

for i← 1 to L do
for j ← 1 to K do

Score Graph Preprocessing:

Construct score graph
Score GNN:

Obtain scores for position refinement: scores = ScoreGNN(score graph)
Add Langevin Noise

end

end

F Introduction to basics of SPH

In SPH, a kernel function weights the contributions of particles in position xj according
to their distance to the particle in concern at position xi as follows:

Wij = W

( ||xi − xj||
h

)
= W (R). (7)

For our SPH solver, we have implemented the Quintic Spline kernel function defined as
follows:

Wij = αd


(3−R)5 − 6(2−R)5 + 15(1−R)5 0 ≤ R < 1

(3−R)5 − 6(2−R)5 1 ≤ R < 2

(3−R)5 2 ≤ R < 3

0 R ≥ 3.

(8)

Here R =
||xi−xj ||

h
, h is the cut-off radius of the kernel and αd assumes the value 7/478πh2

for 2D simulation scenarios.
Any field quantity Ai associated with a particle positioned at xi, is approximated as:

Ai =
∑
j

VjAjWij =
∑
j

mj

ρj
AjWij. (9)

where Vj,mj,ρj are the volume, mass and density of the jth neighbor of particle i respec-
tively.
The incompressible Navier-Stokes essentially consists of the continuity and momentum
equation stemming from conservation of mass and momentum respectively. For the SPH
algorithm, we discretize these equations along with an equation of state to close the system
of equations.
The density of particle i is determined from the continuity equation as follows:
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ρi =
∑
j

mjWij. (10)

The key difference in terms of equations for MR-SPH is the density update. The update
for density for our solver is given as follows:

ρi =

∑
j mjWij∑
j VjWij

. (11)

The acceleration of the particle i is determined from the momentum equation as follows:

ai =
dvi

dt
=

1

mi

∑
j

(V 2
i + V 2

j )

[
−p̃ij

∂W

∂xij

eij + η̃ij
vij

xij

∂W

∂xij

]
+ gi.

with p̃ij =
ρjpi + ρipj
ρi + ρj

, η̃ij =
2ηiηj
ηi + ηj

.

(12)

Here vij = vi − vj is the relative velocity of particles i and j and xij = xi − xj is the
relative distance between interacting particles.
The Equation of State which relates the pressure and density is given as follows:

p = p0

[(
ρ

ρ0

)γ

− 1

]
+ χ. (13)

where p0, ρ0, χ are the reference pressure, reference density and background pressure.
The exponent γ is usually chosen as 7 in the literature to limit the density variation to 1
%.
Time integration using a second order explicit predictor-corrector scheme is shown in
Equations 14, 15 and 16 to determine the velocity vi and position xi at time t+∆t.
In the prediction step, the intermediate velocity vi and xi at the intermediate step t+ ∆t

2

are predicted as follows:{
vi

(
t+ ∆t

2

)
= vi(t) +

∆t
2
ai(t).

xi

(
t+ ∆t

2

)
= xi(t) +

∆t
2
vi(t).

(14)

The corresponding density and pressure at this intermediate time step is obtained using
Equations 10 and 13 respectively. Using this intermediate information, the acceleration
is evaluated at this intermediate time-step using Equation 12 which is used for correction
as follows:{

vi

(
t+ ∆t

2

)
= vi(t) +

∆t
2
ai

(
t+ ∆t

2

)
.

xi

(
t+ ∆t

2

)
= xi(t) +

∆t
2
vi

(
t+ ∆t

2

)
.

(15)
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The final particle position and velocity at t+∆t is obtained as:{
vi (t+∆t) = 2vi

(
t+ ∆t

2

)
− vi(t).

xi (t+∆t) = 2xi

(
t+ ∆t

2

)
− xi(t).

(16)

As far as the step size ∆t is concerned, it is constrained by the Courant − Friedrichs −
Lewy (CFL) condition given by:

∆t ≤ min

(
0.25

h

c
, 0.25 min

(
h

ai

)
, 0.125

h2

ν

)
. (17)

here c is the speed of sound and ν is the kinematic viscosity.
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