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Abstract

The study of watermarks holds significant importance for historical humanities. Water-
marks offer valuable insights into the origins and production of paper, aiding in identifying
papermakers, mills, and periods when a specific piece of paper was made. This informa-
tion plays a crucial role in dating and verifying historical documents. By identifying
watermarks in various documents, one can establish connections between manuscripts,
trace paper sources, and track trade routes and distribution networks. However, the
identification of such watermarks and comparison is currently a time-consuming manual
process.
This report presents a novel approach to automatically finding similar watermarks within
the database of the German Museum of Books and Writing and the German National
Library (DNB) based on their digitized collection of historical papers, watermarks, and
traced watermarks. As the DNB continuously adds new watermarks to the database, we
aimed for an approach independent of the current digitization status and adaptive to new
watermarks. Furthermore, as the watermarks are loosely labeled, the network needed to
be independent of input-output pairs. In our approach, we use the image dataset provided
by the DNB to create an unpaired dataset of watermarks and watermark sketches. The
latter are generated by preprocessing watermark tracings. Using this dataset, we first
preprocess the watermarks using different image processing techniques and then we train
a CycleGAN neural network that can generate a sketch of a watermark present in a scan
of a historical paper. With this model we generate sketches for all watermarks from the
dataset and combine them with the sketches produced by preprocessing tracings. As
a next step, we use a pre-trained ResNet18 neural network to extract a feature vector
for each sketch. Finally, we use the Spotify Annoy algorithm, which enables an efficient
approximate nearest neighbor search to compare a generated sketch for a new watermark
with our entire database.
As a result, our full pipeline allows the user to input a watermark or a tracing thereof
and get similar watermarks from the existing database. Within 25 nearest neighbors,
we achieve an accuracy of more then 50%, and within 50 nearest neighbors, we achieve
an accuracy of over 68% when comparing a new watermark to a database of over 6600
digitized watermarks and traced watermarks. The database can then be easily connected
to the metadata provided by the DNB to get more information about each watermark.
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1 Introduction

The history of paper in Europe dates back to the 12th century when paper making tech-
niques were introduced to the region from China through the Islamic world. Before that,
the primary writing materials used in Europe were parchment and vellum made from an-
imal hides. The first European paper mills were established in Spain and Italy, followed
by other European countries such as France and Germany in the 13th century. This early
paper was made by hand from rags and linen. The process of paper production stayed
more or less the same until the 19th century, when the invention of mechanical pulping
techniques (by Friedrich Gottlob Keller in 1843) allowed the production of paper from
wood fibers. [1] [2] [3] [4]

Figure 1: Wooden frame from the
German Museum of Books and
Writing used to create paper

The process of making paper from rags involved
several steps. Images that describe selected steps
can be seen in Figure A.1. It typically began with
the collection of rags, usually linen or cotton, which
were first sorted and cleaned, see Figure A.1a. The
sorted rags were cut into smaller pieces and beaten
to break them down into tiny fibers, see Figure A.1b.
These fibers were subsequently soaked in water to
create a pulp, Figure A.1c. The pulp was trans-
ferred to a giant vat of water, stirred, and agitated
to form an even suspension. A mold and deckle,
frames with a wire mesh bottom, were used to scoop
up the pulp from the vat. The mold was shaken to
allow the water to drain through the mesh, leav-
ing a layer of wet fibers on top. This layer was
transferred onto a felt or cloth, and another layer
of felt was placed on top. Pressure was applied to
the stacked layers to remove excess water and com-
press the fibers. The whole skimming and pressing process of the paper can be seen in
Figure A.1d. Afterwards, the sheets were dried by hanging or by pressing them between
weighted boards, see Figure A.1e. Once dry, the paper was sized with animal glue or
burnished to achieve a smoother surface. This part of the process was called glazing and
can bee seen in Figure A.1f. Please note that the paper manufacturing process described
here is simplified and illustrative, and it should not be considered the only method. Over
the course of the more than 500 years between 1300 and 1800 A.D., the process of paper-
making evolved significantly due to technical innovations, such as the introduction of the
Hollander beater or the glazing hammer. [1] [5] [6]
The frames used to drain the water from the pulp were often embroidered with a metal
wire that formed some design, pattern or motif, often images like coats of arms, eagles,
or names. Figure 1 shows such a wooden frame belonging to the collection of the German
Museum of Books and Writing in Leipzig.
The wire would leave a mark with slightly different thickness than the surrounding area,
creating a thinner paper section. This difference in thickness resulted in a translucent
area, which served as the watermark on the finished sheet of paper. When held up to the
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light, the watermark would become visible, revealing the motif. Most paper producers
used watermarks as identification. Paper manufacturers wanted potential customers to
recognizes their paper, with high-quality paper being a source of prestige and incredibly
expensive. Thus, colloquially speaking, watermarks served as early brand logos. Figure 2
shows examples of the different designs frequently used for watermarks. Watermarks were
also used for other reasons, for example to describe properties of the paper such as size.
[5] [6] [7] [8] [9] More information on the history of paper can be found in [1] by Hunter,
a classical work in the field.

(a) Coat of arms (b) Mammal (c) Eagle

(d) Name (e) Initials (f) Small design

Figure 2: Tracings of common motifs for watermarks

In the previous paragraphs, we summarized the history of paper and explained how and
why the paper was watermarked. Now we explain why the study of historical watermarks
is of great interest to modern-day historians. Historians mainly use watermarks to date
documents and identify their origin. Watermark designs were linked to individual paper
mills, and the designs evolved over time. Additionally, the frames used to create the
watermarks were built by hand. Therefore, no two frames are identical, even if they have
the same motif. Thus, identical watermarks on two different pieces of paper indicate the
use of the same wooden frame in the making of both papers. Since each handmade frame
was only in use for a limited time, we know that papers containing identical watermarks
were produced around the same time. Even papers containing very similar watermarks
were likely produced around the same time. By examining the watermark design and its
location on the paper and comparing it with known examples, historians can identify the
papermaker. Furthermore, historians can date when the paper was produced if they can
cross-reference the watermark on the paper of interest with other documents containing
the same watermark that can be accurately dated, e.g., stamped government documents,
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letters, or manuscripts. As paper was valuable, and usually used soon after being pro-
duced, we can conclude the time when document was written from the time the paper
was produced. This analysis has been used by historians to establish connections between
manuscripts, to track trade routes, and to understand paper distribution networks. For
example, watermark analysis has been used in art history to authenticate works, to es-
tablish a timeline of the artists works or to determine the sources of materials. [10] [8] [7]
For the reasons mentioned above, historians and museums have collected watermarks for
over a century. The watermarks were usually collected by holding the watermarks against
a light source and tracing the outline of the watermark on a white piece of paper. Books
containing entire collections of these tracings have been published for more than 100 years.
[11] [12] Examples of watermarks and tracings can be seen in Figure 3.

(a) Example water-
mark 1

(b) Example water-
mark 2

(c) Example water-
mark tracing 1

(d) Example water-
mark tracing 2

Figure 3: Images of watermarks and tracings from DNB dataset

With the advent of the internet and high-quality digital photography, it has become pos-
sible to efficiently provide these collections online. Creating large online collections of
watermarks helps researchers as it allows them to easily and affordably access a vast
amount of watermarks from anywhere in the world.
In fact, many collections of watermarks, such as the Briquet [13] and Piccard [14] collec-
tions, have been digitized and made available online. Collections have also been pooled
to give researchers a central point of reference rather than searching through dozens of
different online archives. For example, the Bernstein project, run by the Austria Academy
of Science, contains images over 260,000 (February 2021) of watermarks and tracings from
49 collections and 20 states. [15] [16]
It is not easy to work with these databases. For example, the classification used in the
Bernstein projects database contains 13 groups and more than 50 subgroups. The classifi-
cation of watermarks is based on a semantical system based on symbolism. Understanding
this symbolism requires a great deal of training and experience. Using these data bases
effectively is difficult for non-experts. [17]
Even though hundreds of thousands of images of watermarks are available online, it re-
mains challenging for non-watermark experts even among historians to find a match. As
a result, the process of locating and identifying watermarks still requires a lot time and
resources, which is hindering efficient research in this area. For example, the partners of
this project, the German Museum of Books and Writing and the German National Li-
brary (DNB), pose a large collection of historical paper and watermarks. At the moment
the museum and DNB get many requests from researchers to identify specific watermarks
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by e-mail. This work is currently done manually by experts from the German National
Library in Leipzig, who look up specific watermarks in large magazines. This work is very
time consuming and expensive as it requires a great level of expertise. Automating the
watermark identification process can greatly boost researchers’ efficiency, improve online
database accessibility, and empower historians to leverage historical watermarks in their
research. Additionally, it opens up opportunities for hobbyists to engage in watermark
analysis and search for matches. [18].

Efforts to automate the classification and reverse image search of historic watermarks have
emerged as a response to the growing need for efficient and scalable methods in watermark
analysis. Researchers and organizations have explored the application of machine learning
and computer vision techniques to automate the identification and classification of water-
marks. We will discuss the existing approaches and literature in subsection 2.1. However,
the problem of automatic watermark detection has not been fully solved yet. This is
because image recognition for watermarks is a particularly hard problem as watermarks
by nature have properties that make them bad targets for automated image recognition.
In particular, watermarks strongly vary in size and generally display very different motifs.
We already saw typical watermark designs in Figure 2. At the same time, there exist many
watermarks with very similar motifs, which makes finding an exact matching watermark
difficult, as many images might be almost identical to a query image. An example of 5
watermarks with basically the same motif can be seen in Figure 5. Figure A.2 shows 20
similar watermarks. Furthermore, watermarks are often poorly preserved. Figure 4 shows
different types of decay commonly found on watermarks.

(a) Cut of watermark (b) Black bars on paper (c) Writing on watermark

(d) Faded watermark (e) Black dots on watermark (f) Wholes in paper

Figure 4: Examples for typical degenrations of watermarks

This project aims to add to the existing research field of automated watermark detection
described in subsection 2.1 by designing and building a working system for automated
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(a) (b) (c) (d) (e)

Figure 5: Five different watermarks with almost identical motifs

reverse image search of historical watermarks and tracings.
Our analysis is based on a dataset provided by DNB. Currently, DNB is digitizing its
collection, having already created over 10,000 photos of watermarks and tracings. We
describe our dataset and data annotation process in subsection 3.1.
Our approach differs from most existing literature, as we do not directly compare wa-
termarks to each other or to tracings. Instead, our approach has an intermediate step,
in which we produce an artificial sketch for each watermark. The sketches are made to
roughly resemble the tracings, which make up a significant portion of our dataset. Trac-
ings are easier to analyze due to their higher contrast and white background. Moreover,
tracings exhibit less erosion, are less noisy, and encounter fewer artificial obstructions,
such as writing. However, considering that tracings are also made on different pieces of
paper and photographed under different conditions and may contain some annotations,
we still had to preprocess the tracings to create a desired sketch format - a binary black
and white image with a minimum amount of other annotations and noise. We describe
our entire approach in detail in section 3 and section 4.
In subsection 3.1, we describe our dataset, the data acquisition, and our manual data
annotation. We use different preprocessing pipelines depending on metadata we collect
manually in subsection 3.1. Our image preprocessing is described in sections subsec-
tion 3.2 and subsection 3.3. We use various image-processing tools to denoise our images
and reduce the impact of degradations. Finally, in subsection 4.3 we do a nearest neighbor
search to find the closest match among all sketches in our dataset.
Before we go into the details of our approach in section 3 and section 4, we first examine
the relevant existing research in section 2. In subsection 2.1, we compare our pipeline
and approach to others in the watermark recognition field. In subsection 2.2, we describe
Generative Adversarial Networks, their subtypes and applications in image translation.

To sum up, the ultimate goal of this project is to design and to build an automated reverse
image search system, where a user inputs a photo of a watermark and gets the closest
match identified among watermarks in a database. Such a system will make identifying
watermarks faster and cheaper. Furthermore, it will make working with historical water-
marks more accessible for non-experts. Over the course of this project1 we build such a
system for the German Museum of Books and Writing and the German National Library
based on their immense collection of historical papers and watermarks.

1Code: https://github.com/EvgheniiBeriozchin/watermark-detection.git
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2 Related Work

2.1 Watermark Recognition

Watermarks on historical papers have been collected and studied for a long time. Books
containing entire collections have been published as far back as 100 years ago [11] [12]
[19] [20]. For almost as long historians have used watermarks to date works of important
artists such as Shakespeare or Rembrandt [21] [22] [23].

In the 1990s and 2000s, computer based approaches for the analysis of historical doc-
uments and watermarks have become used and studied. These approaches were built
using classical image processing and computer vision. However, full reverse image search
- the goal of this project - was not usually attempted. Only [24] contains such a feature.
However, the approaches from this time were successfully used to extract watermarks
from images and increase the visibility of watermarks. [25] [26] [27] [28] [29] [30] The
classical approach that comes closest to ours is [24]. Rauber et. al implement a reverse
image search based on computing a circular histogram of the binarized tracing around its
centre of gravity. However, the paper only deals with high quality tracings. Therefore,
the problem they solve is not comparable to ours, since we implement a reverse image
search for watermarks and watermarks and tracings have very different properties.
In his doctoral thesis Hiary introduced two different approaches to localize watermarks, to
enhance the quality and to extract a binarized graphical representation of the watermark
from the original scan. The first approach combines image processing operations and
the second approach uses a version of the back-lighting effect to find the location of the
watermark. [29] Our own watermark preprocessing is inspired by Hiary’s first approach
and will be discussed in subsection 3.2.
Other approaches for computer aided recognition of watermarks have also appeared in the
last couple of years. For example, [31] and [32] use decision trees based on user feedback to
identify watermarks in Rembrandt etchings. This approach is highly accurate but requires
detailed manual user inputs for each query image and a labeled dataset. For reference,
the preparations required for the dataset here are more complex and take considerably
more time and effort than the annotations in our dataset described in subsection 3.1. The
approach is thus not scalable. It is however relatively easy to use for non-experts. In [33],
user input is used to calculate the distances and ratios between watermarks and chain
line intervals to accurately determine watermarks. This approach also suffers from similar
issues as the decision tree approaches in [31] and [32].

With the popularization of deep learning for image recognition in the last 10 years, a
whole new tool box for image recognition has been opened to researchers. These new
methods have been used to compare and find watermarks in an automated way.
In [34] D. Picard, T. Henn and G. Dietz propose a dictionary learning approach for the
watermark reverse image search problem. They learn the dictionary from a set of images
based on a reconstruction criterion, with additional constraints. Afterwards they use a
bag of words type approach to aggregate the local features into a single vector which rep-
resents the entire watermark. Their dataset consists of 658 tracings and the first relevant
watermark has an average rank of 30/657. The accuracy is already useful for practition-
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ers, as they typically only need to investigate the 30 closest watermarks to their query
watermark. Looking up 30 watermarks is manageable and can be done by hand.
Pondenkandath et al. introduced a classification and similarity matching task using the
ResNet18 convolution neural network (CNN) in [35]. They performed their tasks on
the WZIS watermark database containing 106,000 images and 96,000 tracings from the
dataset [14] compiled by Gerhard Piccard. This dataset contains almost entirely high
quality tracings, and therefore does not compare to ours. Pondenkandath et al. com-
pared a randomly initialized model to a model initialized with weights from the ImageNet
dataset [36] and with the weights from the classification task. We also used the ResNet18
model for image comparison. However, we used a pre-trained model for feature extraction,
not classification as that would require retraining the model whenever new watermarks
are digitized and added to the dataset.
Shen et al. [37] also use a CNN based approach. They use cell phone photographs to
retrieve an exact match from the Briquet catalog [13] of 16,753 tracings. They distinguish
between global and local features. First, they calculate a global similarity score and then
improve the matching by employing spatial information of the watermark and locally
fine-tune features. This way, they manage to outperform classical CNN approaches and
manage to recover the exact matching tracing with a 55 % accuracy where each tracing
corresponds to an individual class of their CNN. Finding the exact image from a simple
cell phone photo of a watermark, not a tracing, with more than 50 % accuracy is a very
promising result given the bad properties of watermarks discussed in section 1.
Bounou et al. [38] build on the approach of Shen in [37]. In particular, they build a web
application for automatic watermark recognition based on an input image of the water-
mark by a user. In order to speed up the similarity matching based lookup (one lookup
using Shen’s full model takes 27 minutes for the full database), they use a fast yet less
accurate approach. As of July 2023, the Web application can no longer be found online.

Our approach contributes to the existing literature by bridging the divide between wa-
termarks and tracings. Our model allows the search of tracings and watermarks from a
dataset containing both tracings and watermarks. This expands the scope of previous
research and provides a comprehensive new approach to the image recognition problem
for historic watermarks. By generating sketches from watermarks, we establish a novel
connection between tracings and watermarks, allowing us to leverage extensive existing
datasets that contain many tracings. Furthermore, our approach eliminates the need for
retraining the model when new data is digitized and added to the DNB database. This
ensures efficient and continuous integration of new information without disrupting the
system’s performance.

2.2 Generative Adversarial Networks (GANs)

Generative Adversarial Networks were first introduced by Goodfellow et al. [39] in order to
enable generative modeling of various objects. Usually, such models consist of a generator
network and discriminator network. Given a dataset of objects, the generator network
learns to generate realistic objects, whereas the discriminator learns to detect fake objects.
As in our task objects are images, we will focus on image GANs.
To extend the usability of such models, Mirza et al. [40] introduced conditional GANs
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(cGANs), which enable inputs - or conditions - to the generator. Thus, a cGAN does not
simply generate realistic images which are similar to the training dataset, but takes some
conditions as input and generates realistic images in accordance to the original dataset,
as well as to the the input conditions. The inputs/conditions may vary, but for our use
case image inputs are relevant.
Having images as inputs means that a cGAN can be perceived as an image translation
model. The input image is transformed into an output image by the generator and the
’correctness’ of the transformation is controlled by the discriminator. This idea was first
introduced in the pix2pix model by Isola et al [41].
cGANs as image translation models were successfully used for various tasks like image
colorization, sketch-to-image transformation [41], historical map stylization [42] or face
(de)aging [43]. We tested a pre-trained image-to-sketch model on our watermarks [44].
However, it did not produce usable results, so we discarded this idea.
cGAN-based image translation models can be divided into 2 important subcategories
based on the input dataset. The given inputs can be either paired or unpaired.
A paired dataset means that for each image of class A (input), there exists a corresponding
image of class B (output) in the training dataset. The previously mentioned pix2pix (Isola
et al. [41]) is a model for such datasets. A further such model is pix2pixHD by Wang et
al [45], which is adapted for translation of high resolution images.
In constrast, an unpaired dataset does not contain a 1-to-1 correspondence between the
images of the two classes, rather it only contains a set of images of each class. This
makes the task of translation considerably more difficult, but with a large dataset which
is representative of the original classes such a model is a viable option. Such a model
was first introduced as CycleGAN in Zhu et al. [46]. Using cycle-consistent adversarial
networks, they learned to transform horses into zebras, real pictures into Monet paintings
etc. Improvements to this model architecture were later introduced in various works. For
example, Contrastive Unpaired Translation (CUT) by Park et al. [47] made training faster
and more memory-efficient. Augmented CycleGAN [48] enabled learning many-to-many
mappings between classes. Shen et al. [49] improved the overall performance by adjusting
the loss function and data augmentation. As these models were not directly applicable
to our use case, and CUT did not significantly affect runtime on our 6000 image dataset
(see next chapters), we focused on the direct application of CycleGAN.
Unpaired cGANs were successfully used for various tasks such as CBCT (tomography)
image correction [50], face generation [51], molecular optimization [52] or seismic data
denoising [53].
Note that many of these models, in particular pix2pix and CycleGAN simultaneously
learn to translate images of class A into class B and from class B into class A. Thus,
works in this area usually evaluate both directions of translation. As the translation of
tracings into watermarks is not a focus of this work, we will not evaluate this side of the
model, although the model inherently learns to perform this task as well.
In our case, given the loose structure of the original data - there is no explicit mapping
between classes of watermarks and tracings - it is problematic to obtain a paired dataset.
Thus, cGANs for unpaired datasets are the primary method used in this work. We further
used a paired cGAN - pix2pix - in order to preprocess one class of our images, the tracings.
This procedure as well as the way we acquired and preprocessed data will be explained
in Chapter 3.
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3 Data Exploration and Preprocessing

3.1 Data Acquisition and Cleaning

The data for this project is provided by DNB. It is based largely on the physical collection
of watermarks gathered by Karl Theodor Weiss in the first half of the 20th century. The
collection consits mainly of watermarks and tracings but also some early copies. These
tracings were the most common way to document and archive watermarks for a long
time. Books consisting of these have been published for decades. The physical collec-
tion is stored in an archive on sliding shelves (magazines) at the DNB headquarters in
Leipzig. The entire DNB watermark and historical document collection contains more
than 400,000 pieces. [18]
DNB began to digitize its archive in 2013. They started with watermarks from the Ger-
man states of Saxony and Thuringia. To date, more than 10,000 images have already
been digitized. The images were digitized using a special setup, see Figure A.3. DNB
takes the images using a DMK 72AUC02, a monochrome USB 2.0 Camera with 5 mega
pixels. They furthermore, use backlighting and an infrared filter to enhance the visibility
of the watermarks and reduce the visibility of writing on the watermark. Metadata like
an image class or whether the image contains a watermark or tracing is not accessibly
provided by DNB.
The direct use of raw images for image comparison poses several challenges. Examples
why automatic watermark detection is difficult can be seen in Figure A.6 and Figure 5.
The watermarks, being only a small part of the actual image, introduce difficulties such
as variations in size and location within the image. Some images may lack a watermark
entirely. Additionally, certain images contain additional annotations, and the background
color, particularly for watermarks, can vary significantly. In some cases, multiple water-
marks may be present in an image. Examples of watermarks with varying motifs, sizes
and background are shown in Figure 2. Furthermore, about half of our dataset consists
of tracings, as tracing the watermark by hand was historically the most common way to
collect watermarks. However, the watermarks and tracings have very different proper-
ties, recall Figure 3. Thus, comparing images from the two classes directly is very hard.
Therefore, to enable such comparisons, we separately generate artificial sketches from
both watermarks and tracings by first preprocessing the data and then feeding it into a
neural network. In order to do that we need to know which images contain watermarks
and which contain tracings. As mentioned above, this metadata was not available to us.
We collected this metadata by hand using the open source labeling tool LabelStudio [54].
An example of our labeling in LabelStudio is shown in Figure A.4.
We use data annotation and preprocessing to overcome the aforementioned challenges in
our data. To address some of these issues, we manually amend the dataset by incorpo-
rating bounding boxes around the watermarks and tracings. This approach effectively
resolves problems associated with multiple watermarks, varying locations, empty papers,
and the small size of watermarks within the image. It also mitigates the impact of
background variations. Furthermore, we gathered metadata such as whether an image
represents a watermark, tracing, contains writing, or is empty. In total, we annotated
6100 images containing 3941 watermarks and 2661 tracings.
However, since watermarks and tracings have such distinct properties, using the same
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image preprocessing to extract the contour of the motif is not feasible. Thus, we use
different preprocessing for watermarks and tracings. Both preprocessing approaches are
described in detail in subsection 3.2 and subsection 3.3.

3.2 Preprocessing of Watermarks

In this subsection we will introduce processing steps for images of watermarks. The
watermarks provided by DNB vary in shape and quality. Some watermarks have written
text on top, some watermarks have a lighter or darker background. An example may be
found in Figure 6. As the pipeline should be applicable to all watermarks, our requirement
is to create a robust and flexible image processing architecture. The overall goal of
preprocessing for watermarks is to enhance their visibility and, therefore, improve the
quality of the CycleGAN for sketch generation.

(a) Light watermark. (b) Dark watermark with text.

Figure 6: Example on different types of available watermarks in the data base.

As described in section 2, Hiary also analysed methods to clean photographs of watermarks
and make the watermark more visible [29]. Some of the same morphological transforma-
tions Hiary used in his work are also present in our procedure. Hiary first stretches the
image and then uses a combination of erosion and dilation to reduce the writing on the
watermarks. In a next step he applies top-hat transformation to remove the non-uniform
background. However, the morphological transformations we are using are applied in a
different order and using different parameters. Moreover, we use more steps for our pre-
processing.
We use different methods to stretch the contrast of the images, remove noisy foreground
and background, and combine different processing steps to get an optimal output. Fig-
ure 7 gives an overview of the applied steps in preprocessing. Figure 8 shows an example
of the different preprocessing steps applied to a watermark. All steps inspired by Hiary
are marked. In the following, all steps are described in detail.
Stretch Contrast To enhance the visibility of the watermark in the background of the
image, we stretch the contrast using

imagestreched = 255 · img − min (img)

max (img) − min (img)
(1)

where img is a grey-scaled image. An example is shown in Figure 8b.
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Figure 7: Flow Chart of the preprocessing steps for watermarks. The single steps are
described in detail in subsection 3.2

Threshold image to remove dark parts The watermark is the lightest part of the
image. To remove the darkest parts, especially the ink on a watermark, a binary mask
of the watermark is produced. This mask is generated using inverse binary thresholding
with a threshold value of s = 70 and a max binary value maxbin = 255. The pixel intensity
below the threshold is set to 255 (black) and the values above to 0 (white). The white
parts of the mask then indicate which parts to in-paint in a next step using an algorithm
based on Navier-Stokes equations [55]. An example is shown in Figure 8c.
Remove nonuniform background In order to remove noisy background and make the
image more uniform, the black top-hat transformed image is subtracted from the white
top-hat transformed image. The white top-hat transformation of a gray-scale image A
and its structuring element B is described by

TopHatwhite = A− (A ◦B), (2)

where ◦ is morphological opening A ◦ B = (A ⊖ B) ⊕ B [56]. The white top-hat trans-
formation returns the parts of an image, that are brighter than their surrounding and
smaller than the structural element. Here, we use a filter size of 6. The black top-hat
transformation of the image is described by

TopHatblack = A− (A •B), (3)

where • is morphological closing A • B = (A ⊕ B) ⊖ B [56]. The black top-hat trans-
formation returns the parts of the image, that are darker than their surrounding and
smaller than the structural element. Here, we use a filter size of 20. Hiary also uses this
transformation in high work [29]. An example is shown in Figure 8d.
Brighten image As the image now contains a lot of dark gray and the difference between
the background and the watermark is weak, the next step aims to increase the contrast
of the image again and brighten it. Therefore, the image is scaled by the value α = 5 and
the value β = 10 is added to the scaled image. An example is shown in Figure 8e.
Remove dark foreground The darkest parts of the image can be partly removed by us-
ing the dilated image and getting the eroded image. Then the absolute difference between
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the eroded image and the image from the brighten step is calculated. This produces a
negative of the watermark. Then, the result is inverted again using bitwise inversion. As
parameters, a structuring element size of three and six iterations are chosen. In dilation,
the brighter areas get bigger, while the dark pars get smaller. Erosion operates on the
opposite. The non-uniform background can then be improved by using morphological
opening. Hiary again uses erosion and dilation in his work [29]. An example is shown in
Figure 8f.
Remove nonuniform image parts The next step aims to remove non-uniform image
parts. Therefore, morphological closing with a structuring element size of 20 is used.
Closing of an image is used to “close“ small lighter holes and irritations and unify the
dark background. Then the image from the previous step is subtracted to increase the
contrast of the watermark. An example is shown in Figure 8g.
Weighted image As different preprocessing steps have different advantages for different
images, the image with the high contrast from the brightening step is added to the final
image from the last processing step to get the final output for the watermark preprocess-
ing. This avoids that some images get too bright or too dark. The brightened image is
multiplied by 0.7 and added to 0.3 times the image from the last step. An example is
shown in Figure 8h.

(a) Original Image (b) Strech contrast (c) Remove dark
parts

(d) Unify back-
ground

(e) Brighten (f) Remove dark
foreground

(g) Remove non-
uniform background

(h) Weighted image

Figure 8: Different preprocessing steps for watermarks.
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As a final step, Gaussian blur is used to smooth unevenness’s in the background. For 5%
of the images, the preprocessing fails, resulting in very dark to black image. Primarily,
if the original image is too dark, the preprocessing sometimes results in a bad output.
More examples of watermark processing including examples of failures of the procedure
are shown in Figure A.5.

3.3 Preprocessing of Tracings

3.3.1 Classical Image Processing Approach

In this subsection, we continue with the preprocessing of tracings. The tracings are
already quite close to the state we eventually want them to be in for the comparison
step. They are high contrast, less noisy and usually have no major degradations, such
as written text on them. The background paper of the tracings is also usually in decent
shape. However, most tracings still have aspects that need to be fixed to arrive at the
watermark’s contour. They often contain vertical and horizontal scaling lines as well as
rulers for scale. Other tracings are either cut off or incomplete. Figure A.6 shows examples
of these degradations. We also observe different background colours for individual images,
which also makes preprocessing more difficult. This ca be due to the color of paper as
well as lighting conditions.

Figure 9: Preprocessing pipeline for tracings

The vertical lines particularly impact the overall outline of the watermark significantly.
Furthermore, most tracings have these vertical lines. Thus the main objective of the pre-
processing stage is to eliminate the presence of vertical lines in the tracings.
Detecting and removing vertical lines can be achieved with some success due to their dis-
tinct structure. We have attempted two approaches for this purpose. The first approach
is pixel-based, which scans the image at a pixel level to identify vertical structuring el-
ements. The second approach involves wavelet analysis [57], where we perform a base
change, decompose the image into different components, and then blur the horizontal
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components in the frequency domain. Our wavelet approached is based on [58]. Both
approaches return the outline of the tracings as white curves on a black background.
Our two different approaches tend to work well for different types of images. They also
sometimes erase too much of the image such that the outline is no longer recognizable.
Therefore, we combine our two approaches to one overall pipeline. If one approach re-
turns an unrecognizable outline, we use the other approach. We can determine with good
accuracy if an image is almost entirely black and has no recognizable motif left by exam-
ining the percentages of entirely-black rows and columns. We first apply the pixel-based
approach, and if it returns an almost entirely black image, we switch to the wavelet ap-
proach with relatively weak parameters. Using weak parameters in this sense means doing
the wavelet transform on higher levels and using a weaker blurring in the frequency do-
main. Weak parameters lead to less consistent deletion of lines but, in turn, also produce
an overall less blurred output image. If the wavelet approach also produces an almost
black image, we perform noise removal as a preprocessing-step without attempting to
delete the lines. Finally, if this process still results in an almost black image, we return a
black-and-white version of the original image. For further details, please see the pipeline
chart from Figure 9. We will now provide a more detailed explanation of the individual
steps outlined in the pipeline chart in Figure 9. We begin with the function If image is

black, followed by the functions in the pixel approach. Then, we explain the functions
in the wavelet approach. The approach without deleting vertical lines is equivalent to the
first two steps of the pixel approach. Observe, the function Remove background noise

appears in all three approaches, but for the sake of space, we will explain it only once.

If image is black We calculate the percentage of rows and columns of a binary image
that are entirely black. We found that images with more than 20% black rows or columns
are too degraded to recognize the outline of the tracing.

Convert image to black and white We convert the input image into a black-and-white
binary image. We then invert the resulting binary image.
Remove background noise The binary images often have noisy backgrounds full of
little white dots. We remove these small white objects by removing all white objects with
an area smaller than a specified value and an outline shorter than a specified length.
Find vertical lines This is the most essential part of the pixel method. Here we extract
the vertical elements with at least one-pixel width and a specified length. We then use
dilation and blurring to smooth these vertical lines and remove background noise.
Subtract vertical lines from the image We subtract the previously identified vertical
elements from the image to create an output image free from vertical chain lines.

Decompose image with wavelets The image is decomposed into wavelets using Haar-
wavelets [59], which are the most commonly used basis functions in wavelet transforma-
tions. We decompose the image into its horizontal, vertical, and diagonal elements.
Blur vertical element in the frequency domain We carry out a Fourier transforma-
tion on the vertical and blur the vertical elements in the frequency domain [60] using a
Gaussian kernel.
Reconstruct image We reconstruct the image, first by applying the inverse Fourier
transform [60] to the vertical elements and then by applying the inverse wavelet transfor-
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mation for all elements.
Denoise image After blurring the image in the frequency domain to eliminate vertical
lines, the resulting image tends to be quite noisy. Thus we use Otsu thresholding [61] and
the Non-Local-Means algorithm [62] for denoising.
Strengthen outline The watermark is now usually weakly visible. We strengthen the
outline by first dilating and then eroding the image. Finally, we invert the image such
that the tracing is now a white line on a black background.

Figure 10 shows the results of our three preprocessing methods in columns two to four
and the image our decisions logic ultimately chooses in the final column. In the first
row the pixel approach gets chosen, in second row the wavelet approach and in third the
chain lines are not removed at all, only the noise is removed from the image. Figure 11
illustrates the results of the individual steps in the pixel method. Similar Figures for the
wavelet approach and preprocessing without vertical line removal can be found in the
Appendix (Figure A.11 and Figure A.12, respectively).

(a) Original image (b) Pixel method (c) Wavelets (d) No removal (e) Actual result

(f) Original image (g) Pixel method (h) Wavelets (i) No removal (j) Actual result

(k) Original image (l) Pixel method (m) Wavelets (n) No removal (o) Actual result

Figure 10: Selection logic for different methods in our preprocessing

While our pixel-based approach generally works well, it encounters difficulties when han-
dling words since it sometimes unintentionally deletes parts of letters. On the other hand,
the wavelet approach struggles with small and weakly drawn watermarks. The blurring
of vertical components in the wavelet approach tends to mix the watermarks with other
image components excessively, blurring the tracings motif and not merely removing the
vertical lines. Both approaches appear to do better with larger watermarks and can strug-
gle with small watermarks and writing. Examples of these issues can be seen in Figure A.7
and Figure A.8. Both methods have one more significant drawback: they do not have
globally consistent parameters. Parameters that yield satisfactory results for one image
might produce a bad result like an almost entirely black image for another tracing and
vice versa. For examples of these consistency problems see Figure A.9 and Figure A.10.
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(a) Original Image (b) Black and white Image (c) Noise removed

(d) Vertical lines (e) Deleted lines (f) Noise removed

Figure 11: Different preprocessing steps for tracings, removing vertical lines with pixel
based method

We also unsuccessfully attempted to use Hough Lines [63] to identify the vertical lines.
Utilizing Hough lines would offer the advantage of estimating mathematical linear objects,
allowing us to investigate properties like spacing. However, we faced challenges finding
suitable parameters, resulting in multiple Hough lines being estimated for each scaling
line in the image. We could not effectively get around this problem. We also tried to
use Canny edge detection [64] to eliminate the lines. However both our pixel based and
wavelet approached had more promising results.

3.3.2 Conditional GAN Approach

As traditional image processing methods initially worked successfully only on a limited
subset of images and failed on the others, we attempted another tracing preprocessing
approach. Namely, we created an artificial dataset of sketches which resemble the tracings
from out dataset and proceeded to train a conditional GAN with this paired dataset of
sketches to learn how to generate the original (clean) images from the artificially noisy
ones.
Specifically, we considered the dataset of 20,000 images from [65], which is a collection of
grayscale rough sketches of a variety of objects. An example of a sketch can be seen in
Figure 12a. The following effects were applied to the aforementioned sketches:

1. Roughly vertical lines were added on top of the image to emulate the traced delim-
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iters of the paper sieve. These were randomly slightly inclined in either direction,
see Figure 12b.

2. The sketch and the vertical lines were colored in gray to resemble a pencil, similarly
to the tracings from our dataset, see Figure 12c.

3. Gray noise and blur were added across the entire image to emulate the overall look
of the tracings, see Figure 12d.

Each step as well as the final result in comparison to the initial sketch and to a tracing
from our DNB dataset can be seen in Figure 12.

(a) Raw sketch (b) Vertical Lines (c) Grey lines (d) Noisy sketch (e) DNB Tracing

Figure 12: Generation of the artifical sketch dataset for the tracing preprocessing cGAN

Using this preprocessing dataset, we trained a paired conditional GAN, namely pix2pix
[41], to generate the initial sketches from the noisy ones.
Initially, we trained the GAN using the default hyperparameters of the model, the relevant
ones being a learning rate of 0.0002 and a batch size of 1. The model was trained for 200
epochs, with a linear learning rate decay after 100 epochs.
The results of this model were visually indeterminate and during the training the generator
model loss was not converging, rather jumping through high losses. This led us to decrease
the learning rate to 0.00005 and 0.0000002 in 2 further trials. In the first, the loss was
still jumping over local minima, whereas the second was steadily but slowly decreasing.
This led to a more structured approach to the hyperparameter search by:

• A shallow and wide search approach: randomly sampling 20 learning rate and batch
size combinations within the intervals of [2e-8, 1e-4] for the learning rate and {2, 4,
8} for the batch size, and training these for 10 epochs with no learning rate decay.

• A deep and narrow approach: randomly sampling 12 combinations from the same
interval for the learning rate and {2, 4} for the batch size, but training those for
the full 200 epochs.

Larger batch sizes were not attempted due to the limitations of the GPU the models were
trained on.
The results of the narrow approach are depicted in Table 2 and the results of the wide
approach in Table 1. The calculated metrics were
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1. the errors of the Generator Network: GGAN + GL1. GGAN is the loss of the clean
sketch generator, and GL1 is the so-called Cycle Consistency Loss, i.e. the difference
between an original image and the result of this image being passed through the
A-to-B generator and then the B-to-A generator. This loss helps to prevent the
model from always returning the images from the training set.

2. the errors of the Discriminator Network: Dreal + Dfake. Dreal is the prediction
loss for real images, i.e. the original sketches, and Dfake is the prediction loss for
generated clean sketches.

As for our task we only need the Generator Network, because we are transforming a noisy
sketches into clean ones, the relevant column is GGAN + GL1. The best models for each
test were T12 with learning rate 1.029e − 07 and batch size 2 for the narrow test, and
T18 with learning rate 1.06498e− 06 and batch size of 4 for the wide test.

The best result of the wide and shallow tests were then trained for the usual 200 epochs.
Both models provided approximately the same results - they managed to create black and
white images with, in most cases, minimal noise, but have not been able reliably remove
the vertical lines from the images. Example transformations are depicted in Figure 13.

(a) Original (b) Generated (c) Original

(d) generated (e) Original (f) Generated

Figure 13: Original tracings and generated sketches using the sketch preprocessing cGAN
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4 Pipeline architecture and model framework

4.1 Overall pipeline and data model

The pipeline and our models build upon the original dataset from DNB [18]. This data
is cropped, then the watermarks are processed using classical image processing (subsec-
tion 3.2) and the tracings are processed using either classical image preprocessing or a
cGAN (subsection 3.3). The CycleGAN for sketch generation is trained on the 2 classes
of data - preprocessed watermarks and preprocessed tracings, in order to learn the trans-
formation from one class to another. We only use the watermark to tracing generation,
as preprocessed tracings are equivalent to a sketch. The generated sketches combined
with the processed tracings are then stored in a new data bucket for the nearest neigh-
bor search. Our full data model and its connection to the preprocessing for tracings and
training of the CycleGAN is visualized in the first two rows of Figure 14.
The pipeline for a new image starts with an original scan or photograph of a watermark.
This image is processed to enhance the visibility of the watermark, then the CycleGAN is
used for sketch generation. We use a ResNet18 to extract a feature vector from the gener-
ated sketch. The most similar images from the “generated sketch and processed tracings“
dataset is then found using nearest neighbor search. Finally, the n closest images are
returned. Figure 14 shows a detailed overview of the processes.

Figure 14: Connection between the different versions of the data and our full data model,
preprocessing of tracings using a CycleGAN and the final pipeline for new watermarks.



4 PIPELINE ARCHITECTURE AND MODEL FRAMEWORK 20

4.2 Watermark translation

As mentioned, at the core of our approach is the idea of transforming pictures of water-
marks into binary (black/white) sketches.
Considering the structure of our dataset, namely the lack of watermark - tracing pairs,
and the lack of other large paired watermark datasets, we resorted to an unpaired im-
age translation approach. We focused on the classical CycleGAN [46] for the following
reasons:

1. Proven applicability to various image translation tasks.

2. Code availability and extensive documentation.

3. Improvements that followed the original paper mostly focus on runtime and memory
efficiency, which was not an issue in our case, due to the size of our dataset.

In our case, the input to the CycleGAN is the watermarks and tracings, both preprocessed
according to the procedures described earlier in this work (see 3.2 3.3). More specifically,
we used the full preprocessing pipeline for watermarks and mostly focused on the cGAN
approach for tracing due to the fact that is was more consistent across all images.
Apart from training multiple versions of the CycleGAN, we trained a CUT model [47]
with an earlier version of our preprocessed data. This model did not land any palpable
improvements in translation or runtime, presumably because the improvements in the
original paper focus mostly on memory efficiency and runtime, which would only have a
considerable impact on larger datasets. Thus, we later only trained the CycleGAN.
Similarly to the Sketch Denoising model, CycleGAN was initially trained by trial and
error and finally a hyperparameter search was executed in order to find the optimal
hyperparameter values from within a reasonable range.
Specifically, we first trained a proof-of-concept CycleGAN model on a different dataset
[37] with only ∼150 images per class, in order to test the potential of the model.
Afterwards, a base version of a model was trained using the DNB data and the default
hyperparameters of the model: learning rate of 0.0002 and batch size of 1. As this model
exploded after ∼75 epochs and returned pitch black images, we retrained it with a learning
rate of 0.00005 (4 times less) to receive first visible results.
After further preprocessing of both the watermarks and tracings and more data labeling,
we performed a shallow and wide hyperparameter search - randomly sampling 20 learning
rate and batch size combinations within the intervals of [2e-8, 1e-4] for the learning rate
and {2, 4} for the batch size, and training these for 10 epochs with no learning rate decay.
The results of the search are depicted in Table 3.
As the task at hand is transforming watermarks (class A) into sketches (class B), the
column of importance is GA +GcycleA +DB, which contains the A to B generator loss and
its cycle consistency loss [46], as well as the B class discriminator loss. From this test, we
established an optimal learning rate of 5.6925e− 05 and a batch size of 4 (T19).
Finally, we trained the model with these parameters and tried the following 3 variations:

1. Standard 200 epoch training, with linear learning rate decay after 100 epochs.

2. 400 epoch training with linear learning rate decay after 200 epochs.

3. 400 epoch training with cosine learning rate decay after 200 epochs.

The results of the training will be discussed in the next chapter.
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4.3 Sketch Comparison

In this section we describe the comparison of sketches in order to return nearest neighbors.
Firstly, our comparisson method needs to be fast to ensure quick retrieval of results from
our already large dataset. Additionally, scalability is crucial as DNB is continuously dig-
itizing its collection, so the method should handle increasing datasets without retraining.
We also expect a certain level of consistency, where if we search for a watermark showing
a bird for example, we want to see predominantly bird-related images. Lastly, the method
should be stable even when dealing with specific types of transformations, such as noise
or short breaks in the outline of the images. We use a nearest neighbour search based on
feature vectors of a pre-trained CNN to find similar images.
We investigated Hu-Moments [66] and SIFT [67] for nearest neighbor comparison, with our
SIFT approach being based on [68]. As direct nearest neighbor comparisons of key point
vectors are computationally unfeasible, we simplified the key points by using k-means
[69] on the key point descriptors. Then, we employed bag-of-words (BoW) [70] and term
frequency-inverse document frequency (TF-IDF) [71] approaches with the groups found
in the k-means step to reduce the size of the fixed point vectors. Both Hu-Moments and
SIFT methods had major drawbacks: Hu-Moments were slow and did not reurn images
with similar motifs. SIFT struggled with eroded and non-smooth binary images due to
its reliance on local gradients.
Using a pre-trained model offers several advantages. Firstly, we possess poorly labeled
data, making it hard to properly train our own network. Secondly, leveraging pre-trained
models saves considerable time and computational resources as we can directly extract
feature vectors without training a new model from scratch. This is especially advanta-
geous since DNB is still in the process of digitizing its collection, eliminating the need for
regular retraining. Finally, pre-trained models are robust and transferable since they are
trained on large and diverse datasets. This robustness is beneficial for our application,
given the significant differences between images dataset.
We tested different pre-trained CNNs, including the commonly used VGG16 [72] and
ResNet18 [73]. We eventually settled on ResNet18. We extract the network’s final layer
before classification to obtain a feature vector for the input image. However, these large
feature vectors make direct nearest neighbor comparisons impractical. To mitigate this
issue, we experimented with Principal Component Analysis (PCA) [74] for dimension re-
duction, but ultimately, we used the Spotify Annoy [75] library for approximate nearest
neighbor search. The Spotify Annoy algorithm builds binary trees to divide a high-
dimensional space and create efficient data structures, which are easier to search.
We compared the different CNNs and nearest neighbor approximation methods by apply-
ing transformations to our preprocessed tracings and then comparing the average position
of the original image, its median position, and frequency, being among the top 10, top 20,
and top 50 nearest neighbors. Figure A.13 shows an example of the transformations used.
No method emerged as clearly superior. However, due to its strong performance with
partially disintegrated watermarks and high overall accuracy, we opted for the ResNet18
network for feature extraction and the Spotify annoy algorithm for the nearest neighbour
search. One drawback is that the Annoy Index needs to be restructured whenever new
watermarks are digitized, but this process is simple and relatively fast. Our results will
be discussed in section 5.
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5 Results

5.1 Qualitative results of the sketch generation

All 3 models described in the previous chapter, provided very similar outputs, with the
last two having marginally better results. Towards the end of the project, the classical
preprocessing approach was further improved and we trained a CycleGAN model with
the same parameters for 200 epochs. This model provided mixed results due to noisiness.
Thus, our best model(s) used classical preprocessing for watermarks and cGAN prepro-
cessing for tracings. They were trained for 400 epochs with a learning rate of 5.6925e−05
and a batch size of 4, with cosine/linear learning rate decay after 200 epochs. All of the
following results regard these 2 models.

Figure 15: Example outputs of CycleGAN in triplets: Original watermark - Sketch of a
similar tracing - Output of the CycleGAN

Example results for CycleGAN predictions for watermarks from the DNB dataset are de-
picted in Figure A.14 on the right. The image on the left is the original watermark and the
image in the middle is a similar preprocessed tracing, which estimates the expectations
for a good output. Further examples are linked in the Appendix.
It can be inferred that the model has the ability to generate visually similar sketches, fully
preserving the position and rotation of the original watermark. It accurately redraws dif-



5 RESULTS 23

Figure 16: Unsuccessful example output of CycleGAN. Original watermark - Sketch of a
similar tracing - Output of the CycleGAN

ficult curves and is often able to reproduce even low level details in the watermarks. In a
majority of cases the model can also alleviate the difference in contrast within and across
different watermarks.
However, the well-generated images can also contain various artifacts, like unnecessary
lines or white speckles, where the expected outline is missing. It also often includes the
vertical lines of the sieve in the resulting image. Although they are often visible in the
original watermark image, they are more often introduced due to their presence in the
preprocessed sketches which we feed to the network.
Although a minority, the model also happens to generate images from which it is diffi-
cult to comprehend what the original watermark represented. Such an example can be
observed in fig:Cyclegan-bad-outputs. From our observations this happens more likely in
the following types of images:

• Very low contrast images, where the watermark is hard to see even with the naked
eye.

• Textual watermarks with improper (squashed) resizing - although this was subse-
quently improved with proper resizing.

• Partial watermarks where only part of the outline is visible.

Despite this issues, the CycleGAN was able to generate reasonable sketches for a major-
ity of watermarks, and for clean and high-contrast watermarks images, created sketches
almost indistinguishable from preprocessed tracings.
We believe the model can be further improved to alleviate the problems described above
by better preprocessing and further model tuning.

5.2 Quantitative analysis of the full pipeline

In this subsection, we analyse the accuracy of our pipeline on a quantitative scale. For
this purpose, we manually created a test dataset containing 22 classes of watermarks
and corresponding tracings from the dataset provided by DNB. The count number of
observations for watermarks and tracings may vary on a large scale within one class
ranging from two observations to 146 per class. The data is cropped and annotated in an
analogous manner, the unique image identifier and the corresponding class identifiers are
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Figure 17: Accuracy of the latest model over the number of nearest neighbors taken into
account.

stored in a table. This table contains 567 images in total. The test set was excluded from
later trainings of our CycleGANs. Afterward, all watermarks and tracings from the test
set are added to the data for sketch comparison.
For testing, we first randomly sample one watermark from each class in the test set.
Next we use our pipeline. Here, we apply our image preprocessing (subsection 3.2)to all
watermarks in the test set, and then generate a sketch using a CycleGAN (subsection 4.2).
Finally, we get the n nearest neighbors using the sketch comparison from subsection 4.3.
The accuracy of our pipeline depending on n neighbors is calculated by

accuracyn =

∑22
1{# NN from same class≥1}

22
(4)

where we count for how many classes we can find at least one pair of watermark and
corresponding sketch(es) within the n nearest neighbors (NN). The larger we choose n,
the higher the probability to find the sketch(es) we are interested in.
The accuracy of the model is evaluated using different values for n. The actual calculation
is partly supported by a script. However, as the test set is incomplete and some water-
marks and tracings were missed in some classes during the collection of the test data,
the calculation of the accuracy is supported by a manual component where we double
checked the output of the pipeline and actively searched for the matching watermark(s).
The position and the name of the first match is then added to a table.

We use our latest model to estimate the accuracy of our pipeline. Using 25 nearest
neighbors we can achieve an accuracy of more than 50% while for 50 nearest neighbors
we achieve an accuracy of more than 68%. Figure 17 shows the accuracy over the number
of nearest neighbors taken into account. For 15 out of 22 test watermark classes, at least
one matching watermark can be found within the 50 nearest neighbors in the full data
base which contains over 6600 processed images.



6 Conclusion

Our primary goal in this project was to develop a framework which will find similar water-
marks and tracings in a database, when we present a new photograph or scan of a historic
watermark. We tackled this problem by training a CycleGAN to generate a sketch of the
presented watermark. Using this model, we generated sketches for all watermarks from
the dataset and combined them with the sketches produced by preprocessing tracings.
We then used a pre-trained ResNet18 neural network to extract a feature vector from the
sketch. Finally, we used the Spotify Annoy algorithm, which enables an efficient approx-
imate nearest neighbor search to compare a specific sketch with our entire database. By
this approach we could get an accuracy of over 68% when using 50 nearest neighbors.
The novelty of our approach, compared to previous methods presented in the literature,
lies in the use of a generative adversarial network. This enables us to add new watermarks
and tracings to the comparison database without the need to retrain the CycleGAN each
time. Additionally, our approach is not dependent on predefined class labels for all water-
marks, making it more time-efficient for the unlabeled dataset of DNB. As we keep record
of the original name of the image, the database can be easily connected to the metadata
provided by the DNB to get more information about each watermark. Furthermore, our
approach has the potential to be extended to other data bases of watermarks and to in-
clude them in the comparison data base.
In a next step, our framework to find similar watermarks and tracings in a database can
be integrated with a front-end application to provide users the opportunity to use our
pipeline for their own research on historic watermarks. Moreover, the examples for which
our pipeline fails can potentially be reduced by including an user interface for watermark
preprocessing to allow for manual adjustments for some parameters of the image process-
ing functions. Thereby, watermarks with an unusable output after preprocessing can be
avoided. Beyond that, different GANs, as well as other preprocessing approaches, can be
explored to improve the quality of the generated sketches. Finally, one could train a CNN
(e.g., a ResNet18) from scratch to obtain the features for nearest neighbor search. This
could potentially increase accuracy in image comparison. However, this approach would
necessitate manual effort to create a labeled dataset.
In conclusion, this work contributes to the goal of facilitating streamlined and acceler-
ated research on watermarks. The usage of deep learning techniques demonstrated in
our project showcases the enormous support artificial intelligence can provide to libraries,
such as the DNB, in their efforts to digitize and preserve historic works.
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A Appendix

A.1 Additional material for chapter 1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure A.2: 20 different watermarks with an almost identical motifs
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(a) Sorting rags by size, colour, and fabric (b) Cutting the sorted rags into small pieces

(c) Fermenting of rags in water (d) Scooping and pressing the sheets

(e) Drying sheets of newly pressed paper (f) Glazing to smooth the surface

Figure A.1: Selected steps of the manual paper making process in Europe between 1300
and 1800 A.D.
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A.2 Additional material for chapter 3

Figure A.3: Set up for digitization of the watermark dataset at DNB in Leipzig
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Figure A.4: Set up in LabelStudio for annotating the images from the data base. A
bounding box is drawn around the relevant image part and either labeld as watermark or
drawing (=tracing).

35



(a) Original (b) Processed (c) Original (d) Processed

(e) Original (f) Processed (g) Original (h) Processed

Figure A.5: Additional examples for preprocessing of watermarks. The first row shows
successful results, the second row shows failures of the process.
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(a) Clean tracing (b) Vertical lines (c) Black bars

(d) Visible ruler (e) Cut off tracing (f) Incomplete tracing

Figure A.6: Common degradation types on tracings
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(a) Original image (b) Original image (c) Original image (d) Original image

(e) Preprocessed im-
age

(f) Preprocessed im-
age

(g) Preprocessed im-
age

(h) Preprocessed im-
age

Figure A.7: Examples where pixel method deletes part of tracing

(a) Original image (b) Original image (c) Original image (d) Original image

(e) Preprocessed im-
age

(f) Preprocessed im-
age

(g) Preprocessed im-
age

(h) Preprocessed im-
age

Figure A.8: Example where wavelet method struggles
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(a) Original Image (b) Parameter set 1 (c) Parameter set 2 (d) Parameter set 3

(e) Original Image (f) Parameter set 1 (g) Parameter set 2 (h) Parameter set 3

(i) Original Image (j) Parameter set 1 (k) Parameter set 2 (l) Parameter set 3

Figure A.9: Pixel method with different parameters for different images. The pa-
rameter set 1 corresponds to the vector [10,1000,15,35], parameter set 2 to the vector
[300,50,100,100], and parameter set 3 to the vector [150,400,140,100].
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(a) Original Image (b) Parameter set 1 (c) Parameter set 2 (d) Parameter set 3

(e) Original Image (f) Parameter set 1 (g) Parameter set 2 (h) Parameter set 3

(i) Original Image (j) Parameter set 1 (k) Parameter set 2 (l) Parameter set 2

Figure A.10: Wavelet method with different parameters for different images. The param-
eter set 1 corresponds to the variables [basis = ’haar’, level = 10,sigma = 50], parameter
set 2 to the vector [basis = ’haar’, level = 5,sigma = 10], and parameter set 3 to the
vector [basis = ’haar’, level = 2,sigma = 3].
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(a) Original Image (b) Vertical element (c) Blurred vertical elements

(d) Reconstructed image (e) Strengthen outline (f) Noise removed

Figure A.11: Different pre-processing steps for tracings, removing vertical lines with
wavelet method
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(a) Original Image (b) Black and white image (c) Removed noise

Figure A.12: Different pre-processing steps for tracings without removing vertical lines

Trial Batch Size Learning Rate GGAN + GL1 Dreal + Dfake

T1 2 2.00051e-06 5.25926 1.00961
T2 4 1.38991e-06 3.16192 1.09442
T3 4 3.81642e-07 2.57181 1.33789
T4 4 1.94083e-05 3.58563 0.0924803
T5 2 5.80044e-05 7.03524 0.0367336
T6 4 8.93365e-06 4.3206 0.0807234
T7 2 4.90901e-08 23.5636 0.156984
T8 4 7.52065e-08 13.0767 0.0544864
T9 4 2.93331e-06 3.07164 0.617392
T10 4 2.3932e-08 59.367 0.0556893
T11 2 8.41496e-08 9.85447 0.164904
T12 4 2.47146e-08 52.232 0.0327645
T13 4 5.11003e-07 3.42068 0.889978
T14 2 6.63845e-07 1.61644 1.25707
T15 4 1.15535e-06 9.32557 0.483405
T16 4 1.70442e-06 2.47208 0.818634
T17 4 1.45459e-06 5.28097 0.353632
T18 4 1.06498e-06 1.29618 1.11996
T19 2 2.12062e-08 55.4039 0.0641136
T20 4 6.97207e-08 13.6767 0.149564

Table 1: Shallow and wide hyperparameter search for the Sketch Preprocessing cGAN -
20 samples, learning rates in range [2e-8, 1e-4] and batch sizes in {2, 4} trained for 10
epochs with no linear learning rate decay
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Trial Batch Size Learning Rate GGAN + GL1 Dreal + Dfake

T1 2 3.24259e-07 4.1465 0.214329
T2 8 2.00194e-07 2.7701 1.08082
T3 8 7.6798e-06 5.33517 0.458044
T4 4 4.70091e-06 6.90337 0.0165826
T5 4 6.12553e-06 3.64774 0.0731736
T6 4 1.2455e-05 5.20814 1.6953
T7 8 9.63624e-08 2.14888 1.02393
T8 2 9.67572e-05 9.656 0.0027981
T9 8 3.69893e-09 54.0128 0.0426551
T10 8 2.23672e-05 3.84058 0.0782349
T11 4 5.01381e-08 3.21848 1.0627
T12 2 1.02913e-07 2.13291 1.14488

Table 2: Deep and narrow hyperparameter search for the Sketch Preprocessing cGAN -
12 samples, learning rates in range [2e-8, 1e-4] and batch sizes in {2, 4, 8} trained for 200
epochs with a linear learning rate decay after 100 epochs
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A.3 Additional material for chapter 4

(a) Original
tracing

(b) Prepro-
cessed image

(c) 90 degrees
rotation

(d) 180 degrees
rotation

(e) 270 degrees
rotation

(f) Gaussian
blur Kernel 5x5

(g) Gaussian
blur Kernel 9x9

(h) Median
blur, parameter
3

(i) Median blur,
parameter 5

(j) Delete lower
half

(k) Delete left
half of image

(l) Delete circle
in center

(m) Delete ran-
dom pixel

(n) Delete 4x4
square

(o) Erode (in-
verse) image

Figure A.13: Transformations used to evaluate different image comparison methods
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Figure A.14: Further good and bad outputs of the trained CycleGAN model in Triplets:
Original Watermark - Sketch of a similar tracing - Output of the CycleGAN
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A.4 Additional material for chapter 5

Trial Batch Size Learning Rate GA + GcycleA + DB GB + GcycleB + DA

T1 4 1.43514e-05 0.948875 1.1426
T2 2 1.03988e-06 1.24144 0.934863
T3 4 3.47172e-07 1.72982 1.25698
T4 4 1.60101e-07 1.51567 1.59304
T5 4 2.11067e-05 0.743989 1.01791
T6 2 1.11122e-07 1.63381 2.03171
T7 4 7.6539e-08 2.80261 2.01568
T8 2 1.96426e-07 1.32769 1.70412
T9 2 2.29912e-08 6.78732 7.79293
T10 2 4.19336e-05 0.961617 0.815696
T11 2 3.17404e-07 1.19164 1.24681
T12 2 3.04474e-05 5.27114 1.06706
T13 4 1.42223e-07 1.36262 1.67656
T14 2 3.10465e-07 1.48368 1.50432
T15 4 2.04385e-06 1.09923 1.04807
T16 4 1.60899e-06 1.03511 1.02395
T17 4 2.72688e-08 11.4191 5.63914
T18 2 6.26597e-05 1.07834 1.15261
T19 4 5.69252e-05 0.711055 1.09885
T20 2 2.38607e-05 0.884326 1.14593

Table 3: Shallow and wide hyperparameter search for the CycleGAN - 20 samples, learning
rates in range [2e-8, 1e-4] and batch sizes in {2, 4} trained for 10 epochs with no linear
learning rate decay
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