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Abstract

Accounting for over 1.7 million deaths in 2018, lung cancer is one of the most common
causes of cancer death worldwide. While tumors are hard to detect with the human eye,
computer-aided diagnoses carries the potential of supporting doctors in the early discov-
ery of nodules. Recent studies have shown that neural-network based object detection
models can perform at a comparable error rate to doctors. While the training of these
models requires massive amounts of training images, those need to contain not only the
information whether an image contains a tumor (label), but also the precise location of
the tumor (segmentation). Since medical images are highly sensitive and hospitals cannot
share their data with other parties due to privacy constraints, training data for these
models is scarce.

In this report, we first identify different methods to generating synthetic training im-
ages in the literature, then cluster them into three approaches, and lastly demonstrate
the effectiveness of the individual approaches end-to-end. Our results indicate, that the
inpainting of extracted tumors into healthy images can increase the performance of an
object detection models significantly, yet, not achieve comparable results to a human
radiologist.
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1 Introduction

1.1 Motivation

Lung cancer is one of the most common cancer types worldwide. Coupled with the high
mortality rate, the efficiency of lung cancer diagnosis and treatment is of high importance.
In 2021, over 235,760 new cases and over 131,880 estimated deaths have been projected
for the U.S. alone [32]. The chance of survival is significantly higher if lung cancer is
diagnosed at an early stage [32]. In modern therapy, medical images play a crucial role in
the diagnosis: they allow doctors to inspect a patient without any physical intervention.
However, the reliable detection of tumors in medical images remains challenging - even
for experienced doctors. A trained radiologists with several years of experience has been
shown to detect lung tumors at an accuracy ranging from 0.54 to 0.87 |31]. This is where
computer aided diagnosis (CAD) systems come in. Recent studies have shown that a
neural network (NN) based object detection models can detect tumors in the chest area
at comparable accuracy rates, providing the doctor with a second opinion [31]. However,
the training of these models requires massive amounts of training images, that not only
contain the information whether an image is tumorous or not (label), but also the precise
location of the tumor (segmentation).

1.2 Problem

There are three main challenges that hinder the application of recent methods in the
medical environment: First, medical images are highly sensitive and scans from multiple
hospitals can usually not be combined at central location to train a joint model, due to
data privacy constraints. Second, the generated images are very sensitive to the settings
of the utilised scanner, its manufacturer as well as the physique of the patients in a certain
region, which hinders the transfer and exchange of pre-trained models between hospitals.
And lastly, the datasets of existing medical images are highly imbalanced and sparse.
Fortunately, most people that undergo screening, end up not having a tumor on their
chest. We will show in section three, that existing open datasets do not provide sufficient
tumorous images to train an object detection model.

The project partner we collaborate with, Ryver.ai, provides hospitals with a service to
generate synthetic medical images that can safely be shared without violating privacy
constraints. The current objective is to generate synthetic images with a label whether
the image contains a tumor or not. Together, we plan to identify innovative methods that
allow to generate synthetic images that further contain a segmentation and allow to train
an object detection model.

1.3 Project goals

The goal of this project is twofold: On the one hand, we aim to identify promising
approaches towards generating synthetic segmented medical images from a theoretical
perspective. On the other hand, we aim to implement and benchmark different annotation
methods in an end-to-end pipeline, to provide the project partner with a recommendation
on promising approaches to purse for an industrial implementation of the task.
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1.4 Project plan

In the following, we will provide a short overview on the timeline and stages we defined for
our project. In stage one, between the end of April and the end of May, we performed an
extensive literature review to identify and categorize different approaches to generating
segmented synthetic medical images from a theoretical perspective. Here it needs to be
stated that the task we focused on in the project is not a dedicated field of research,
thus we explored various directions to approach the task. We concluded the stage with
a database of fundamental and recent literature that we identified as relevant for the
task. In stage two, between the end of May and the end of June, we clustered the
collected literature to derive three methodological approaches. For each approach, we
defined distinct hypothesis that need to be validated in order to prove the effectiveness
of the respective method. In stage three, between the end of June and the end of July,
we trained models for the selected methods and implemented a testing framework to
benchmark the different approaches.

1.5 Limitations

e We focused on identifying and clustering theoretical approaches to solving the data
sparsity issue in literature and benchmarked promising implementations. However,
we did not aim to propose a new neural network architecture or perform extensive
tuning of hyperparameters of the selected methods.

e We only provide experimental implementations that allow for the comparison on a
defined task, not the industrial application.

e As one team member dropped out after two thirds of the project, not all methods
have been implemented and benchmarked to the state we desired.
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2 Literature Review

In this section, we briefly introduce the various types of components utilised in this project.
First, we introduce methods to generate synthetic images based on a set of original images.
Second, we introduce methods to detect objects on images, allowing to segment tumors
on medical images. Third, we introduce a method to convert non-tumorous images into
tumorous ones and vice versa.

2.1 Synthetic image generation

Synthetic image generation describes the process of artificially creating images, that
closely resemble the training data. Generative adversarial networks have become state-
of-the-art and thus lay the foundation for synthetic image generation in our report.

2.1.1 Generative adversarial networks

Generative adversarial networks (GANs), first proposed by Goodfellow in 2014 [9], are a
powerful class of neural networks for synthetic image generation: GAN based synthesis
apporaches have achieved state-of-the-art performance in various image generation tasks,
including super-resolution |22], image-to-image translation [42] or text-to-image synthesis
[36]. First papers highlight the possible applications of GANs within the medical do-
main like cross-modality synthesis, segmentation, image reconstruction, classification and
detection [3§].

GANSs consist of two networks that are trained concurrently, one network dedicated to
image generation, called the generator G, the other one dedicated to discrimination, called
discriminator D. The generator GG takes pure random noise z as an input z, sampled from
a prior distribution p(z). For simplicity, p(z) commonly uses a Gaussian or a uniform
distribution for sampling. As a result of G, the output x, should resemble visually the
real sample x,, drawn from the real data distribution p,(x). Hereby G learns a nonlinear
mapping function, that is commonly parametrized by 6, as x, = G(z;6,). In contrast,
D takes a real or generated sample as an input. A single value y; is returned by D,
indicating the probability of the input being real or fake. D hereby learns a mapping
parametrized by 6, can be denoted as y; = D(x;60,). As a result of successful training,
the generated samples form a distribution p,(z), which should approximate p,(z). It is
the discriminator D’s objective to differentiate these two groups of images, whereas the
generator G is trained to confuse it as much as possible [38].

Over the past years, different types of GAN’s have emerged: They are all based on the
above mentioned principles, but perform slight adaptions to the general model. These
variations can be grouped into three categories: First, variations in the objective of D,
where different losses of D are proposed, in order to stabilize training and avoid mode
collapse. These include f-GAN [26], 1s-GAN [24] and WGAN [1]. Second, by passing
additional information to (G, variations in the objective of G can be achieved. These
include the generation of images with desired properties. GANs using these properties at
generation are commonly referred to as conditional GANs (cGAN). A popular example
for a conditional GAN is the pix2pix image-to-image framework [12]. Lastly, GAN’s
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can vary by their underlying architecture: Different approaches have been proposed to
improve training performance: Prominent approaches in this category include replacing
the fully connected layers with fully convolutional downsampling / upsampling layers
in DCGAN [28] or changing the architecture to generate high-resolution images in a
progressive manner, like PCGAN [34] or StyleGAN [20]. In recent years, StyleGAN
has become the go-to architecture for generation of high resolution images, performing
especially well with faces, dogs and cars [3], but also showing first promising results in
the medical domain [§].

During training, StyleGAN makes use of a progressive increase of the output image res-
olution. This allows StyleGAN models the successful synthesis of high-resolution images.
Further iterations of StyleGAN make it possible to include style transfer and stochasticity
in the process of generation [20]. The latest released version, StyleGAN 3, features an
internal representation that allows to create generative models better suited for video and
animation [21].

2.2 Image segmentation

Image segmentation describes the process of identifying objects or areas on images. In
the following, we will introduce image segmentation methods relevant for our report.

2.2.1 U-Net

U-net is a neural network architecture that was developed primarily for the purpose of
segmenting images. U-net has been widely adopted by the medical imaging community
as the primary method for segmenting images. From CT scans to MRIs to X-rays and
microscopy, U-net is used in nearly all major image modalities [30].

U-net’s architecture is twofold: It consists of a contracting path as well as an expansive
path. Hereby the contracting path follows a convolutional network, consisting of the
repeated application of two 3x3 convolutions, also called unpadded convolutions, with
each followed by a recitified linear unit (ReLU) and a 2x2 max pooling operation with
stride 2 for downsampling. The number of feature channels is then doubled at each
downsampling step. Steps within the expansive path perform an upsampling of the feature
map followed by a 2x2 convolution, effectively halving the number of feature channels,
followed by a concatenation with the correspondingly cropped feature map that resulted
from the contracting path, and also two 3x3 convolutions followed by a ReLLU. The final
layer uses a 1x1 convolution to map each 64-component feature vector to the desired
number of classes. The original U-Net architecture therefore has 23 convolutional layers
[30].

2.2.2 RetinaNet

RetinaNet, first introduced by Lin et al. in 2017, is a one-stage object detection model.
To address class imbalance during training, it makes use a focal loss function. A focal loss
adds a modulating term to the cross entropy loss, to enhance learning on hard negative
examples. As part of RetinaNet, a backbone network and two task-specific subnetworks
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form a unified network. Using an off-the-self convolutional network, the backbone com-
putes a convolutional feature map over a whole input image. On the backbone’s output,
the first subnet performs convolutional object classification; the second subnet performs
convolutional bounding box regression. In both subnetworks, the authors propose a simple
design that is specifically designed for dense, one-stage detection.[23].

2.2.3 DatasetGAN

All current segmentation models are united in their need for large sets of segmented data
that can be used for training. This poses a high cost factor for building new segmenation
models, especially in the medical domain, where segmentation can only be performed
by experts in their field. DatasetGAN, first introduced in 2021 by Zhang et al., takes
an novel approach towards generating massive datasets of high-quality segmented images
with minimal human effort: It relies on the power of state-of-the-art GANs like StyleGAN
that generate realistic images. DatasetGAN hereby decodes the latent code to create a
semantic segmentation of the image. The decoder only requires few labeled examples to
be fully functional [41]. With only few labelled images necessary as input, it is a very
cost-effective way of creating a segmentation model, especially in the medical domain.

2.3 Inpainting

Aside from the synthesis and segmentation methods, we also considered a third type of
method as relevant for our project. Inpainting is the task of masking and reconstructing
certain parts of an image. The methods has its origin in the post-processing of photos, to
remove undesired objects. Thus, a majority of the research has been driven by companies
such as Adobe or the Microsoft Media Research department. In the medical domain,
inpainting methods have first been applied in 2018 to extract tumors and remove undesired
objects (such as pacemakers) from images.

Inpainting methods build on the architecture of GANSs, consisting of a generator and a
discriminator. However, as a large portion of the ground truth image in the unmasked
area is known, the loss function has to be re-formulated to optimise for the adjusted
objective.

In 2018, Sogancioglu et al. compared the performance of back-then state-of-the-art in-
painting methods to extract tumors from chest X-rays [33]. They considered context
encoders developed by Pathak et al. in 2016 [27], a semantic inpainting method devel-
oped by Yeh et al. in 2017 [37] as well as a contextual attention model developed by
Yu et al. in 2018 |39]. They showed that the contextual inpainting model performs best
in reconstructing medical images. In 2021 Guendel et al. have shown the contextual
attention models capabilities to extracting tumors and placing the extracted nodules in
healthy images to generate synthetic training data [10].

While the images generated with previous inpainting methods have sometimes been dis-
torted or blurry in the inpainted area [40], GAN architectures with a higher capacity have
recently been applied for inpainting. They aim at inpainting images with more granular
and fine-grained textures. Among these methods are DAM-GAN, developed by Cha et al.
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in 2022 [4] as well as AOT-GAN, developed by Zeng et al. in 2021 [40]. The AOT-GAN
proposed a new generator architecture that uses aggregated contextual transformation to
learn repetitive patterns. Further, the discriminator is trained to explicitly detect blurry
patterns to facilitate the synthesis of fine-grained textures.
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3 Data

In this section, we provide an overview on the different types of medical images as well
as the availability of training data in the respective format. Further, we decide on a
dataset to use for this report and outline the steps we took for data exploration and
pre-processing.

3.1 Medical image types and datasets

In general, three types of medical images are distinguished: X-ray, Computer Tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI). The type of scan that is performed,
depends on the patients symptoms and the disease a doctor suspects.

3.1.1 X-ray

An X-ray is generated by sending external radiation through the body, that passes through
soft tissues (such as the skin and muscles) and is reflected by dense parts (such as bones
and tumors), allowing to generate a 2D image [35]. The chest X-ray (CXR) allows to
inspect the condition of the heart, the airways, the lungs as well as the bones. CXR
allows to diagnose several lung diseases, such as: effusion, infiltration, masses, nodules,
pneumonia and edema. Since X-rays are in 2D, they are fast, cheap and less harmful for
the patient than other medical image types. X-rays are preferred for emergency diagnosis
and commonly conducted when a tumor is suspected.

ChestX-ray8. The NIH (National Institues of Health) ChestX-ray8 dataset contains
112,120 chest X-rays, of which 60,361 are labelled as healthy and the remainder contains
one of 14 chest pathologies [34]. 2,705 of the images are labelled with ”tumor”, but only
79 images are provided with a bounding box, locating the tumor in the image.

CheXpert. The dataset released by the Stanford ML group contains 224,316 images,
of which 6,856 contain a ”lung lesion”, which could be either a tumor or a mass in the
lung [11]. Of the available images, none are provided with bounding boxes, indicating the
lesion positions.

JSRT. The dataset released by the Japanese Society of Radiological Technology (JSRT)
contains 257 images, of which 156 contain a tumor [14]. All of the tumorous images are
provided with a bounding box, indicating the tumour location.

Dataset # of total images | # of tumorous images | # of seg. tum. images
ChestX-ray8 112,120 2,705 79

CheXpert 224,316 6,856 0

JSRT 257 156 156

Table 1: Comparison of the testing framework results
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Figure 1: Tumorous chest X-ray from Figure 2: Tumorous chest X-ray from
the NTH ChestX-ray8 dataset the JSRT dataset
3.1.2 CT

A CT image is constructed by combining multiple X-ray images from different angles to
generate a 3D representation of bones, muscles, blood vessels and organs [5]. While the
chest CT is more detailed, it is more expensive and takes longer to generate than the
X-ray image. Thus, the CT scan is often only performed when there is a strong suspicion
for malicious tissue or the X-ray scan indicated a further examination. For CT, we only
found a single public dataset available that contains labelled tumorous images.

LIDC-IDRI. The LIDC-IDRI (The Lung Image Database Consortium) dataset [6], pub-
lished by the National Cancer Institute (NCI) in 2011, contains 244,527 chest CT images,
of which 1,018 contain a tumor.

Figure 3: Chest CT image from the LIDC-IDRI dataset transformed into 2D
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3.1.3 MRI

The MRI uses magnetic fields and computer generated radio waves to construct an image
that allows to display not only hard masses, but also soft tissues (such as brain masses,
blood vessels and organs) [25]. While the MRI poses the slowest and most detailed type
of medical image, it is not suitable for the detection of hard objects, such as tumours in
the chest area. Thus, there are no public datasets available containing chest MRI images
with tumours and we excluded the type from our further research.

3.1.4 Conclusion

While MRI provides the most detailed medical images, X-ray and CT are more relevant
for the early detection of tumors in practice. With the complexity of a third dimension in
CT images, we agreed with the project partner to focus on X-ray images. Out of the three
publicly available X-ray datasets, ChestX-ray8 seems the most relevant with regards to
the total number of images and the number of segmented tumorous images.

3.2 Data exploration

The 112,120 images in the ChestX-ray8 dataset are provided by 30,805 patients. Thus,
in some cases multiple images from different angles for the same patient are provided.
Along with the images, the NIH published two CSV files containing metadata. The table
Data_Entry_2017_v2020.csv contains metadata for each image, such as the finding of
the image (eg. "no finding”, "nodule” etc.), a patient id, the age of the patient, the
gender as well as the image view position ("AP” for frontal view, "PA” for backside
view). Further, it contains the original dimensions of the image, as all images have been
resized to the same dimensions of 1024x1024 pixels. Further, the NIH provides a second
file named BBox_List_2017.csv. The table contains the coordinates of the bounding
boxes to indicate the location of the findings from the metadata table. As previously
mentioned, only around 1% of the findings from the metadata table are provided with the
coordinates of the bounding box.

3.3 Data pre-processing

As we will focus on healthy images as well as images with a segmented tumor in the
following, we extracted these images from the 112,120 images. Further, we have created a
table that contains the exact path to the respective files within our code repository as well
as all the metadata outlined in the previous section. Lastly, we have removed few selected
images that contained strong distortions or distracting elements, such as pacemakers or
cables. Examplary images from the NIH dataset can be found in the appendix in section
one.
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4 Segmented synthetic image generation

In this section we outline three approaches to generating synthetic segmented images
we identified based on the literature review in section two and recent publications. To
the best of our knowledge, there is no existing overview on the different possibilities of
combining methods to achieve this task.

4.1 Post-generation segmentation

The first approach treats the synthesis and segmentation of synthetic images as two
separate tasks. In a first step, a model that generates both healthy and tumorous synthetic
images based on original images is trained. In a second step, the synthetic images are
segmented using a pre-trained segmentation model. The segmentation model is trained
on segmented original images and transferred to synthetic images.

. Synthesis i Segmentation i
Original Synthetic Segmented synthetic

Figure 4: Post-generation segmentation

4.1.1 Technical approach

For the synthesis, any traditional conditional GAN model can be utilised. To perform
the segmentation, traditional object-detection architectures such as U-Net and RetinaNet
have been shown to perform well in the medical domain [31].

4.1.2 Challenges

While original medical images without a label (tumorous/non-tumorous) are sufficiently
available to train a synthesis model, the availability of segmented original images to train
the segmentation model poses a challenge. Segmentation models trained on insufficient
training data are creating unreliable segmentations and make the synthetic segmented
images not suitable as a training input for downstream machine learning models. This
aligns with the original motivation for this project, which is around improving the per-
formance of segmentation models for tumour detection by increasing the volume of data
available for training.

4.2 Post-generation inpainting

The second approach again treats the synthesis and segmentation of images as separate
tasks, however, with the difference that only healthy images are required for training the
synthesis model. After generating a healthy synthetic image, a tumor is sampled into the
healthy lung of an existing image and the respective segmentation mask is generated. To
sample the tumor into the image, two approaches have been identified in the literature:
Either the position within a given image is masked and inpainted with tumorous mass,
what we denote as tumorous inpainting or, a tumorous region within a patient image
is masked and inpainted with healthy mass, what we denote as healthy inpainting. The
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latter approach allows to extract the shadows of tumors that can freely be sampled into
arbitrary images. The approaches primarily differ by the type of images required for
training: the tumorous inpainting approach requires tumorous images and the healthy
inpainting approach requires sufficient healthy images.

Original Synthesis Synthetic .
Segmented synthetic
(healthy) (healthy) Inpainting ° y
Tumor

Figure 5: Post-generation inpainting

4.2.1 Technical approach

To perform the synthesis, any traditional unconditional GAN model can be utilised as
only healthy synthetic images are supposed to be generated. To perform inpainting of
tumors, recent GAN architectures have been proposed that evaluated the performance
of inpainting on brain MRI images. For inpainting of healthy mass, any traditional
inpainting method from the photo inpainting domain can be transferred to medical image
inpainting, as shown by Sogancioglu et al. [33].

4.2.2 Challenges

As with all synthesis approaches, sufficient training data is required, thus for the inpainting
approach using healthy images, enough data is available. When pursuing the tumorous
inpainting approach, the availability of training data will likely pose a challenge, since
tumorous pictures are not as widely available.

4.3 Segmented generation

The third approach treats the synthesis and segmentation of images as one interconnected
task. For training, either already segmented original images, or the manual segmentation
of synthetic images by a human within the training process are required.

o Synthesis & segmentation .
Original Segmented synthetic

Figure 6: Segmented generation

4.3.1 Technical approach

The integrated synthesis and segmentation is a relatively complex and new approach, that
has just recently sparked the interest of the research community. A promising approach,
especially for the medical domain, are the combination of StyleGAN and DatasetGAN.
As introduced in section two, StyleGAN is a synthesis model that learns a dense latent
space during the training process. This latent space is then leveraged by DatasetGAN for
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feature extraction. DatasetGAN then requires only few of the generated synthetic images
to be segmented by a human annotator to train a segmentation model.

4.3.2 Challenges

By leveraging the few-shot concept and pre-extracted features, DatasetGAN seems promis-
ing for generating segmentations using only few segmented images as input. However, as
StyleGAN and DatasetGAN are tightly interconnected but developed separately and at
a high pace, it finding stable versions without conflicts remains a challenge. Further, the
application of DatasetGAN has mainly been researched on medium to large sized objects
in images. Whether DatasetGAN also performs sufficiently on small objects needs to be
evaluated.

4.4 Conclusion

While the post-generation segmentation approach seems the most mature and researched,
our project lacks the enough data to train an object detection model. While sufficient
healthy training images are available, we will focus on the post-generation inpainting as
well as the segmented generation approach for our further experiments. Here it needs to
be stated that we were unable to test the segmented generation using the combination of
StyleGAN and DatasetGAN during this project, thus cannot evaluate the feasability for
medical images.
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5 Experiments

We designed a set of experiments to compare the performance of the described hetero-
geneous approaches: This allows us to compare not only some approach-specific metrics,
but their impact on the end-to-end performance of object detection models for tumours.

5.1 Experiment design

We designed an experiment that consists of two stages: In stage I, we generate segmented
synthetic medical images containing tumors using three different approaches. With the
image, a segmentation mask indicating the location of the tumor is provided for each
image. In stage II, we train an object detection model on each of the sets of generated
images. Further, we train the same model on the original images provided by the ChestX-
ray8 dataset. This provides us with a baseline to compare the impact of the generated
training images on the performance of the object detection model.

5.2 Stage I: Image generation

In this section, we briefly outline the implementation and training process for each of the
three generational approaches selected in the previous section. Further, we provide the
reader with a visual overview on the achieved results.

5.2.1 Contextual Attention Inpainting

Contextual attention (CA) models are the latest evolution of what can be described as
traditional inpainting models. They have their origin in the inpainting on photos of
objects and persons [39]. However, in 2018 Sogancioglu et al. compared the performance
of various traditional inpainting methods on medical images and found the CA model to
perform best [33]. Further, in 2020 Guendel et al. have shown the effectiveness of CA
based models to perform training data augmentation on medical images [10].

Implementation. While Guendel et al. have shown the effectiveness of CA inpainting
on tumorous medical images, there is no public implementation of their modified model
available that would allow to reconstruct the results on a different dataset. Thus, we based
our implementation on the original implementation by Yu et al. [13] and reconstructed the
changes described by Guendel et al. This included some adaptations on the Datal.oader
to handle the black and white format that the ChestX-ray8 x-rays images are provided
in. Further, we modified the inference function to handle batches of images instead of one
image at the time. The adapted implementation used for this report can be found here
[16].

Training. In contrast to the approach by Sogancioglu et al., which included the down-
sampling of the training images from 1024x1024 to 512x512 pixels to reduce training time,
we trained the inpainting model on square 256x256 images with a masked area in the center
of 128x128 pixels. The area around the mask is denoted as ”context” for the model to
base the inpainting on. Compared to the training data for inpainting on normal photos,
the ratio of 2:1 among context and masked area is relatively small. However, as shown
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by Sogancioglu et al., the context is sufficient for the less complex medical images. For
each of the healthy 1024x1024 images in the ChestX-ray8 training dataset, we extracted
10 squares from random locations in the image with the dimension of 256x256. Thereby,
we extracted 600.000 unique squares for training. We trained the contextual attention
model on one NVIDIA Tesla V100-SXM2 GPU for 60.000 iterations. The training took
around 24 hours.
0.09
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Figure 7: Contextual Attention: AE-Loss

Results. The performance of the contextual attention inpainting model can primarily be
assessed by considering the AE-Loss metric. The figure [7| shows progress during training
and the convergence around a value of 0.055. When comparing to the benchmarking of
inpainting methods on medical images by Sogancioglu et al., this value does not recon-
struct the performance they have been able to achieve, however, for the limited training
time of our experiment the result can be considered sufficient. Aside from the evaluation
of metrics, we inspected the masked and patched images. To visualise the differences be-
tween the original and the inpainted image, we subtracted the inpainted from the original
image. In figure 8], the inpainting has been performed on tumorous images that have been
inpainted with healthy mass. The subtraction of the inpainted (healthy) image from the
original (tumorous) image results in an extracted tumour.

To convert healthy X-ray images into tumorous ones, we placed the extracted tumour
at a semi-random location within the X-ray. As we aim to generate tumorous images
containing lung cancer, the tumour location is restricted to be within two bounding boxes,
indicating the position of the left and the right lung respectively. The bounding boxes for
the lung are derived using visual inspection for a set of exemplary images. In figure[9] the
original healthy image, the same image with the added tumour (red box) and location of
the lung (yellow boxes) as well as the final tumorous image can be inspected. Further
images can be found in the appendix in section two.

5.2.2 AOT-GAN Inpainting

The Aggregated Contextual-Transformation GAN (AOT-GAN) builds on the latest evolu-
tion of convolutional GAN models[40]. The model is specifically designed for the inpaint-
ing on high-resolution images. Similar to the CA inpainting approach, the AOT-GAN
was mainly developed for inpainting on photos of objects and humans. To the best of
our knowledge, recent inpainting methods have not been evaluated for the inpainting on
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A) (B) © D)

Figure 8: CA Inpainting: (A) Original, (B) Masked, (C) Inpainted, (D) Nodule

Figure 9: CA Inpainting: (A) Healthy, (B) Inpainted with bounding boxes, (C) Inpainted
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5 EXPERIMENTS 16

medical images before.

Implementation. The publication by Zeng et al. provides an implementation of the
model that is openly accessible [29]. While training the model on a small set of test
images, we noticed several small and some major issues in the implementation. The
issues have been around typos in the variable utilisation, a broken model saving function
to store the training checkpoints as well as logical issues in the inference function. The
latter caused the images for inpainting to be augmented twice, resulting in visually bad
inpaintings while the training metrics seemed good. Therefore, we forked the original
implementation and created a modified version that we used for this report. The code
can be found here [15].

Training. We used the same 600.000 square 256x256 patches we extracted for the CA
inpainting method to train the AOT-GAN to allow for comparability. We trained the
AOT-GAN for a similar number of iterations (61.000) on an NVIDIA Tesla P100 GPU.
The model training took approximately 22 hours. During the training process, the L1
loss as well as the perceptual loss converged to a value of 0.008 and 0.04 respectively.
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Figure 10: AOT-GAN: L1-Loss
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Figure 11: AOT-GAN: Perceptual Loss

Results We further inpainted the same masked images containing tumours as for the CA
method. The patches and extracted tumors can be found in figure [12l When comparing
the inpainted patches to the ones generated using the CA method, one can notice that
the structures within the image are slightly sharper and eg. the rips look more similar
to the original image than for the CA method. Further, the extracted tumours are more
sharp, indicating a more precise inpainting.
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A) (B) © D)

Figure 12: AOT-GAN: (A) Original, (B) Masked, (C) Inpainted, (D) Nodule

17
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5.2.3 StyleGAN & DatasetGAN
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StyleGAN is a conditional style-based GAN that allows to generate synthetic high-fidelity
images. DatasetGAN is a few-shot model that builds on the trained StyleGAN layers that
allows to segment the generated synthetic images.

Implementation. While StyleGAN has first been proposed in 2018 with an open-source
implementation available, the architecture of the model as well as various further imple-
mentations have evolved rapidly. In parallel, DatasetGAN has been proposed, that builds
on the internal architecture of StyleGAN. As a majority of the implementations seems
mainly supplementary for the submitted papers, the code is to a large degree fragile and
insufficiently documented. Despite experimenting with several combinations of StyleGAN
and DatasetGAN implementations, we could not perform the end-to-end synthesis and
segmentation as we planned for this approach. Thus, we will not further regard the seg-
mented generation approach for this experiment and the testing framework. However,
we will briefly summaries the implementations and experiments we conducted with both
components individually for completeness and as a starting point for further research.

StyleGAN and DatasetGAN implementations

Model

Issue

Original Tensorflow implementation

DatasetGAN needs a Pytorch Checkpoint

Official Pytorch implementation

CUDA Compatibility issues with newer
GPUs

Official Pytorch StyleGAN3 implementation
with StyleGAN2 flag

Working with adaptions on the original im-
plementation to handle B/W images

Table 2: Comparison of tested StyleGAN implementations

Training We trained the StyleGAN using 8,000 images from the ChestX-ray8 dataset.
The training data was randomly selected and is comprised of both images with nodules
and healthy images. We trained the model using a single NVIDIA A100 Tensor Core

GPU for 1.3k iterations.
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Figure 13: StyleGAN: FID50 Score (logged every 100 iterations)

Results Already after 1,000 iterations, StyleGAN was able to produce synthetic images
in good quality. A sample of the generated images can be viewed below. The FID score
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quickly decreased to about 40.

Figure 14: StyleGAN generated synthetic images

5.3 Stage II: Testing framework

To allow for the comparison of the generated training images, we developed the previously
mentioned testing framework. In this section, we will outline the design of the framework
and introduce the implemented components.

5.3.1 Framework design

The testing framework trains an object detection model on a provided set of training
data to evaluate the model performance on a ground-truth test dataset. In the below
figure, training data generated using three methods is fed into the framework that yields
comparable model performance results. The framework allows to assess the end-to-end
impact of the generated training data on the model performance. Thus, it allows us
to give a recommendation on the method to pursue for generating segmented synthetic
training data.

Train data Evaluation

Method 1 \ / Method 1

Train data . Evaluation
Test F k

Method 2 SRS SHEReRr Method 2

Train data / Evaluation

Method 3 Alssts G Method 3

Figure 15: Testing framework high-level overview

5.3.2 Framework architecture

The testing framework is built around an abstract training pipeline that allows to plug-in
any bounding-box based object detection model. For this report, we focused on RetinaNet
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for the object detection, as Schultheiss et al. have shown in 2021 that the model can
perform at comparable error rates to a trained human radiologist[31]. In a first step, the
model is trained on the provided training data generated via the respective method, as
well as a list of bounding boxes, indicating the position of the tumours on the training
images. In a second step, we use the trained model to perform an inference step on a set
of test images to predict the location of the tumours. For this project, we used the 70
ground-truth images, as well as the bounding boxes of the respective tumours, provided
by the NIH Chest-8 dataset. In a final step, we compare the predicted tumour locations
with the actual tumour location and calculate our evaluation metrics.

Training Images Training Model Inference  —{ Evaluation
Training BBoxes Test Images Test BBoxes

Figure 16: Testing framework architecture

5.3.3 Implementation

The testing framework is implemented in Python and allows for interaction via a command-
line interface (CLI). The program is invoked by calling the main function via the CLI
python main.py. This would start the framework with the default training dataset, the
default benchmarking model as well as the default parameters. However, by passing
parameters to the CLI, different testing configurations can be experimented with. The
following parameters are available via the CLI:

--sources. Allows to provide a list of methods to benchmark and compare. For each
method, a CSV needs to be provided that contains a list of exact paths to the training
images as well as the coordinates of the bounding box indicating the tumour location on
the image.

--benchmarks. Allows to provide a list of benchmarking models to train on the provided
training datasets. As per default, a RetinaNet model is trained. For the RetinaNet
model, we based our framework on the PyTorch implementation based on the original
paper, using a ResNet35 backbone. The original implementation can be found here [2].
However, due to some outdated dependencies, we forked the original implementation and
performed some minor bugfixes. The implementation we used can be found here [18].

--accelerator. Allows to specify the PyTorch backend the benchmarking model is
trained on. As per default, the RetinaNet implementation only supports a GPU as a
PyTorch backend. To allow faster development cycles and local testing, we extended the
implementation to also support CPUs and the newly released Apple M1 PyTorch back-
end. The default backend is cpu. The previously mentioned backends can be activated
via gpu and mps respectively.

--num_epochs. Allows to specify the number of epochs the benchmarking model is trained
for. The default is set to 50.
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--pretained_model_path. Allows to specify a path to a PyTorch checkpoint to continue
the benchmarking model training from. This parameter can be used only when a single
benchmarking model and training dataset is specified.

While the CLI provides a good interface to start the testing framework, it lacks visual
capabilities to allow for a comprehensive overview on the different methods. Therefore,
we integrated the open-source model management platform MLflowf] When starting
a new testing framework run via the CLI, we automatically start a new MLflow run
for each training dataset the benchmarking model is trained on. MLfow allows to log
training parameters, evaluation metrics as well as the model itself to a respective run.
When starting the testing framework, we directly log parameters such as the name of the
training dataset, the number of images in the dataset as well as the ratio of the train-test
split. After the model training during the inference on the test images, we further log
all evaluation metrics to the respective MLflow run. MLflow provides a simple graphical
user interface (GUI) that can be started viamlflow ui in the testing framework directory.
The figure below provides and example of the MLflow Ul with various runs of the testing
framework logged.

Figure 17: MLflow UI: Comparison of the performance of various training dataset and
benchmarking model combinations

For the interaction with MLflow, we built a custom gateway that abstracts many of the
complex functions into simple API calls. The implementation of the MLflow gateway can
be found here [17]. The implementation of the testing framework with a more detailed
usage guide can be found here [19].

5.3.4 Results

To assess the impact of the training images generated in stage I on the performance of
the benchmarking model, we evaluated each method using the testing framework. We

*https://wuw.mlflow.org
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implemented a custom logic to classify the predicted nodule bounding boxes according
to their overlap with the ground-truth bounding box. Once the overlap is over a certain
threshold, the prediction is classified as true positive, otherwise as false positive. This
method allows us to derive a score for each method, that is comparable to the FROC
score [7]. To have a baseline for comparison, we also evaluated the performance of the
benchmarking model trained on the original set of segmented NIH images only. This
evaluation can be found as Baseline in table [3. Further, we evaluated the performance of
the images generated using the CA Inpainting method as well as the AOT-GAN Inpainting
method. Both results can be found in table [3]

Testing framework results
Method # of training images | Test dataset Benchmark dataset
Baseline 79 0.03 -
CA Inpainting 6.402 0.62 0.27
AOT-GAN Inpainting || 6.402 0.65 0.28

Table 3: Comparison of the testing framework results

5.4 Discussion

First of all, the results allow to confirm the initial hypothesis of this report: Training
an object detection model on a very small dataset does not yield good results (see the
Benchmarking method). Second, both the object detection model trained on the dataset
generated using the CA inpainting and the AOT-GAN inpainting method respectively
perform significantly better. To allow for comparability between the two methods, we
have inpainted the same healthy images using the nodules extracted via the respective
inpainting method. The results show that the images inpainted with the AOT-GAN
extracted tumors slightly outperform the images inpainted with the CA tumors. This
might be due to the more granular inpainting of the AOT-GAN and the resulting sharper
tumor contour that can be placed on the images. However, both methods seem to perform
significantly worse on the benchmarking dataset, compared to the test holdout dataset
of the respective method. This might be due to the bad visibility of the tumors on some
of the images. During the inpainting process, we have manually removed some of the
extracted tumors that have barely been visible. These might be the tumors that cause
the drop in performance li Further, there is a possibility that the object detection model
overfitted to the exact characteristics of the tumors we placed on the healthy images. We
tried to mitigate this effect by applying random transformations (such as rotation and
scaling) before inpainting the tumors. An example of a good and a bad prediction by the
object detection model trained on the AOT-GAN dataset can be found in figure [18 and
respectively. More images can be found in the appendix in section four.

To place the observed results into a larger context, we want to recap the performance
of a human radiologist and an object detection model that was trained on even more
images in a closed clinical trial [31]. Schultheiss et al. have found the human evaluator

fNote: the benchmarking dataset contains only the described 79 nodules, whilst the test holdout set
contained around 900 images.
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to perform at a FROC score between 0.54 and 0.87, whilst the best performing object
detection model performed at a score of 0.81. While the object detection models trained
on the synthetic images do not allow to reconstruct these results, they show the potential
of augmenting healthy images with tumors extracted from very few segmented images.

Figure 18: Good prediction: Comparison of the ground truth location (left) with the
predicted tumor location (right) of the AOT-GAN inpainting method

Figure 19: Bad prediction: Comparison of the ground truth location (left) with the
predicted tumor location (right) of the AOT-GAN inpainting method
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6 Conclusion & Outlook

To conclude, we have successfully shown how the bottleneck of segmented tumorous im-
ages for the training of object detection models can be mitigated. Based on a publicly
available dataset with only very few segmentation’s, we have been able to construct a
synthetic dataset that significantly improves an object detection models performance.
Further, we have clustered individual methods to identify three distinct approaches to
generating a synthetic segmented dataset: Post-generation segmentation, post-generation
inpainting as well as the segmented-generation. We have demonstrated the effectiveness
of the second approach, and innovated by experimenting with more recent inpainting
methods. Further, we conducted experiments with the segmented-generation approach,
and identified a lack of reliable implementations.

As next steps, we propose to build an end-to-end pipeline based on the inpainting ap-
proach, for the application in an industrial setting. As part of this pipeline, we would
recommend to extend our implementation by the segmentation of organs. This would
allow to direct the system to inpaint tumors not only in previously specified regions, but
in the exact location of an organ in an image. However, we would recommend to remain
the "human-in-the-loop” approach and involve trained medical personnel in the process
of evaluating the extracted nodules and assessing the quality of the inpainted images.

Aside from the inpainting approach, we are optimistic that the compatibility gap of
segmented-generation methods can be overcome. As shown shown in our experiments,
these methods have the potential to leverage synergies between the task of image synthesis
and segmentation. Aside from that, these methods currently draw a lot of interest in the
research community which promises relevant and groundbreaking innovations.

Lastly, we want to thank our mentors and supervisors for the continuous support over the
whole period of the project.
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Appendix

Section 1: NIH ChestX-ray8 dataset

Figure 20: NIH ChestX-ray8: Exemplary images containing cables and pacemakers
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Section 2: Inpainting

Figure 21: CA Inpainting: (A) Healthy, (B) Inpainted with bounding boxes, (C) Inpainted
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Section 3: StyleGAN

Figure 22: StyleGAN: Initial Model before training
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Figure 23: StyleGAN: Generated Images after 200 iterations

Figure 24: StyleGAN: Generated Images after 400 iterations
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Figure 25: StyleGAN: Generated Images after 800 iterations

Figure 26: StyleGAN: Generated Images after 1200 iterations
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Section 4: RetinalNet Predictions

Figure 27: RetinaNet Prediction: Ground truth tumor location (left) and the predicted
tumor location (right) of the AOT-GAN inpainting method
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Figure 28: RetinaNet Prediction: Ground truth tumor location (left) and the predicted
tumor location (right) of the AOT-GAN inpainting method
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