
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

TUM Chair of Software Engineering for
Business Information Systems (sebis)

Final report of project:

NLP and Knowledge Graphs for Research

Cluster Prediction and Analysis

Authors Cavit Cakir, Christian Brand, Raoyuan Zhao, Valentina
Izrailevitch, Yaling Shen

Mentor M.Sc. Tim Schopf
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Feb 2023



1

Abstract

With a fast growing research community and even faster growing domains of area of re-
search it is important to create Knowledge Graphs allowing for orientation in the domains
of various fields of study (FoS). Creating of such Knowledge Graphs requires identifying
relevant information such as areas of research in particular institutions, classifying the
information to different subjects and creating relevant nodes and corresponding relations
in the knowledge graph. In our project we focus on classifying the scientific publications
(using the titles and abstracts of the papers) based on concepts of the Field of Study
Ontology. We use the FoS Ontology provided by the OpenAlex research. It includes 19
global fields of study and has 6 levels of hierarchy, from more abstract at level 0 to the
most specific at level 5. For the supervised approach we use Transformer-based mod-
els such as BERT and SciBERT as well as SVM trained on different datasets of labeled
publications. The results shows superiority of the SciBERT model (BERT pretrained
with scientific texts) over two over models in most of the global (level 0) categories. We
continue with the unsupervised approach based on CSO Classifier and expand it to 19
scientific domains. In addition to changing the ontology of the classifier we implement
two different embeddings approaches - word2vec model based on the OpenAlex dataset
and SPECTER embeddings of the same dataset. The result of both approaches were sim-
ilar. We present a hybrid model which combines the successful parts of both approaches
- it uses the supervised approach for global classification followed with the unsupervised
classification on more specific levels. Additional we present an unsupervised hierarchical
model which classify the publications based on their similarity to the ontology concepts
using embeddings of Transformer models. On the final phase of our project we proceed
to the modeling of the research clusters using both text-based Topic Modeling as well as
Graph clustering.
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1 Introduction

1.1 Problem definition and goals of the project

When considering the current academic world, publications are an integral part of how
research is communicated and shared. But as the academic world has grown and be-
come a global effort, the number of publications has risen accordingly, making literature
research an ever more time-consuming task. Our project with the TUM chair for Soft-
ware Engineering for Business Information Systems (sebis) wants to tackle this problem,
by working on automatically labeling publications with topics from the OpenAlex topic
ontology, based on their title and abstract.
Our project has 2 main focuses: the primary goal was to implement, adapt and compare
existing methods of topic labeling for publications from all fields of study. Our secondary
goal was to analyze the publication topics of an institution and their researchers , and
what insights a graph cluster representation might offer, e.g., concerning their research
areas in comparison to text-based topic modeling.

2 Outline

This section contains a brief overview of the following chapters outlining the various
models we examined.
After sourcing, preprocessing and downsampling our data (see chapters 3 and 4), we
implemented and adapted existing models for an unsupervised and supervised approach
(see chapters 5 and 6). While the unsupervised approach had the goal of predicting all
potential topic labels, the supervised approach focuses on predicting top level concepts
(e.g., medicine, art, computer science, etc.).
Beyond just improving and expanding existing models, we created a hybrid model com-
bining the top-level supervised prediction with the unsupervised approach (see chapter
7).
Further we implemented a new model idea, which utilizes topic embeddings and hierar-
chies, correspondingly named embedding-based hierarchical selection model (see chapter
6).
In Chapter 8, a graph clustering approach is compared to a topic modeling approach on
a publication graph of the TUM.

3 Data Sets

3.1 OpenAlex and Ontology Dataset

OpenAlexs dataset [8] was the foundation for the main dataset we use in our project. In
particular we used the subset of it with scientific works. The dataset was downloaded
through the OpenAlex API from the OpenAlex website, which has at the moment 240M
works and adds approximately 50,000 newly indexed works daily [7]. The data was down-
loaded in snapshots, the latest was from the 16th of September, 2022. The dataset includes
7,154,102 works entity. Each work entity provides information about the title of the work,
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the text of the abstract, date of publication, labels, which corresponds to the concepts
from the OpenAlex ontology. Due to the limitations in the computational power and to
speed up the exploration we downsample the original dataset to approximately 10% of its
size, preserving the distribution of the concepts among the papers.
The OpenAlex Ontology is a hierarchical representation of concepts, including relationship
(hyponym - hypernym) between them. Concepts are abstract topics, related to the content
of the papers. The current version of the OpenAlex Ontology includes 5 levels of concepts,
starting with 19 most global at the level 0 (such as “medicine” or “computer science”)
and ending with more precise and rare concepts at level 5 (such as “cultural analytics”
or “software analytics”).

3.2 Silver and Gold Dataset from SciRepEval

The silver and gold datasets are used for the supervised level zero multi-label classification
task and are part of SciRepEval, a novel collection of datasets and a new evaluation
benchmark for document-level embeddings in the scientific domain released by Amanpreet
Singh et al. [10]. There are 25 tasks including classification, regression, ranking, and
search format. The silver dataset is a new large-scale Field-of-Study (FOS) set with
labels based on publication venue, where each paper within a venue is assumed to belong
to a narrow set of fields and the FoS labels are manually assigned to the publication
venues. The gold dataset, whose FoS labels are manually labeled into at most three, is
used only for testing.
The original silver and gold datasets have 23 FoS labels while the OpenAlex corpus has
only 19 corresponding categories at level 0. To perform a more precise comparison of
the classification results, we remove the samples that have been assigned with labels not
included in the 19 labels in the OpenAlex corpus out of the silver and gold datasets, and
re-assign their label ids correspondingly to the OpenAlex id system. After preprocessing,
there are in total of 484,605 publications in the silver train set and 60,991 in the test set.
The number of samples included in the gold dataset has decreased from 472 to 392.

3.3 TUM Publication Graph Data

TUM publication graph data is used for generating the publication graph of TUM, which
can help to extract the popular topics and identify connection between them by means of
clustering. There are 83,580 publications included. The original publication data consists
of DOI, article title, abstract, author information, institution, and year of publication.
Each publication is additionally tagged with topic labels originating from the OpenAlex
ontology, thus providing the concept information. The tagging is performed with the help
of the OpenAlex-concept-tagging V2 model, which provides the results of the classification
based on the input consisting of the title and abstract of the article.
Each publication in the original data is then treated as a node, as well as each label in
the ontology. There are two kinds of relationships in the graph data: the correspondence
between the publication and the label, and the ontology relationship within the labels.
These relationships are directional, so the whole graph is a directed graph. There are
157,832 nodes and 2,791,452 edges in the graph data.
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4 Downsampling

Originally downloaded OpenAlex data set is too large, and given the computational power
of the existing GPU, it would take too long to train model on the whole data set. For that
reason we decided to reduce the size of the data set to ten percent of the original size. To
keep the bias of the classification model minimal and maintain the data representing of
the original dataset but still balanced we preserve the data distribution (identical to the
original one). The downsampling is therefore necessary.
In order to achieve these two goals, the downsampling algorithm is designed in the fol-
lowing way:
Firstly, we take the best-fit label in the concepts as the only label for each sample, then
the data is grouped according to the level of the labels and the types of labels in each
group are counted, thus calculating the mean of amounts of labels in each level. The
gap between original samples for each label and the expected are obtained by subtracting
one-tenth of the mean from the number of samples for each label. To make the data more
balanced, only samples with a number of labels above one-tenth of the mean and with a
gap greater than 1 are discarded, and the ratio of discards per label is calculated as:

discard pro =
gap[i][j]

gap sum[i]
∗0.1∗discard amount[i]

amount[i][j]

where i means which level and j indicates the specific label in current level. discard amount[i]
is the amount of samples whose label belongs to level i that should be discarded. amount[i][j]
is the amount of samples for current label. gap sum[i] is the sum of all positive gaps in
the level i. Then, random sampling is taken in one minus this proportion to complete the
downsampling.
After applying this algorithm, the amount of samples in original dataset change from
71,541,027 to 7,154,541 while the number of label stay the same, i.e. 63,245, which means
none of labels were lost in the process of the downsampling.

Level Amount(original) Amount(downsampled) Variance(original) Variance(downsampled)
0 15721137 1572114 2033243709368.83 779115722.34
1 2589180 258919 242754007.68 123197.94
2 33951811 3395241 18041321.63 18754.88
3 141545646 1415533 3754366.51 2687.82
4 4108870 411047 899557.42 567.64
5 1015383 101687 466091.91 268.66

Table 1: Amount and variance of the topic labels before and after downsampling

The visual comparison between original dataset and downsampled dataset as a whole
is shown in Figure 1, comparison of the two dataset across the labels of level 0 could
be seen at Figure 2, other levels’ comparisons are attached in appendix 11. During the
downsampling process, publication date was not considered as reference for discarding,
but as can be seen in 3, publication date also becomes more balanced.
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Figure 1: Label Distribution Comparison Between Original Dataset And Downsampled
Dataset

Figure 2: Level 0 Label Distribution Comparison between Original Dataset and Down-
sampled Dataset



5 SUPERVISED APPROACH FOR LEVEL ZERO CONCEPTS 8

Figure 3: Publication Date Distribution Comparison between Original Data set and
Downsampled Data set

There is some data in the data set with label scores below 0.3, which indicates that they
have no credibility and are likely to be incorrect data, so the downsampled data needs to
be cleaned up. The proportion of such data in the downsampled data set is 0.1967% and
can be discarded. The length of the cleaned data set is 7,116,099.
In addition, as the data set after the downsampling is subsequently sliced into the training
set, validation set and test set needed to train the model, it is necessary to ensure that
the variety of samples in each set is the same. To elaborate more, it is impossible to get
the trained model to give classification results for this type of article if a labeled sample
is only present in the test set and there is no data with this label in the training set.
Data with label of higher level (e.g., 4 or 5) may only exist in one or two samples, and
after the statistics have been calculated, it is found that there are 35,114 samples whose
label appear less than ten times (ten is chosen as the filtering threshold because the
approximate ratio of training set, validation set and test set is eight to one to one when
splitting the set), accounting for 0.4934% of the entire downsampled dataset so they can
be discarded directly. The length of the final downsampled dataset is 7,080,985. After
splitting, the train set length is 5,664,672, validation set length is 708,247 and the test
set length is 708,066.

5 Supervised Approach for Level Zero Concepts

We consider the level-zero ontology label prediction problem as a multi-label classification
task, where a single publication can be assigned to one or several level-zero Field-of-Study
(FoS) concepts. In this section, a machine learning model, SVM, and two pre-trained deep
learning language models, BERT, and SciBERT are implemented to train the classifier.
To compare the model performance as well as the ability of generalization, we train each
model on two different data sets and test them on three data sets, including a manually
labeled one.
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5.1 Machine Learning Model: SVM

Since the linear support vector machine model is applied by [10] for the classification
downstream task, we also train a multi-label SVM model as our baseline. We simply
implemented scikit-learn built-in linear SVM function with MultiOutputClassifier

class and a random state equal to 42 for all the experiments.

5.2 Transformer Models: BERT and SciBERT

Figure 4: Supervised Multi-label Classification Model Architecture

Deep learning model architecture is shown in Figure 4. It consists of two parts, a Trans-
former encoder, and a multi-label classifier. A Transformer encoder is implemented to
get the document-level embeddings for the input text, including the title and abstract of
the publications. Based on the embeddings, the classifier will generate the probabilities
of the publication being assigned to each label category. We then use a sigmoid function
as well as a round function to get binary results.
We first use the famous pre-trained language representation model Bidirectional Encoder
Representations from Transformer (BERT) as our baseline transformer model [5]. Since
we are dealing with scientific publications, we also implement SciBERT, a language model
that is pre-trained on a large multi-domain corpus of scientific publications based on BERT
for our multi-label classification task[2].
As for the experimental setup, we simply adopt the built-in functions huggingface trans-
formers package offered in AutoModelForSequenceClassification.from pretrained(),
with the problem type of ’multi label classification’. We use ’bert-base-uncased’ to load
the BERT model and ’allenai/scibert scivocab uncased’ for SciBERT. For all experiments,
we train 3 epochs with the max length for encoder padding being 256, batch size of 32,
and learning rate 1e-5.

5.3 Experimental Results

The experimental results on the silver dataset and the OpenAlex corpus are shown in
Table 2 and 3, respectively. We can see that usually SciBERT model can achieve the best
performance, but it is not guaranteed for every category.
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Precision Recall F1
#

SVM BERT SciBERT SVM BERT SciBERT SVM BERT SciBERT

Computer science 82.77 89.71 93.71 61.15 87.31 85.26 70.34 88.40 89.28 4525
Medicine 84.07 95.14 95.53 79.36 96.47 95.18 81.64 94.90 95.36 8312
Chemistry 79.51 93.87 93.23 62.10 89.60 93.02 69.73 91.69 91.13 5200
Biology 78.43 93.48 95.46 74.43 93.45 93.59 76.53 93.46 94.52 6916
Materials science 79.13 88.72 89.32 63.76 87.12 88.46 70.62 87.91 88.89 2997
Psychology 87.73 95.24 95.67 78.96 94.71 94.87 83.12 94.98 95.27 3722
Business 83.87 92.16 89.13 63.06 83.93 86.28 72.00 87.85 87.68 1064
Mathematics 85.23 92.87 91.48 72.19 88.73 92.58 78.17 90.76 92.03 4420
Political science 79.99 91.70 86.75 54.52 85.16 86.77 64.84 88.31 86.76 3153
Environmental science 84.62 94.81 95.48 76.21 93.89 94.04 80.19 94.35 94.75 6713
Physics 86.29 93.18 95.87 73.87 93.22 92.12 79.60 93.20 93.96 8912
Engineering 74.87 88.53 82.33 35.51 78.66 86.31 48.17 93.31 84.27 4523
Sociology 89.88 87.24 89.18 42.60 72.36 67.42 57.80 79.11 76.79 709
Geography 82.78 91.63 92.89 78.54 95.20 94.47 80.60 93.38 93.67 1230
Economics 79.33 83.89 87.05 58.03 87.81 83.52 67.03 85.81 85.25 2864
Geology 81.39 93.34 92.89 67.94 93.15 92.96 74.06 93.25 92.93 1519
History 82.71 94.63 93.81 82.02 94.70 94.00 82.36 94.67 93.91 5401
Art 85.81 94.66 92.93 60.47 86.51 79.53 70.94 90.40 85.71 430
Philosophy 86.14 83.73 77.97 37.87 80.63 84.33 52.61 82.15 81.02 919

Micro Avg. 82.72 92.53 92.60 68.67 90.56 91.22 75.05 91.54 91.91 73529
Macro Avg. 82.87 91.50 91.09 64.36 88.46 88.67 71.60 89.89 89.75 73529
Weighted Avg. 82.50 92.51 92.66 68.67 90.56 91.22 74.40 91.49 91.90 73529
Samples Avg. 70.58 90.54 90.97 69.85 90.55 91.06 69.10 90.26 90.77 73529

Table 2: The models are trained on the silver train set and tested on the silver test set.
’#’ saves the number of actual occurrences of each label in the silver test set. The results
in bold type give the highest score for each label category and each indicator.

Table 4 shows the overall accuracy and F1 score for each model. The three above men-
tioned models are trained on the OpenAlex corpus and silver data set, respectively. And
the six models are then tested on three different test data sets, including the OpenAlex
test set, the silver evaluation set, and the gold data set, to compare the generalization
ability of each model. It turns out that the model performance decreases drastically when
transferred to another test data set. However, SciBERT models still achieve the overall
best performance. What is interesting enough to draw attention is that the SVM mod-
els have comparable performance when tested across different data sets. The detailed
cross-data set classification scores for each ontology label are shown in Table 15 and 16
in Appendix.
We also test all of our six trained models (one machine learning model and two deep
learning transformer models trained on two different train sets, respectively) on the gold
dataset because the samples in it are manually labeled, and the experimental results are
recorded in Table 14 in Appendix. As also indicated in Table 4, models trained on the
OpenAlex corpus outperform those trained on the Silver dataset, which may attribute to
the difference in the number of data samples they contain as the OpenAlex corpus has
far more data than the Silver.
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Precision Recall F1
#

SVM BERT SciBERT SVM BERT SciBERT SVM BERT SciBERT

Computer science 84.67 88.85 90.72 73.50 86.38 84.66 78.69 87.60 87.59 124998
Medicine 87.00 91.54 91.75 84.62 91.25 92.52 85.79 91.44 92.14 114774
Chemistry 82.40 81.59 88.58 76.18 91.32 85.30 79.17 86.18 86.91 84276
Biology 83.76 89.73 88.85 81.52 87.73 91.00 82.63 88.71 89.91 82332
Materials science 83.89 89.39 87.27 76.25 86.18 90.15 79.89 87.75 88.69 62010
Psychology 82.00 87.07 86.91 71.02 83.05 83.78 76.12 85.01 85.32 60189
Business 80.54 85.73 87.79 67.58 85.55 82.97 73.49 85.64 85.31 50482
Mathematics 86.21 89.92 90.55 65.66 81.11 81.56 74.54 85.31 85.82 48721
Political science 77.59 83.13 83.59 58.79 79.95 77.83 67.03 81.51 80.61 38785
Environmental science 81.26 80.88 86.58 63.00 86.07 82.87 70.98 83.40 84.68 37839
Physics 85.69 90.91 91.00 70.30 83.71 84.67 77.24 87.16 87.72 37638
Engineering 74.12 82.77 80.40 46.80 64.43 66.97 57.40 72.46 73.07 34567
Sociology 75.40 81.57 80.43 55.19 73.39 73.95 63.73 77.26 77.05 34547
Geography 76.11 75.71 81.95 44.68 77.47 69.15 56.31 76.58 75.01 32528
Economics 85.01 89.98 87.97 77.96 86.32 88.57 81.33 88.11 88.27 28726
Geology 89.43 91.87 89.65 73.65 83.34 85.83 80.78 87.40 87.70 24407
History 72.67 77.86 78.28 46.14 71.39 67.53 56.45 74.48 72.51 20508
Art 75.36 78.91 79.71 49.63 75.46 69.19 59.85 77.15 74.08 16283
Philosophy 80.09 75.45 80.82 49.69 77.55 69.52 61.32 76.49 74.75 10482

Micro Avg. 82.96 86.48 87.79 70.17 84.33 83.70 76.03 85.39 85.70 944092
Macro Avg. 81.24 84.89 85.94 64.85 81.67 80.42 71.72 83.14 83.01 944092
Weighted Avg. 82.58 86.55 87.67 70.17 84.33 83.70 75.55 85.33 85.57 944092
Samples Avg. 78.86 88.98 89.52 75.72 87.67 87.27 75.07 86.43 86.54 944092

Table 3: The models are trained on the OpenAlex train set and tested on the OpenAlex
test set. ’#’ corresponds to the number of actual occurrences of each label in the OpenAlex
test set. The results in bold type give the highest score for each label category and each
average indicator.

Test Set
Train Set OpenAlex Silver

#
Method Acc.

F1
Acc.

F1
Mirco Avg. Macro. Avg Micro Avg. Macro Avg.

OpenAlex
SVM 57.79 76.03 71.72 34.53 51.53 40.40

944092BERT 70.31 85.39 83.14 35.24 51.16 42.98
SciBERT 71.08 85.70 83.01 38.81 49.79 42.73

Silver
SVM 36.82 53.58 46.11 59.86 75.05 71.60

73529BERT 37.65 52.63 45.46 87.96 91.54 89.89
SciBERT 33.33 54.46 47.08 88.68 91.91 89.75

Gold
SVM 41.84 60.50 57.37 34.18 51.12 46.77

463BERT 45.92 62.18 59.23 36.22 50.39 46.55
SciBERT 46.17 63.78 61.28 36.73 49.17 45.92

Table 4: The models are trained on the OpenAlex train set and the silver train set,
respectively. The experimental results are tested on the OpenAlex test set, the silver test
set, and the gold dataset. ’#’ is the total number of actual occurrences of all the labels
in each test set. The results in bold type give the highest score for each indicator among
different models trained and tested on the same train and test set.
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6 Unsupervised Approach

6.1 Introduction to FoS Classifier

Field-of-Study (FoS) Classifier is an expansion of the CSO Classifier[9] to a larger range
of scientific areas. CSO Classifier focuses on the computer science papers and uses unsu-
pervised approach to classification based on similarity distance between the words from
the title and abstract of an article and the topics from the Computer Science Ontology.
We combined this approach with the FoS Ontology of the OpenAlex and thus broaden the
usage of the Classifier to 18 more scientific areas. In addition to changing the Ontology
structure, we update the embeddings used in the model for classification process - we use
a word2wec approach as well as the embeddings from the SPECTER language model. As
well as CSO Classifier, FoS Classifier provides an option of a faster classification based
on precomputed similarity between the vocabulary of the OpenAlex Data set and the
concepts of the FoS Ontology. The vocabulary was created from the train part of the
OpenAlex downsampled dataset.

6.1.1 Word2Vec embedding

We applied the word2vec approach [1] to a collection of texts from OpenAlex Corpus
in order to generate word-embeddings. Word2vec is a powerful method for representing
words as vectors in a high-dimensional space, and it has been shown to be effective for a
variety of NLP tasks. The word2vec approach uses a neural network architecture to learn
the vector representations of words from large amounts of text data. During training, the
network learns the relationships between words based on their co-occurrence patterns in
the text data.
The text data was pre-processed to ensure that the word embeddings generated were
accurate and meaningful. The pre-processing steps included lowercasing words, filtering
non-English words, removing all punctuation, and non-alphabetic characters. We also
removed empty spaces that occurred more than once, and before or after a sentence, re-
placed spaces with underscores in n-grams matching the FoS topic labels, and for frequent
bigrams and trigrams. For example, ’computer science’ became ’computer science’. The
n-gram parameters we used were min count=5 and threshold=15, while the word2vec
parameters were size=128, window=10, and min count=10.

6.1.2 SPECTER embedding

SPECTER [4] is one of the BERT-based models trained on a scientific papers with special
emphasis on closer relatedness of the articles through the citations. SPECTER has out-
performed other models on classification scientific papers tasks on SciDocs benchmark.
Based on these result we expect a certain improvement over a usual word2vec model in
classification with FoS Classifier.
We embedded all the entries from the pre-computed vocabulary with SPECTER. As the
following step we computed the cosine similarity between each entry and all other entries
in the vocabulary, thus creating for each entry list of top 10 similar entries. In the next
step we compute the Levenshtein distance between each entry in such list and every
concept in the ontology that starts with the same string of four letters as the currently
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processed entry. The similarity threshold was set at 0.94. All entries with this score or
above are considered as relevant to the concept and the combination entry - concept -
similarity score would be saved for the faster classification track.

6.2 Unsupervised Hierarchical Model

Figure 5: Unsupervised Hierarchical Model Architecture

This approach consists of two stages aimed at categorizing research papers using unsu-
pervised methods and Transformers-based embedding models.
The first stage involves obtaining embeddings for both papers and topics using SPECTER
and SBERT embedding models. These embeddings capture the features, information,
and meaning of each paper and topic, and will be further described in a subsequent
subsection. The process of obtaining topic embeddings is straightforward: each topic
is fed individually to the embedding models, and the CLS token from the last hidden
layer of the embedder models is saved. For paper embeddings, the title and abstract are
combined, separated by a [SEP] token, and then fed to the model, with the CLS token
from the last hidden layer being saved.
The second stage compares the similarity between the paper and topic embeddings using
Cosine Similarity. The results of this comparison are then utilized in different ways. In
the first approach, each paper’s embedding is compared to each level’s topics, and the
top k most similar topics are selected and labeled at each level. In the second approach,
knowledge from an ontology is incorporated, creating a graph that connects topics to
subtopics. The process starts with level 0, where the top k most similar topics are selected
and labeled, and their subtopics are collected. The similarity between these collected
subtopics is then calculated, and the process is repeated for all levels.
In conclusion, this approach provides a comprehensive and efficient method for categoriz-
ing research papers, making use of state-of-the-art Transformers-based language models
in an unsupervised manner. The combination of unsupervised methods and Transformers-
based models results in a powerful solution that can effectively capture the meaning and
information contained in research papers and categorize them accurately.
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6.3 Comparison of models

To understand the effectiveness of our models, we evaluated and compared them to the
OpenAlex topics on test data, considering Recall, Precision and F1 Score.
To begin, we want to identify the best model instance for our different unsupervised
models. For example, the FoS Classifier can predict topics based on their semantic context,
their syntactic context or the union of both. Comparatively for the Hierarchical model
we can consider different k numbers of most similar topics.
In table 5, we can see the best performing models for FoS Word2Vec, FoS SPECTER
and the Unsupervised Hierarchical Model (See an overview of all models in appendix 17).
These all do not have very high overall metrics, so in the following we would like to further
investigate the differences between the models and explore ways to potentially improve
these results.

Precision Recall F1-Score
FoS - SPECTER 29.83% 31.31% 30.55%
FoS - Word2Vec 32.83% 29.70% 31.19%
Hierarchical Selection 23.24% 11.31% 15.22%

Table 5: Table shows the best performing model instances for each unsupervised model
type

6.3.1 FoS Evaluation

One analysis that offers more insights is splitting the evaluation of our prediction by topic
level. For example, we can see in table 6, that the FoS SPECTER model is better at
predicting levels 2 and 3, while it does not predict level 0 and level 1 labels well. The low
scores for level 0 and 1 can partly be explained by the model not adding general concepts
as frequently as necessary, only about every 1 out of 10 times.

Level With Tag (Pred.) With Tag (Target) Recall Precision F1 Score
0 11.48% 98.90% 3.95% 5.25% 4.51%
1 30.17% 93.96% 5.00% 9.20% 6.48%
2 96.78% 93.05% 45.75% 30.47% 36.58%
3 79.05% 67.39% 41.53% 28.18% 33.58%
4 35.07% 25.08% 29.15% 25.85% 27.40%
5 14.14% 7.76% 15.08% 15.43% 15.25%

Table 6: Table shows the prediction metrics on each level for the best performing FoS
Classifier with SPECTER embedding compared to the OpenAlex corpus on test data

If we inspect other FoS models (e.g., Word2Vec embedding (18), we observe similar per-
formance on different labels. This difficulty predicting more general concepts therefore
seems to be embedding-unrelated but rather specific to the FoS model itself.
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6.3.2 Hierarchical Model Evaluation

The hierarchical model has a different approach to the FoS Classifier and this also can be
observed in the level metric breakdown(7).

Level With Tag (Pred.) With Tag (Target) Recall Precision F1 Score
0 100.00% 99.04% 86.89% 71.07% 78.19%
1 99.49% 94.32% 48.82% 8.56% 14.56%
2 82.35% 93.46% 4.06% 5.78% 4.77%
3 37.81% 67.89% 2.77% 3.75% 3.18%
4 14.32% 25.32% 2.26% 2.57% 2.40%
5 0.00% 7.83% - - -

Table 7: Table shows the prediction metrics on each level for the best performing hierar-
chical selection model compared to the OpenAlex corpus on test data

We can observe, that this model is better at predicting the more general concepts (level
0 and 1), but instead is not able to predict the more specific concepts (level 2 or more).
This also is understandable, as for the more general concepts the hierarchy only allows few
options to select from, while for specific concepts the potential topics explode in number.
More iteration and fine-tuning on this concept would be necessary to bridge this difficulty
and increase predictions in higher levels.

7 Hybrid Model

As seen in the previous chapters, only utilizing unsupervised techniques to predict topics
at all levels does not yet reach very reliable levels, especially for level 0 and level 1 label
predictions.
As this issue appears across multiple instances and embeddings of the FoS classifer, adapt-
ing the model could be a potential solution. In this chapter we propose a hybrid model,
which combines the unsupervised FoS classifier with the supervised models, that perform
well for predicting level 0 labels.
Therefore we combine the prediction of the best supervised approach (SciBERT) with the
unsupervised FoS Classifier (Word2Vec), while utilizing the tree structure of our ontology.

7.1 Model Concept

The hybrid model concept follows two prediction steps. The first step predicts level 0
topics, using the supervised SciBERT model. Then for each predicted level 0 topic, an
FoS Classifier (reduced to child topics of the level 0 concept) predicts the topics of the
other levels. This results in 19 field-specialized ontologies and FoS Classifiers, which are
used depending on the output of the SciBERT model prediction.
The underlying idea for this approach, is to ensure a good prediction for level 0, while
then utilizing the ontology structure to guide the field-specific FoS classifiers to better
results.
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7.2 Evaluation and Comparison

When evaluating the hybrid model, see table 8, we notice a slight increase in our metrics,
but the results still do not reach great levels (See table 19 for evaluation of different hybrid
models).

Precision Recall F1-Score
Hybrid Model 36.67% 43.42% 39.76%
FoS - SPECTER 29.83% 31.31% 30.55%
FoS - Word2Vec 32.83% 29.70% 31.19%
Hierarchical Selection 23.24% 11.31% 15.22%

Table 8: Table shows the best performing model instances for each unsupervised model
type and the hybrid model

Further when analyzing the level breakdown (see table 9), we see almost no increase in
levels other than level 0, compared to the regular FoS classifier.

Level With Tag (Pred.) With Tag (Target) Recall Precision F1 Score
0 100.00% 99.04% 84.96% 83.49% 84.22%
1 30.28% 94.32% 5.00% 9.22% 6.48%
2 96.98% 93.46% 45.79% 30.49% 36.61%
3 79.48% 67.89% 41.60% 28.22% 33.63%
4 35.30% 25.32% 29.23% 25.92% 27.47%
5 14.25% 7.83% 15.11% 15.46% 15.28%

Table 9: Table shows the prediction metrics on each level for the best performing Hybrid
Model with Word2Vec embedding compared to the OpenAlex corpus on test data

Therefore the FoS classification is not disturbed by the supervised prediction of level 0,
but is not increased significantly either. But comparatively the hybrid model is the current
best performing model for predicting topics on all levels. With further fine-tuning and
concept iteration (e.g. also predicting level 1 through a supervised model) this approach
could prove successful.

8 Graph Clustering vs. Topic Modeling

There are two main methods to obtain topic groups from publication data. One is graph
clustering, the other is topic modeling.

8.1 Graph Clustering

For graph clustering, this kind task is called Community Detection. Neo4j was used to
run this task. There are five main algorithems to do that: Louvain, Label Propagation,
Weakly Connected Components, Triangle Count and Local Clustering Coefficient
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8.1.1 Louvain

Louvain algorithm is a modularity-based community discovery algorithm. The basic idea
is that the nodes in the network try to traverse the community labels of all their neigh-
bours and select the community label that maximises the modularity increment. After
maximising the modularity, each community is seen as a new node and the process is
repeated until the modularity no longer increases [3].

8.1.2 Label Propagation

The LPA algorithm starts with each node initialised using a unique community id label.
These tags are propagated through the network. At each iteration of propagation, each
node updates its label to the label to which the maximum number of its neighbours
belong. When each node has a majority of the labels of its neighbours, the LPA reaches
convergence and the algorithm is complete [11].

8.1.3 Weakly Connected Components

The Weakly Connected Component (WCC) algorithm finds the set of connected nodes.
Two nodes are connected if there is a path between them. The set of all nodes that are
connected to each other forms a component.

Algorithm Community/Component Amount Max Community Minimum Mean
Louvain 814 524 1 193.9
LPA 1,268 79,552 1 124.47
WCC 525 157,308 1 300.63

Table 10: Summary of Three Community Detection Algorithm

8.1.4 Triangle Count and Local Clustering Coefficient

The triangle count algorithm and local clustering coefficient can only work on undirected
graph, triangle count algorithm counts the number of triangles for each node in the graph
which can be used to detect the degree of cohesion of a community, while it can also be
used in local clustering coefficient algorithm. As the result, there are 1,055,163 global
triangles. A more informative result is the label node with the most triangles, which can
be used as a basis for roughly determining the most popular research topics for TUM.
The Table 11 shows the top twenty most triangulated nodes.
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Node Triangle Amount Node Triangle Amount
Pathology 14,570 Mathematics 37,361
Statistics 14,920 Organic Chemistry 39,649
Composite Material 14,928 Internal Medicine 40,449
Mathematical Analysis 15,140 Chemistry 41,553
Ecology 15,236 Computer Science 42,827
Optics 20,597 Biochemistry 44,326
Artificial Intelligence 26,962 Medicine 48,497
Genetics 27,079 Physics 50,856
Gene 28,941 Biology 53,937
Engineering 29,090 Quantum Mechanics 58,228

Table 11: Top 20 Most Trianglated Nodes and Corresponding Amount

The clustering coefficient (lcc) is a property of the nodes in a network. It indicates
the degree of connectivity of the nodes’ neighbourhoods. If the neighbourhood is fully
connected, the clustering coefficient is one. A value close to zero indicates that there is
hardly any connectivity in the neighbourhood. So the lcc’s result have a similar effect
to the triangular counts’. The results of this algorithm include numerous nodes with a
coefficient of 1. Table 12 shows the names of 40 randomly selected nodes with a coefficient
of 1.

Complex Conjugate Nlp Web Applications Triangle Amount
Vapor Phase Machine-Learning Haptics Autonomous Robots
Evolution Equation Bayesian Method Financial Markets Carbonatite
Deflection Angle Ontologies Risk Process Biomedical Imaging
Mathematical Problem Research Policy Hexapod Robot Controls

Table 12: Part of Nodes Whose Local Cluster Coefficient is 1

8.2 Topic Modeling

Comparing to graph clustering, topic modelling uses only the original publication data,
which requires only the title and abstarct of the publication, without requiring its classi-
fication label.

8.2.1 BertTopic

BertTopic is a collection of transformer and an improved version of TF-IDF to calculate
scores for topic modelling tools [6]. Provide concatenated titles and abstracts as input,
delievers 1,194 topics as the result. The Figure 6 shows the results of a hierarchical
analysis of the fifty most frequent topics.
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Figure 6: Hierarchical Clustering Result of TUM Publication Data

8.2.2 Top2Vec

Top2Vec is an algorithm for modelling the topic of a given document [1]. In this algorithm,
the ’universal-sentence-encoder’ is chosen as the embedding model, and the output of the
model generates a total of five topics. And the topic shown in 7 can be inferred that it is
statistics or machine learning realted topic.

Figure 7: Word Cloud Graph for Topic 0

8.2.3 LDA

The LPA (Parallelized Latent Dirichlet Allocation) is a model for topic analysis of doc-
uments integrated in gensim, which uses a Doc2bag model for embedding rather than a
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contextual embedding model. The number of topics in this algorithm can be specified,
and we have chosen a number twenty that is similar to the number of level zero tags
nineteen in our previous study. The final analysis yielded the five most important words
for these twenty topics can be seen in Table 13 in Appendix.

8.3 Comparison

Among the five methods of graph clustering, Louvain, LPA and WCC can not only divide
the community but also specify the community to which each publication node belongs,
while triangle count and local clustering coefficients are more like extracting the keywords
of the topic and do not specify the community to which the publication node belongs.
We therefore chose the first three methods to calculate the c-TF-IDF scores of keywords
for comparison with the topic modelling.

From Table 10, we can see that there are some differences in the communities detected
by these three methods, with the LPA algorithm having the largest number of commu-
nities and the WCC algorithm having the smallest number of communities. The WCC
algorithm has too many nodes in the largest community, which means that a topic most
likely contains most of the article nodes, and the LPA algorithm has too many commu-
nities, while the maximum community nodes are also as high as 79,552, indicating that
the distribution of article nodes has a large variance, which is not desirable. Compared to
these two algorithms, Louvain has a smaller number of communities and the maximum
number of communities is similar to the cluster size mean, as we chose it for comparison
with the topic modelling method. For the topic modelling method, LDA can artificially
specify the number of topics, whereas Top2Vec only generates five topics. In contrast
TopicBert’s topic division results are more comparable to graph clustering, so we choose
TopicBert as a representative to compare with graph clustering.

We calculate word scores for the Louvain algorithm in a manner that mimics the way
how topicbert calculates word scores. The titles of all publication nodes under different
communities are stored in different lists, and then the words for each community are split
out. The 100 most frequent words were first identified and then the scores were calculated
using c-TF-IDF for each of the 100 words.

Figure 8: Formula for Calculating C-TF-IDF

The five words with the highest scores are then defined as the most important five words
for the topic.
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Figure 9: Results of the Louvain Algorithm for Word Scores

Figure 10: Results of the TopicBert Algorithm for Word Scores

The comparison in Figure 9 and 10 shows that the two methods do not give the same
results, but they also have something in common. In TopicBert, Topic 1 is battery related,
while in Louvain Topic 7 is only circuit related, there is some connection, but one is the
most popular topic and the other is ranked 7th. Louvain’s Topic 2 is microphysics related
and can correspond to Topic 4 in TopicBert. Louvain’s Topic 1 is medical-related and
corresponds to Topic 2 and Topic 5 of TopicBert, with cancer being a common term for
both. And Topic 6 is identical to both, both being deep learning and computer vision
related topics. These show that both approaches are feasible and their results can be used
as a reliable reference.

9 Summary

When starting our analysis we first needed to prepare, preprocess and downsample our
four used data sets. Especially for the OpenAlex data it was necessary to downsample
significantly, while preserving and balancing the distribution of the different topic labels.
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Our project then was able to concentrate on the two most important areas for the eventual
development of the knowledge graphs for the research related world.
Firstly, we explored different approaches to address the process of the classifying pub-
lications according to Field-of-Study taxonomy. We used different language models in
the supervised as well as unsupervised approaches. After evaluating the results of two
approaches we proposed a hybrid model that combines the strengths of supervised and
unsupervised approaches. Additionally we proposed a hierarchical model which is based
on the usage of the transformer-based models embeddings to classify the publications.
Secondly, we compared the results of the research cluster modeling using two different
perspectives - text-based topic modeling and graph clustering of the TUM publications,
thus exploring possible community formations and potential topic clusterings.

10 Conclusion and Future Research

In conclusion, we were able to identify promising directions for our primary goal of ex-
tracting topic labels, both for general (more global) concepts (supervised approach) and
more specific concepts (unsupervised approach and hybrid model). We also were able
to explore the potentials of our secondary goal in graph clustering and text-based topic
modeling.
There are still many future research opportunities to improve and expand on our current
results.For example, further exploration of the reasons for the different success ratio in
predicting topics of different levels is required, in particular in unsupervised approaches.
Usage of a different algorithm for the embeddings calculation or similarity score calculation
might help resolve the current unbalanced prediction for the topics of different levels,
while expanding on combinations of models could offer another solution. Further one
could research if differences in data quality play a role, and if the OpenAlex Corpus is a
reasonable benchmark.
Finally, by combining both focuses of our project, the TUM publication data could be
classified with the help of one of our models and the resulting data set could be used for
the further graph clustering exploration, getting one step closer to a more transparent
improved academic world.
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10.1 Downsampling

24



Figure 11: Comparison among levels between original dataset and downsampled dataset
from 1 to 5

25



Topic Word 0 Word 1 Word 2 Word 3 Word 4
0 cells cell activation genes membrane
1 neural networks network deep cognitive
2 diversity molecular intervention reaction structure
3 protein gene proteins dna sequencing
4 species soil water different plant
5 urban robot variants realworld manufacturing
6 acid activity production using high
7 study health patients clinical participants
8 cell cells cancer expression tumor
9 temperature surface properties materials material
10 climate forest tree trees emissions
11 industry business concrete perspective achieving
12 power optical frequency laser signal
13 model dynamics flow simulations results
14 energy resources mass matter solar
15 data approach system systems learning
16 outcomes mmlmrow al baseline et
17 method model problem models accuracy
18 effects food effect policy pain
19 patients risk study associated disease

Table 13: LDA:Five most important word for each topics

10.2 Experimental Results for Supervised Model
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Precision Recall F1
Count

SVM BERT SciBERT SVM BERT SciBERT SVM BERT SciBERT

Computer science 94.16 80.92 80.81 32.73 30.65 26.65 48.58 44.46 40.08 124998
Medicine 79.87 72.55 73.27 80.84 80.69 80.29 80.35 76.40 76.62 114774
Chemistry 85.48 75.56 69.30 40.97 52.57 54.05 55.40 62.00 60.73 84276
Biology 60.06 62.75 61.09 67.55 66.20 60.47 63.59 64.43 60.78 82332
Materials science 89.64 75.24 72.57 28.88 36.64 36.43 43.69 49.28 48.51 62010
Psychology 82.09 74.47 77.19 36.33 32.30 28.68 50.37 44.88 41.82 60189
Business 79.91 58.14 50.43 23.34 42.48 50.86 36.13 49.09 50.64 50482
Mathematics 86.08 74.95 71.69 45.93 50.80 57.96 59.90 60.55 64.10 48721
Political science 64.71 55.26 54.18 15.24 30.52 42.74 24.67 39.33 47.78 38785
Environmental science 36.73 28.22 31.16 61.37 50.24 47.41 45.95 36.14 37.61 37839
Physics 60.81 51.58 47.41 69.86 76.43 69.52 65.02 61.59 56.37 37638
Engineering 35.15 23.58 19.08 22.20 58.08 67.06 27.21 33.54 29.71 34567
Sociology 61.42 50.19 46.54 5.23 12.35 8.52 9.64 19.82 14.40 34547
Geography 20.45 23.40 20.39 1.52 2.38 1.77 2.82 4.32 3.25 32528
Economics 76.15 54.27 69.45 41.88 45.75 34.46 54.04 49.65 46.07 28726
Geology 95.98 87.76 89.73 13.02 11.78 18.82 22.92 20.76 31.12 24407
History 47.59 52.62 47.47 29.49 27.81 29.69 36.41 36.39 36.50 20508
Art 54.39 64.86 53.01 10.47 18.66 22.58 17.56 28.98 31.67 16283
Philosophy 53.31 37.03 31.01 14.89 33.36 37.66 23.28 35.10 34.01 10482

Micro Avg. 69.15 58.17 54.87 41.07 45.66 45.56 51.53 51.16 49.79 944092
Macro Avg. 66.53 58.02 56.09 33.78 39.98 40.82 40.40 42.98 42.73 944092
Weighted Avg. 73.04 63.91 62.39 41.07 45.66 45.56 48.28 49.53 28.58 944092
Samples Avg. 49.36 54.74 53.45 46.51 50.41 50.04 43.36 50.58 49.59 944092

Table 15: Models are trained on the silver train set and tested on the OpenAlex test set.

Precision Recall F1
Count

SVM BERT SciBERT SVM BERT SciBERT SVM BERT SciBERT

Computer science 46.73 52.56 52.58 76.38 75.25 76.86 57.99 61.89 62.44 4525
Medicine 85.12 83.10 84.70 59.44 61.39 64.61 70.00 70.62 73.30 8312
Chemistry 51.74 49.11 49.94 74.50 74.06 78.17 61.07 59.06 60.94 5200
Biology 65.65 67.09 65.37 49.80 47.66 50.14 56.64 55.73 56.75 6916
Materials science 34.34 33.92 34.81 86.89 82.95 86.09 49.23 48.15 49.57 2997
Psychology 71.94 66.64 68.82 74.66 72.46 77.03 73.28 69.43 72.69 3722
Business 32.52 35.19 35.89 67.29 75.28 74.34 43.85 47.96 48.41 1064
Mathematics 69.21 64.16 66.48 64.59 69.95 72.33 66.82 66.93 69.28 4420
Political science 44.14 42.43 40.15 53.63 47.29 57.91 48.42 44.73 47.42 3153
Environmental science 75.90 71.24 73.65 26.56 27.38 26.65 39.35 39.56 39.14 6713
Physics 88.20 87.61 89.09 48.88 48.07 52.60 62.90 62.08 66.15 8912
Engineering 46.79 54.08 54.36 8.07 8.36 9.37 13.77 14.48 15.99 4523
Sociology 20.91 23.07 20.04 38.93 34.13 47.11 27.21 27.53 28.11 709
Geography 4.64 5.16 6.17 10.00 10.57 11.06 6.37 6.94 7.92 1230
Economics 66.89 68.07 64.34 16.00 37.88 46.37 53.81 48.68 53.90 2864
Geology 41.71 41.66 39.78 45.01 90.72 92.23 56.88 57.10 55.58 1519
History 73.07 74.87 73.92 89.40 32.77 34.73 53.31 45.59 47.26 5401
Art 10.83 8.87 8.82 41.96 56.05 48.60 17.55 15.32 14.93 430
Philosophy 28.00 22.12 20.48 46.05 21.98 31.45 17.71 22.05 24.81 919

Micro Avg. 54.87 53.95 54.37 52.35 51.37 54.56 53.58 52.63 54.46 73529
Macro Avg. 50.44 50.05 49.97 51.32 51.27 54.61 46.11 45.46 47.08 73529
Weighted Avg. 63.92 63.45 63.86 52.35 51.37 54.56 53.51 52.52 54.47 73529
Samples Avg. 53.33 53.16 55.68 55.62 54.65 57.98 52.51 52.15 54.87 73529

Table 16: Models are trained on the OpenAlex train set and tested on the silver test set.
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Precision Recall F1-Score
FoS SPECTER: semantic 25.57% 26.46% 26.01%
FoS SPECTER: syntactic 29.83% 31.31% 30.55%
FoS SPECTER: union 25.48% 34.83% 29.43%
FoS Word2Vec: semantic 27.98% 24.93% 26.37%
FoS Word2Vec: syntactic 32.83% 29.70% 31.19%
FoS Word2Vec: union 27.58% 33.09% 30.09%
hierarch. select. no underl.: k=1 18.19% 10.63% 13.42%
hierarch. select. no underl.: k=5 23.24% 11.31% 15.22%
hierarch. select. with underl.: k=1 17.66% 10.33% 13.03%
hierarch. select. with underl.: k=5 22.52% 10.99% 14.77%

Table 17: Table shows results of multiple model instances for each unsupervised model
type.

Level With Tag (Pred.) With Tag (Target) Recall Precision F1 Score
0 11,48% 98,90% 3,95% 5,25% 4,51%
1 30,17% 93,96% 5,00% 9,20% 6,48%
2 96,78% 93,05% 45,75% 30,47% 36,58%
3 79,05% 67,39% 41,53% 28,18% 33,58%
4 35,07% 25,08% 29,15% 25,85% 27,40%
5 14,14% 7,76% 15,08% 15,43% 15,25%

Table 18: Table shows the prediction metrics on each level for the best performing FoS
Classifier with Word2Vector embedding compared to the OpenAlex corpus on test data

Precision Recall F1-Score
hybrid semantic 33.04% 38.51% 35.57%
hybrid syntactic 36.67% 43.42% 39.76%
hybrid union 31.31% 46.83% 37.53%

Table 19: Table shows results of multiple model instances of the hybrid model.
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