
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

PwC Deutschland

Final report of project:

Innovative Machine Learning Algorithm meets

Carrera for auto piloting

Authors Dohyun Jeong, Daniel-Jordi Regenbrecht, Stefan Tremmel
Mentors M.Sc. Oliver Kobsik, M.Sc. Stephan Bautz,

B.A. Manuel Kuhlin, M.Sc. Daniel Reider,
M.Sc. Philipp Düpree

Co-Mentor M.Sc. Cristina Cipriani
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Feb 2023

1

Abstract

In the European motor insurance market, risk assessment is largely based on vehicle and
user groups without taking into account actual driving behaviour. In recent years, the
possibilities of real-time recording of vehicle movements have improved, as even smart-
phones are able to capture the relevant information. Telematics insurance utilizes this
data and attempts to create a behavior based risk profile with an adjusted premium.
Various metrics can be shown to the policy holder as immediate feedback on the current
trip to incentivize safe driving with the ambition to reduce overall accidents. To make
the telematics concept more accessible, we aim to transfer this real world problem to a
Carrera slot car track and combine it with state of the art reinforcement learning for
autonomous driving.

In order to provide a complete and flexible model, we build an Internet of Things (IoT)
system upon the original Carrera slot car with additional components. The hand-held
controller is replaced by electronic devices to control the slot car precisely. Physical sen-
sors are added to receive the data about the current position and movement of the slot
car. This sensor data is sent to a database in a cloud service with a predefined format. We
present the IoT system together with experiments conducted to determine the optimal
adjustment of the environment.

Risk quantification is a key part of the behavior based insurance. To identify relevant
data, we conduct detailed data analyses and use the findings to define a scoring function
which is suitable for the Carrera environment. We further suggest a dashboard for real-
time monitoring to provide users with information about driving safety.

A related trend is seen in the number of advances made in autonomous vehicles. Wide-
scale acceptance of these technologies hinges on proving that driving safety is at least
comparable or preferably superior to human drivers. Our setting provides a well-controlled
model scenario to illustrate these concepts. However, the performance of reinforcement
learning techniques for many real-world scenarios with no simulation environment have
suffered from limited availability of live interaction. Benefiting from recent advances in
the field of batch reinforcement learning, we present an agent for autonomous driving on
the race track, which is trained completely without real-world interaction and achieves
competitive results compared to human drivers.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3
1.1 Motivation . 3
1.2 Project Goals and Contributions . 4

2 IoT Environment 5
2.1 Method: Implementation of Layers . 5

2.1.1 Devices and Controllers . 6
2.1.2 Connectivity . 9
2.1.3 Edge Computing . 9
2.1.4 Data Accumulation and Abstraction 10
2.1.5 Applications . 11

2.2 Experiments . 11
2.2.1 System Inconsistency . 11
2.2.2 Settings . 12

3 Scoring Function 15
3.1 Data Generation and Exploration . 15
3.2 Combined scoring function . 18

4 Reinforcement Learning 19
4.1 Preliminaries . 19
4.2 Method: Implementing CQL . 21

4.2.1 Defining step, action, state and reward 21
4.2.2 Data Generation . 23
4.2.3 Model Architecture . 23
4.2.4 Implementation Details . 24

4.3 Experimental Analysis . 24

5 Dashboard 27

6 Discussion and Outlook 28

References 29

Appendix 32

1 INTRODUCTION 3

1 Introduction

1.1 Motivation

Motor insurance is the largest property and casualty business line in Europe with pre-
miums of e149.4bn in 2020 [1]. It includes, for example, mandatory motor third-party
liability coverage. Standard pricing methods depend on many covariates such as type of
vehicle, regional classification, or annual mileage performance. Another prominent and
influential factor is the bonus-malus level, those tariff criteria are then used to create tar-
iff classes for customers. However, using this approach the actual driving behavior is not
reflected, only vehicle and user group [2]. In recent years, more sensor data is collected by
modern cars used for new features on the way to autonomous driving. This also enables
innovations in the insurance industry.

The so-called usage-based insurance rates individual driving behavior. Calculation strate-
gies might include information about car velocity, acceleration, road type, time of day,
weather conditions, and more [2]. Thus, in a basic form, even a mobile phone or a
GPS device is sufficient to gather the required data. To get a realistic approximation
of the driving style, high-frequency data with a sampling rate of 1Hz is commonly
used for monitoring [3].

The benefits for average safe driving customers are premium reductions and real-time
feedback on driving behavior. Risky drivers might be disciplined with higher premia.
Insurers have advantages as it is expected to promote safe driving and allow an individ-
ual pricing approach. A study from the Insurance Research Council in 2015 shows that
telematics insurance indeed leads to a change in driving behavior for more than half of
the participants [4]. This illustrates the potential of telematics to boost safe driving and
reduce the number of road accidents and fatalities.

To illustrate the current differences in acceptance, we investigate two European coun-
tries: France and Italy. Recently, an article on the French automotive market noted that
telematics is hardly used and that parts of the insurance industry do not see profitability
from this branch in the short and medium term [5]. The authors attribute this to inertia
on organizational and cognitive levels and a deliberate strategy. As they further mention
that even with big data, it is hard to beat the pricing methods developed over the past
decades. In Italy, however, motor claims decreased during most of the 2010s due to the
introduction of telematic devices [1]. Particular changes were observed in the reduction
of fraudulent claims and increased driving responsibility.

Those contrasts of acceptance motivate a project to make the concept of telematics
more approachable and illustrate the functional principle. For this, we use a Carrera slot
car track as a model of the real world. Slot car tracks are widely known and preserve
features of driving, such as speed control, diverse routes, and the possibility of crashes.
On the Carrera track, it is also feasible to establish an Internet of Things (IoT) envi-
ronment with multiple sensors and connections for real-time interaction. This allows us

1 INTRODUCTION 4

to add and illustrate another important concept simultaneously: self-driving cars. Cur-
rent advances [6] in reinforcement learning (RL) enable us to apply them to our Carrera
environment.

1.2 Project Goals and Contributions

With our project, we aim to provide an approachable real-world model of telematics
insurance and autonomous driving to make them more accessible. Our main contributions
are threefold, we present

• A flexible, modular IoT Ecosystem with a unified architecture for human and au-
tonomous control, featuring a complete data pipeline from sensor data to high-level,
cloud-based data analysis delivered in real-time,

• A risk-based scoring function to measure driving safety that is adaptable to a real-
world setting, and

• A prototype of a Reinforcement Learning Agent trained for optimal control of the
IoT system.

For all parts, we conduct and present extensive experiments to better understand the
relevance and interactions of the system parts and analyze current shortcomings.

2 IOT ENVIRONMENT 5

2 IoT Environment

Though there does not exist a generally-accepted rigorous definition of the term “Internet
of Things”, common characteristics of IoT systems have been identified in recent literature
[7, 8, 9]. An IoT system comprises physical objects operating in a dynamical environ-
ment, often equipped with sensors and controllers, which are heterogenous in hardware
platforms and networks but interconnected, i.e. able to exchange information and control
signals as well as connected to global information and communication infrastructure.

In order to improve the understanding on matter and work towards a comprehensive
definition, several attempts have been made to provide a general model for IoT ecosys-
tems [10]. One of the most widely adopted models is the one presented at the 2014
IoT World Forum that separates an IoT environment into 7 vertical layers, as shown in
Figure 1.

Figure 1: IoT Reference Model Published by the IoT World Forum [8].

2.1 Method: Implementation of Layers

The setting in which we operate fits well into the general characterization of IoT sys-
tems: The race track with a moving car constitute a dynamical system which we aim
to equip with sensors to control the car. In doing so, it is indispensable to employ
different devices with different hardware platforms that need to exchange information.
This information should also be accessible to authorized users globally for purposes of
data analysis and preparation.

The above described model provides a guideline to decompose the system into smaller
parts, allowing to develop solutions independently of each other and optimally for their
demands, while maintaining a unified interface to connect layers from bottom to top. We
therefore decide to implement our system as an instance of this model. In the following,

2 IOT ENVIRONMENT 6

we present our implementation for the first six layers: The final layer is omitted in this
project, as it depends heavily on business processes which is outside our scope.

2.1.1 Devices and Controllers

In order to understand our overall setup of physical parts (shown in Figure 2), in par-
ticular, the choice of controlling devices, we need to lay out the working principles of
a slot car. Figure 3 shows the basic principle how a slot car works. High alternating
current (AC) is supplied via a power pack and converted into low direct current (DC). If
one presses or releases the handle of the controller, its internal resistance decreases or in-
creases, respectively. A DC motor is embedded in the slot car and the speed is controlled
by the voltage due to the changes of the internal resistance of the controller. In summary,
it is not different from a potentiometer and a DC motor simply connected in series.

Figure 2: Overview of the Carrera track setting.

To steer the slot car without a controller, we need to identify the electric circuit of the
Carrera track, the controller and the slot car. For the track, a current test was conducted
with a multimeter, and for the controller, we decomposed it physically and observed the
physical wire connections. Detailed information of the identified electric circuit and of
the wiring between the devices are included in Appendix A.1.1.

2 IOT ENVIRONMENT 7

Figure 3: Basic principle of a slot car and the track [11].

Controllers To control the slot car precisely, we replace the standard controller for hu-
man control provided by the manufacturer with three different electronic devices, namely
a Raspberry Pi, Arduino, and motor driver. In the following, we describe each of the elec-
tronic devices.

Raspberry Pi The Raspberry Pi (RPI) is a small single-board computer that op-
erates in a Linux environment. In our project, we use a Raspberry Pi 4 Model B. All
the Python codes are contained and executed on the RPI. The RPI is connected with
a Wi-Fi router, allowing users to remotely connect to it.

Arduino The Arduino is a microcontroller that is widely used, because it provides a
well-documented and easy to use programming environment. It can be used to send low-
voltage control signals to the motor driver to regulate the motor speed. In our project, we
use the Arduino Nano. As seen in Figure 4, the Arduino Nano is fixed on a breadboard
and connected with the motor driver via cable.

Motor Driver A motor driver is an electronic component that is used to control the
motor direction and speed precisely. It receives voltage that is supplied from a power
supplier and control signals from a microcontroller. With this control signals, the output
voltage is regulated leading to different motor directions and speeds. In our project, we
use the L289N motor driver, because the voltage and current that are supplied from the
Carrera power supplier are in the allowed range of this model.

Sensors To capture the movement of the slot car, we use two kinds of sensors, opti-
cal sensors and an Inertial Measurement Unit (IMU). In the following, we describe each
of the sensors.

2 IOT ENVIRONMENT 8

Figure 4: Arduino and the motor driver.

Optical sensors An optical sensor is a sensor that can detect an object when the
object passes through the sensor. In total, 6 sensors have been built into the Carrera
track as Figure 5a to detect where the slot car is currently driving. The sensors are di-
rectly connected to Raspberry Pi via an optical sensor hub. Detailed sensor positions
on the track are depicted in Figure 2.

Inertial Measurement Unit With the optical sensors, we can identify the position
of the car the instant an optical sensor is passed, but it cannot provide information of
the movement in-between sensors. In order to capture the movement of the slot car more
precisely, an additional sensor is needed.

For our project, the physical sensor must satisfy the following requirements in Table 1.

Requirement Reasoning
Capture physical data (e.g. accel-
eration, angular velocity, etc...)

To represent the movement of the slot car.

Sufficiently high output rate To receive detailed movement information.
Consistent output rate To ensure consistent interpretability of the data.
Small physical size To allow fixation on the small slot car.
Built-in battery To keep volume and required wiring limited.
Wireless communication To allow free movement of the car.
Sufficient resources (e.g. official
APIs or open source repositories)

To access the sensor data accurately.

Table 1: The requirements for a physical sensor to capture the movement of the slot car
and the reasoning

2 IOT ENVIRONMENT 9

As the best fit for these requirements, we identified the 9-axis IMU Sensor BWT901CL
of WitMotion. Not only x-, y-, and z-direction acceleration data, but also angle and an-
gular velocity data can be measured, so that we can get more information of the motion
of the slot car. Furthermore, the output rate is consistent and there are many open source
repositories, so that we can access to the sensor data accurately.

We fix the IMU on the middle top of the slot car as Figure 5b, because the size of the
sensor is not enough to set inside the slot car. Furthermore, if the sensor is positioned on
the front or rear part of the car, it could effect the stability of the car.

(a) Optical sensors (b) IMU

Figure 5: Optical sensors embedded in the track and IMU positioned on top of the slot car.

2.1.2 Connectivity

The RPI is the core device that stands in the middle of the connections between the compo-
nents. It receives sensor data from the optical sensors and the IMU and sends the data to
Microsoft Azure SQL Database via a Wi-Fi Router. Control signals regulating the voltage
on the track are calculated and transmitted from the RPI to the motor driver via the Ar-
duino Nano. The overall communication between components is summarized in Figure 6.

2.1.3 Edge Computing

On the RPI, we provide an architecture that allows autonomous interaction with our
IoT system. We use a modular approach in the software architecture that enables us to
develop different solutions independently. We separate the agent, which is responsible
for computing the appropriate control signal, and the environment, an abstraction of the
physical system that handles the communication with other devices. In particular, it
relays the control signal to the Arduino, which in turn controls the motor driver and also
maintains the current state in the form of aggregated sensor information. This separa-
tion of agent and environment also lays the foundation to apply reinforcement learning,
as discussed in-depth in Section 4. An overview of the classes and their relationship is
depicted in Figure 7.

While driving, raw sensor data is constantly provided. The IMU measures at a pre-
defined rate and the optical sensors whenever the car passes them. To not lose any

2 IOT ENVIRONMENT 10

Figure 6: Communication between components and data flow.

information those data streams are bundled on the Raspberry Pi and temporarily stored.
Once the sensor data for a segment was gathered, the data is enriched. Further metrics
such as the segment time or the segment score are calculated. Basic information about
the used trackside or the current time is also captured. Depending on the task, for ex-
ample, human driving or automated data generation, the data is structured differently.
What they have in common is that one data package is collected for one segment and
sent to Microsoft Azure after every optical signal.

2.1.4 Data Accumulation and Abstraction

In our project, we combine data accumulation and abstraction to a unified approach. For
a reliable data flow, we design a consistent data pipeline for all our workflows. The idea
is to use the same infrastructure for any data we capture. In this section, we have a look
at how data is stored and then where it is utilized. The journey starts at the sensors to
the reinforcement learning and visualizations. The structure of this approach can be seen
in Figure 6 extending the communication between parts.

We use an Azure Event Hub that receives data packages and hands them to a Stream
Analytics Job within Azure. This process ensures real-time processing of the incoming
data. The Stream Analytics query language, a subset of T-SQL syntax, allows for direct
interaction with the data stream. However, for our use case, it is advantageous to do
all computations directly on the Raspberry Pi as described above. The real-time data
stream is then stored in an Azure SQL Database. We create several tables, e.g. for human-
generated data or the reinforcement model, which are used depending on the task.

2 IOT ENVIRONMENT 11

Figure 7: High-level overview of the software architecture.

2.1.5 Applications

Having well-structured databases in place, we can now start with the information ex-
traction of the collected data. For real-time monitoring, we use Microsoft Power BI and
via a direct query connection to the Azure SQL database, it is possible to update the
information every second. This dashboard is the subject of discussion in Section 5. De-
tailed analyses are conducted in R Studio, where we created several reports to analyze
human driving behavior and calibrate our functions. The quality of the sensor data
is also part of those reports and helped us to gain a deeper understanding. Further-
more, we use the SQL database for off-line reinforcement learning, where we connect
from our virtual machines to Azure.

2.2 Experiments

Several experiments are conducted to characterize and set the environment.

2.2.1 System Inconsistency

Our project is not based on a simulation environment but on the real world. There-
fore, some inconsistencies need to be overcome.

Motor temperature fluctuation For the data collection, we need to drive many laps
with the slot car to get enough data for training. Nevertheless, it is impossible to operate
the slot car without pauses, as temperature fluctuations occur during the operation of the
electric motor [12]. This phenomenon can lead to a reduction in energy efficiency of the
electric motor, namely thermal loss [13], [14]. Therefore, we can not consistently achieve

2 IOT ENVIRONMENT 12

the same velocity even if the same voltage was input. Figure 8 shows the result of the
experiment. In the experiment, we input exactly the same signals for 100 laps. The x-axis
indicates the lap and the y-axis the lap time in millisecond. In the graph, the lap time
increases continuously despite the same inputs.

Thus we set a break time for every certain number of laps during the autonomous drive.
With the break time, we can reduce the performance degradation, but not completely,
because the degradation already starts after driving only one lap.

Figure 8: Lap times in milliseconds with constant input signal for 100 laps.

Aging of the parts Aging of the parts is an unavoidable problem in a real-world
environment. The more we drive the slot car, the more the parts, e.g. sliding contacts
and tires, will be worn. Furthermore, the electric motor of the slot car and the motor
driver will age and this can lead to a performance degradation. The change of the friction
coefficient of the track will be also observed. From several laps, we could observe that
the sliding contact wears significantly fast.

Environmental inconsistency The environment of the place, where the Carrera track
is installed, can be inconsistent. For example, temperature, humidity, and air flow are
factors that can be changed by the place and time.

Car Model The specific model of the slot car can influence the outcome data. De-
pending on the model, they have different specifications, e.g. size, weight, and type
of the motor, etc. With different physical characteristics, the slot cars show differ-
ent tendencies in the movement.

2.2.2 Settings

In order to set the optimal environment for our project, we conducted several experiments
regarding the Carrera track, electronic devices, and the sensors.

Track Modification The Carrera track for our project had a complex structure with
height changes at the beginning. To simplify it, the track structure has modified. It is

2 IOT ENVIRONMENT 13

expected that after all the processes in the project are set up, they can be transferred to the
original track.

IMU Model Our first attempt for choosing the IMU was with the Xiaomi’s MiBand 2
fitness band. After checking the ouput data of the sensor, we decided not to use the
sensor because of following reasons:

• The acceleration data is the only data that we can receive from the sensor.

• The output rate differs every time, thus we couldn’t get consisent data.

• There is no official supported API or enough open source repositories, thus there is
no way to accurately access the sensor data.

Sampling Rate In order to decide the sampling rate of the IMU, three experiments
with different sampling rates were conducted, namely 20Hz, 100Hz, and 200Hz. In case of
100Hz and 200Hz, many adjacent data showed the same value, i.e. the frequencies were
too high. With 20Hz, the movement of the slot car was sufficiently captured with less
memory. Therefore, we set the sampling rate of the IMU as 20Hz.

Data Consistency The same experiments from Section 2.2.1 were conducted to com-
pare consistencies of the acceleration data and the angular velocity data from the IMU.
In order to take into account the system inconsistency, normalized sensor data were com-
pared. From these experiments, we could observe that the angular velocity data shows
better consistency than the acceleration data.

Calibration One of the most common problems with physical sensors is that they need
to be calibrated frequently. Some experiments were conducted to check the necessity to
calibrate the sensor. After we drove the slot car several laps, the sensor outputs in the
static state were compared. In these experiments, we found that the angular velocity
data is relatively consistent, but the acceleration data is shifted after only a few laps.
Therefore, we decided that the calibration is needed and wrote a calibration code. The
code is executed every time the Carrera environment is started.

Detecting Failures In an ideal case, the optical sensors work consistently without any
failures, but we observed that the sensors do not send a message occasionally in our case
even if the slot car already passed through the sensor. This problem persists even after
checking the connecting wires and cleaning the track. Therefore, we conducted analyses
on the captured data and reveal that from 3313 samples 174 experience failure of one
or more sensors. An important finding is that sensor 4 in particular tends to fail more
frequently, as more than half of all faulty events can be traced back to it. However, each
of the sensors is affected and sometimes several can fail in succession. In order to not
disturb our results, we wrote code to stop generating data if this phenomenon is observed.

2 IOT ENVIRONMENT 14

Bandwidth and Latency In order to check whether the bandwidth and latency is
enough, we had an experiment to measure round-trip delay (RTT) between Arduino
and Raspberry Pi. It takes about 35 milliseconds to send and receive a message, thus
it is sufficiently fast to control the slot car.

3 SCORING FUNCTION 15

3 Scoring Function

For both of our main fields of interest, telematics and reinforcement learning, we need a
function to quantify the current state. Telematics insurance should provide instant feed-
back to its user, such that the driving behavior is rated in real-time. Because a potential
improvement of the current driving style is beneficial for the individual (reduced premium
cost) and the insurers (risk decreases). In reinforcement learning defining a proper reward
function is crucial to achieving the goal [15]. Within our project, we want to train a
model to drive as safely as possible on the race track. Given the similarity of the tasks,
we decide to use the same function for scoring and reward. The challenge on the track
and with the sensors is to get a robust function for measurement noise and reference
values for safe driving.

Current research in the field of telematics motor insurance pricing comprises driving
style extraction and its investigation. For the extraction Gao et al. [16, 3] propose speed
and acceleration heatmaps using the K-means algorithm, singular value decomposition,
or bottleneck neural networks. Again for speed and acceleration data, it was also shown
that Fourier analysis decomposition can be used [2]. In the following, we explain an ap-
proach for our specific environment and present the scoring function. For the Carrera
setting, we use the following notation.

Optical sensor The track comprises 6 optical sensors, which are non-uniformly dis-
tributed. We denote them as opticali, i ∈ {0, 1, · · · , 5}, where optical0 corresponds to
the sensor at the start/finish line and the order is ascending with regard to the driving
direction. The respective positions on the track can be seen in Figure 2.

Segment We subdivide the track into 6 disjoint segments Segi, where i ∈ {0, 1, · · · , 5}.
The latter sensor names the segment, e.g. Seg4 is the part of the track between optical3
and optical4.

Lap One lap Lapj, where j ∈ N, comprises 6 consecutive segments. To distinguish the
same segment in different laps, we write Segi,j in this case.

3.1 Data Generation and Exploration

To fulfill the requirements of safe driving, we have to analyze human generated data from
the track. We refer to this data set as scoring calibration data. Six optical sensors are
mounted to the track and trigger the sending of a data sample. Since the IMU has a
higher output rate than we pass the optical sensors, we save a history for every segment.
To get the important information, we define a measurement as

• Optical sensor: An integer 0, . . . , 5 representing one of six sensors, respectively
segments. 6 is used as a dummy value to indicate, e.g., a time-out.

• Segment time: A floating point number that shows the time needed to get from
the start of the segment to its end. It is reported in milliseconds.

3 SCORING FUNCTION 16

• Sensor data: Acceleration and angular velocity data in x-, y-, and z-direction for
the segment, each with a history of up to 40 measurements. This results in an array
of dimensions 6x40.

• Trackside: Indicating if the right or left lane was measured.

• Car: Shows which slot car model was used.

• Timestamp: Unique identifier when the observation was made.

A Python script and Jupyter Notebook on the Raspberry Pi are used to implement
the process and send the data to an Azure SQL Database. For data generation, we drive
on the track using a standard controller. In total, we gathered over 3,100 human driv-
ing samples for the scoring calibration data set. Since the scoring function should be
explainable, we decide to use the same family of functions for all segments. However, it
should also capture the critical information in as much detail as possible, so the param-
eters are calibrated individually for every segment. Further, let qα denote an α-quantile
of a data set.

Safe driving for a slot car and a real car means some differences: there is no speed
limit on the track, no change in weather conditions, and no direct interaction between
road users. However, the time needed for a specific and not-too-long route should provide
a basic measure in both examples. Faster times appear to be more dangerous due to a
higher average speed. But one has to account for corner cases, e.g. stopping the car and
then going full speed. To counter such behavior, we introduce a time-out above 2 seconds
per segment. Driving too slowly can also pose a risk to other drivers and traffic flow.

Figure 9a visualizes segment times via an empirical cumulative distribution function
(ECDF). We observe a similar shape across all segments and a noticeable difference in
the time scale that corresponds to the various lengths and difficulties of the segments.
The ECDFs are steep up to q25%, between q25% and q75% they seem approximately linear
and above q75%, meaning for larger times, an edge manifests. This backs the assumption
that the median time should reflect safe driving behavior. An additional advantage of
the median is its robustness. Times between q25% and q75% are still considered to be
in a safe range and are assigned values above 0.5. Overall, we want to penalize time
deviations from a safe trip, meaning median time, more heavily if they are too fast than
too slow. This translates to the following function.

Per Segment Time Score stime,i. We use a piece-wise exponential (for being too fast)
and scaled Gaussian density (too slow) as a time scoring function. More specifically, we
fix the median duration t0,i for Segi according to our human driving data and determine
which of the functions is used. For an appropriate scaling, we require stime,i(t0,i) = 1
showing the maximum value of the score per segment. We define the function as

stime,i(ti) =

exp

(
ti−t0,i

bi

)
, if ti < t0,i

exp

(
−1

2

(
ti−t0,i

σi

)2)
, otherwise.

3 SCORING FUNCTION 17

(a) Time ECDFs (b) Time scoring

Figure 9: (a) Empirical distribution functions showing cleaned per segment data
from human driving. 25% (dashed), 50% (solid), 75% (dotted) p values are added.
(b) A schematic representation of the time scoring is shown.

For calibration of the parameters bi and σi, we use the human driving data and set

stime,i(q
25%
time,i) = stime,i(q

75%
time,i) = 0.5.

A schematic representation of the scoring shape is shown in Figure 9b and more detailed
calculations can be found in Appendix A.2.

Another factor is the angular velocity during a curve. The higher it is, the riskier the
driving. On the Carrera track, this is a valuable metric as 5 of the segments include at
least one curved part. Angular velocity has up to 40 measurements per segment, so there
is a need to summarize this information to have an explainable function. Especially for
high absolute values, i.e. for left and right curves, angular velocity provides a good proxy
for safety and the risk of derailing. Since the IMU is repeatedly calibrated during data
generation, the measurements are reliable and errors are not expected. This allows us to
choose the maximum absolute value per segment as a risk indicator and illustrate them
in Figure 10a with ECDFs. We observe a beginning edge just above 90% across all six
segments, where above 98% angular velocity grows fast. This leads to our assumption
that those high values should be considered high risk. In particular, the frequency of
angular velocity above 98% would match the number of expected derailings during the
data gathering. Overall, a wide range is considered to be relatively safe, and specific
penalties for angular velocity below the 90% threshold are hard to define from the data
we have. With regards to low values, we assume they are also reflected in higher segment
times and sufficiently penalized there. This reasoning is described for the angular velocity
score below and the interplay with time in the next Section 3.2.

Per Segment Angular Velocity Score sangv,i. We define the function to have the
best scoring values below the 90%-quantile for maximum absolute angular velocity. Above
this critical threshold, we penalize with an exponential decay.

sangv,i(ai) =

{
1, if ai < q90%angv,i

exp
(

ai−a0,i
ci

)
, otherwise.

3 SCORING FUNCTION 18

To calibrate ci, we set sangv,i(q
98%
angv,i) = 0.01. An example of its shape is depicted in

Figure 10b with more detailed calculations in Appendix A.2.

(a) Angular Velocity ECDFs (b) Angular Velocity scoring

Figure 10: (a) Empirical distribution functions showing per segment data from human
driving. 90% (dashed) and 98 % (dotted) p values are added. (b) A schematic represen-
tation of the angular velocity scoring is shown.

3.2 Combined scoring function

With the knowledge of previous sections, we build the combined scoring function. In
particular, we utilize the per segment time score as a base measure for safety. It al-
ready reflects the average speed and penalizes racing more than slow driving. Therefore,
the additional information from angular velocity is included as an indicator for high-
risk action in curves. There the risk of derailing is the greatest and should be strictly
avoided. To not disturb the extracted information from the time data, we only add the
penalty for angular velocity values above q90%.

Per Segment Score sseg,i. The total score of Segi is the product of time and angu-
lar velocity subscores

sseg,i(ti, ai) = d · stime,i(ti) · sangv,i(ai).

In case a time-out occurs, the segment score is defined as 0. Thus, sseg,i ∈ [0, d]. In our
analysis, we use d = 100 throughout the experiments. If we want to emphasize in which
lap j ∈ N the segment was measured, we write sseg,i,j.

There is an interest in not just rating different segments, but the whole track when
driving. To achieve a good comparison of several laps, we choose a conservative approach,
where low values for some segments affect the entire lap.

Lap score slap,j. We use the geometric mean of the segment scores sseg,i, where
i ∈ {0, 1, · · · , 5}. For a lap j ∈ N, we denote

slap,j =
5

√√√√ 5∏
i=0

sseg,i,j.

4 REINFORCEMENT LEARNING 19

4 Reinforcement Learning

Among the primary objectives of this project was to develop a framework for training
a deep neural network to effectively control the steering mechanism of the car aiming
for a high score as defined above. The methodology employed to achieve this goal is
described in detail in the following section.

4.1 Preliminaries

The Reinforcement Learning Setting Following [17], we outline the fundamental
theoretical concepts that our solution builds upon. Formally, we interpret the process of
steering the car as a Markov decision process (MDP), defined as a 5-tuple (S,A, Ta, Ra, γ)

• S: The set of states,

• A: The set of actions,

• Ta(s, s
′): The state transition function,

• Ra(s, s
′): The reward function, and

• γ ∈ [0, 1]: The discount factor.

In this system, a reinforcement learning agent interacts with the environment in a step-
by-step fashion: At time step t, the environment is in state st, the agent chooses an action
at ∈ A and carries it out in the environment, which returns the associated reward rt+1

and subsequent state st+1, according to T and R respectively.

We formalize one iteration of this interaction by defining a transition as a 4-tuple
(s, a, r, s′), with

• s: A state at any point in time,

• a: An action carried out after observing o,

• r: The reward received after carrying out action a at state s, and

• s′: The state following s.

The goal in reinforcement learning is to find a policy π : S → A that maps states to
actions, such that the agent acting according to the policy maximizes the expected dis-
counted future reward

E[
∞∑
t=0

γtrt+1]

Such a policy is called an optimal policy π∗.

4 REINFORCEMENT LEARNING 20

Figure 11: Agent and Environment Interaction [15].

Deep Q-Learning Each policy π has an associated Q-function which maps a state-
action pair (s, a) to its quality, the expected sum of discounted reward when executing a
at state s and following the policy π for all subsequent steps, i.e.

Qπ(s, a) = ETa(s,s′)[
∞∑
i=0

γirt+i|st = s, at = a].

Q-Learning approaches the task of reinforcement learning by approximating the opti-
mal Q-function Q∗ := Qπ∗

. If this function is known, the corresponding optimal pol-
icy π∗ can easily be recovered as

π∗(s) = argmax
a∈A

Q(s, a).

In the case of both finite observation and action spaces with manageable sizes, this
function can be stored as a simple lookup table, storing a value for each pair (o, a) ∈ O×A.

We refer the reader to [15] for details on this approach, though it is not applicable in
our case. This is because the state space is not only high-dimensional but also continuous.
Instead, we use a neural network architecture to approximate the Q-function. Mnih et
al. introduced this method known as Deep Q-Learning [18] and showed that the simple
Algorithm 1 converges to the optimal Q-function given sufficient data.

while not converged do
Sample transition (s, a, r, s′);
Predict q̂ ← Qθ(s, a);
Compute target q ← rj + γmaxα Qθ(s, α);
Perform gradient update on parameters θ using the mean squared error loss
MSE(q, q̂)

end
Algorithm 1: Training a Deep Q-Learning Agent [18].

CQL: A Batch RL Framework Though in the original formulation, new transitions
were generated on the fly, i.e. using the current Qθ to interact with the environment, gen-
erating new transitions during training, this approach has been used successfully training

4 REINFORCEMENT LEARNING 21

purely on stored transitions generated with an arbitrary agent [19].

Though this data can be generated by an agent acting with an arbitrary policy, any
methods using such data run into the problem of distributional shift: During training,
the distribution of predicted optimal actions differs from the distribution of actions in
the training set. This leads to unreliable predictions of the Q-network outside of the
support of the training data action distribution. With Conservative Q-Learning (CQL),
Kumar et al. introduced a simple yet powerful adaptation of the standard Batch Q-
learning framework that mitigates the problem by adding a simple regularization term
to the loss. We refer the reader to [6] for details.

4.2 Method: Implementing CQL

Traditional reinforcement learning strategies involve the interaction with the environment
in real-time and require the exploration of the environment by allowing the agent to per-
form a wide range of actions on it. Moreover, RL frameworks are notorious for requiring
a high number of training iterations until satisfactory results are achieved. These limi-
tations combined make these traditional methods unattractive for our use case: A wide
range of actions cannot be carried out safely on the track. If the chosen voltage is too
low, the car stalls on the track such that the corresponding step will never be completed.
Conversely, setting it too high can easily lead to the car derailing. Apart from potential
damages to the IMU in the latter case, both are unacceptable since they would require
human intervention in the form of setting the car back on the track and restarting the
training, leading to potentially unfeasibly high training time requirements.

On the other hand, producing a high number of training samples for a batch RL setting
is simple: After experimentally determining the safe range of actions, data is sampled from
an agent behaving according to a policy picking random values in the safe range.

4.2.1 Defining step, action, state and reward

Having established the theoretical we now consider the manner in which the concepts are
formally defined within the context of our particular scenario.

Reward The reward we want to optimize for is the score over one segment, as defined in
Section 3.

Time Step At each time step, a reward must be returned to the agent, calculated
based on the segment-wise scoring methodology outlined in Section 3. The environ-
ment operates in a step-by-step manner, where each step begins upon the passage of
a light sensor, following the selection of an action by the agent, and ends upon the
passage of the subsequent light sensor.

Action Our definition of the action set A is straightforward: Our physical set-up allows
us to set the motor driver to multiples of 1

256
parts of the total available voltage. Aiming for

a compromise between a fine-grained control and a reduced action space to ease learning,

4 REINFORCEMENT LEARNING 22

we decided to further divide the range of possible voltages into 64 discrete actions A =
{a0, ..., a63}, where ai corresponds to setting the voltage to 4i

256
of maximum.

State Defining the set of states S requires some more involved careful considerations. In
particular, this state must contain sufficiently expressive features to capture all relevant
information for the agent to make informed decisions. We have identified three factors that
influence the behaviour of the car on the next segment, and thus the best action to choose.

Position Different segments require different actions, e.g. a curvy segment requires
a lower speed than a straight one. We can include exact information about the car’s
position on the track via the optical sensor at which a step in the environment starts.

Motion of the Car The faster the car moves into the segment, the lower the voltage
setting on the segment needs to be to achieve a desired time and vice versa. Since
we cannot directly measure the velocity of the car, we include motion information via
the measurements provided by the IMU. More precisely, as soon as a step begins, all
readings of the IMU are buffered. The resulting buffer, a six-dimensional finite time
series, is provided as a part of the next state.

Global System State As we have discovered in 2.2.1, we cannot assume the system
to react the same way even if the same sequence of control signals is provided. For the
purposes of controlling the car precisely, the current efficiency of the system needs to be
taken into account, which expresses itself in a relationship between action and resulting
segment time given the same initial velocity. Again, this parameter is not tractable di-
rectly in our setting. It is also not sufficient to only include the very last action-time pair,
as this is influenced by the initial speed for the previous segment. However, including
several past actions together with the resulting times allow the model to infer their rela-
tionship in the near past more robustly, providing an indication of the efficiency.

Keeping these requirements in mind we combine them to define a state s as a 4-
tuple (opticali, HI , HA, HT), with:

• opticali, i ∈ {0, .., 6}: Current optical sensor 0-5 (6 as dummy value, i.e. no sensor),

• HI ∈ R6×k: The last k readings of the IMU,

• HA ∈ Al: The last l performed actions, and

• HT ∈ (0,∞)l The last l segment times.

For all applications, we decide to store up to k = 40 readings of the IMU, resulting
in a history of 2 seconds at our sampling rate of 20 Hz and l = 10 segemnt actions and
resulting times. Padding is applied for shorter actually observed sequences in either case.

4 REINFORCEMENT LEARNING 23

Figure 12: Overview of the model architecture.

4.2.2 Data Generation

Having established the format of the data set, as well as the fact that it can be generated
using an arbitrary model, we need to generate a data set for off-line training in the appro-
priate format. We use our IoT infrastructure as outlined in Section 2 to gather and store
the data. To ensure the covering of a wide range of actions we choose a model that picks
the actions uniformly at random in an experimentally determined safe range, omitting
both stalling and derailing of the car. Driving episodes are limited to 100 laps followed by
a cool-down time of 5 minutes to reduce the heating effects observed in 8. Each sample is
prepared on the RPI in the correct format and sent into the cloud database on MS Azure.

4.2.3 Model Architecture

An overview of our designed architecture is depicted in Figure 12. Sensor History HI as
well as time history HT and action history HA all occur naturally as time-series data.
Recently, state of the art approaches have been achieved with CNN-LSTM architectures
on time series processing in general [20] and IMU data in particular [21, 22]. This success
inspired us to choose an architecture similar to [22]; however, we remove the output layer
of this architecture to produce a feature encoding instead of class predictions. We observe
that a single convolutional layer followed by a single LSTM is sufficient to produce results
competitive with human driving while keeping the network architecture simple enough to
allow good training behavior.

We employ two independent branches of the CNN-LSTM pipeline: The first one handles
the raw IMU data directly and thus operates on six-dimensional time series measurements.
Since the time history and action history are sampled at the same rate, which is different
from the one of the IMU and only contains relevant information of the state of the en-
vironment via their relationship, we stack the time history and action history to form a
two-dimensional time series measurement which is fed into the second branch.

In each of them, first a 1-dimensional convolutional operator is applied. The sequence
transformed this way is then fed into the LSTM, whose last cell’s hidden state is used as
the feature encoding of the entire sequence.

4 REINFORCEMENT LEARNING 24

The features of both branches as well as the ID of the last optical sensor are con-
catenated to produce the full feature encoding of the state. This encoding is fed into
a final, small MLP to predict a per-action prediction vector of the action qualities
(q(a0), ..., q(a63)).

During training it is required to predict qualities for each action, as the loss is computed
with respect to the action a that occurs in the stored transition. At test time, the action
with the maximal associated predicted quality is chosen by the agent.

4.2.4 Implementation Details

Used Libraries Our model is implemented in PyTorch [23], the implementation of the
environment builds upon OpenAI’s Gym library [24]. In order to implement Q-learning
we use d3rlpy [25], a high level library implementing the CQL training schedule, while
still being flexible enough to use our custom neural network for state feature extraction.

Hyperparameters and Training The CQL training scheme, like many reinforcement
learning strategies in general and batch methods in particular is hard to optimize and
notoriously suffers from high noise during training. We mitigate this problem by several
design choices: We find that even with a small number of parameters the information
we aim to include with the definition of the state can be extracted. We expand on these
findings in Section 4.3. Further, we follow previous authors in using a normalization of
the rewards and do not generate regression targets with the most recent parameters, but
instead maintain a copy of the Q-network, the target net, that is only updated after
carrying out multiple training steps. The number of steps carried out before updating
is called the target update interval. We summarize the hyperparameters with which we
achieve the best results in Appendix A.3.

A rather uncommon choice in comparison to other Reinforcement Learning tasks is our
low discount factor of γ = 0.3. This further helps stabilizing the training procedure by
placing a higher relative weight to the immediate reward compared to the much more
uncertain prediction of the next state value. In many applications, such a low discount
factor would be unacceptable, since a wrong action can lead to catastrophic failure of
the agent many steps later. A classical example is the use of reinforcement learning
for training an agent to play Atari games, where a step typically consists in one new
frame, leading to a duration of only a few milliseconds. A wrong input can lead to
failing a game many frames later [18]. However, a step in our environment takes quite
a long time compared to other methods, leading to an increased possibility to react to
whatever state the last segments action results in.

4.3 Experimental Analysis

Of particular interest in our experiments were two questions:

• Does the model take into account each part of the state as intended?

• How well does the model perform in comparison to human drivers?

4 REINFORCEMENT LEARNING 25

Figure 13: Validation advantage, loss and TD-error of a model trained with ωz only (black)
compared to a model trained with ax and ay additionally (blue).

Metrics We conduct both off-line and on-line experiments. For off-line experiments, we
mainly take into account the CQL loss as defined in [6], the advantage which intuitively
provides an estimate of the amount by which the resulting policy could outperform the
agent used in data collection and the temporal difference (TD) error which is a measure of
the variability of the predictions over one time step. In both cases, lower values are desir-
able. We refer the reader to [17] for detailed explanations and definitions of both metrics.

In order to approach the first question, more particularly the question how well the
model takes IMU data into account, we trained several variants of the model using only
part of the measurements. Here, we denote by ad, ωd the acceleration and angular velocity
in dimension d, respectively. We achieve the best performance in terms of advantage and
TD error computed over the validation set by using ax, ay, ωz. Including the measure-
ments ωx, ωy and az did not aid the training of the model. This is easily explained from a
theoretical point of view: The track the car is moving on is planar and orthogonal to the
direction of gravity. Therefore, ignoring noise and physical imperfections of the track, we
expect az = 1 and ωx = ωy = 0 constantly. Conversely, the importance of ax, ay, ωz has
been discussed in-depth in Section 3. Figure 13 shows a comparison between two models,
one with only angular velocity in z and one with additional acceleration data in x and y.
All hyper-parameters were kept the same. The visible performance difference indicates
that even though the reward is influenced only by angular velocity, the acceleration in
x and y direction as measured in our framework are still highly predictive features for
optimal control and capture the motion of the car well despite the noise in measurements
we identified.

We also aimed to explore the model’s capability of inferring the systems global state as
discussed in 2.2.1. To this end, we deployed the model and tracked the actions chosen by
the agent over time. Figure 14a shows the average action the agent took per lap during
an episode of the maximum episode length in the training set of 100 laps, starting on a
track in a cold state. We clearly see the upwards trend similar in shape to the increase in
time we observed with a constant voltage setting seen in Figure 8. This shows that the
model learns to compensate for the performance degradation that comes with heating by
gradually increasing the voltage on the track in order to achieve rewards that are stable
on a high level of 70-95 as depicted in 14b. We deduce that it is capable of appropriately

4 REINFORCEMENT LEARNING 26

considering the time and action history of a state. We attribute the worse performance
on the first few segments to the skew in our data set towards a heated track. Since it is
more time-economical to record longer episodes, states from a cold track are underrep-
resented in the data set, potentially explaining worse performance of the Q-network on
these instances.

Finally, we compare the models score with that of human drivers: We observe that the
model achieves an average segment score above 86, outperforming 84 percent of segments
of the human-controlled samples in our data set.

(a) Average actions chosen during 100 laps. (b) Average rewards received during 100 laps.

Figure 14: Performance of the fully trained CQL agent.

5 DASHBOARD 27

5 Dashboard

To visualize the driving behavior of the reinforcement model in real-time, we develop a
Microsoft Power BI dashboard. Since the pipeline from Section 2.1.4 proves to be with
negligible delay and a lap time typically above three seconds, we can focus on immediate
per lap information. One of our goals is to make the concept of telematics insurance
approachable and to rate a safe driving behavior. Therefore, we need a simple represen-
tation of the key metrics. As the monitored car is driven via the reinforcement model, we
also want to include its performance compared to human driving.

In Figure 15 the components of the dashboard are shown. Lap score and time are
provided for the last lap and a history of them is plotted as a bar chart. The score is also
compared to our databases from the human data generation and the automated, random-
ized model. It shows the percentage of observations that were below the reinforcement
score. Another important aspect is to potentially improve the current performance on a
more granular level. For this, we include boxplots of the score for each segment. Addi-
tional information about the current car and the trackside is also provided.

Those metrics and visuals will be of further importance, once both tracksides are used
and monitored separately. Especially, if one is steered by the reinforcement model and
the other one by a human driver. In our Carrera environment, we assume this will add
an aspect of gamification and leads to a better understanding of telematics insurance.
The dashboard helps to channel the information.

Figure 15: The real-time monitoring dashboard of the reinforcement model.

6 DISCUSSION AND OUTLOOK 28

6 Discussion and Outlook

The IoT system we built poses a successful implementation of the IoT ecosystem layer
model. We find that this model provides an abstraction of the components from sensor
data to cloud-based solutions while being flexible enough to be tailored to the specific
needs of our project. Our implementation has proven to be consistent and powerful
enough to allow real-time data monitoring and control of the car. We find that the
Conservative Q-Learning framework can be used successfully to leverage a static data set
in a real world setting with limited possibilities for live exploration. This work, however,
presents a prototype with several chances to improve and build upon.

IoT Environment Our experiments show a significant decrease in speed over time even
though the signal sent via the Raspberry Pi was kept constant. We conjecture that this
can be attributed mostly to heating of the motor driver, though further experiments are
needed to understand and quantify this effect and take appropriate counter-measures,
e.g. by replacing affected parts. Another improvement we propose is the placing of
the sensor inside the car instead of on top, potentially opening up the possibilities for
other track configurations including bridges.

Scoring The biggest limitation of the scoring function as we defined it is that it can
only be computed over pre-defined segments. Thus, it can only be evaluated once an
optical sensor is passed and is dependent on the configuration of the track, as well as the
lane the car is driving in. We believe that future approaches could benefit from restricting
the input to the scoring function to IMU data, e.g. by learning to predict for any given
IMU history the probability of an imminent crash. Such a solution could provide rewards
that can be evaluated at any point in time, allowing for more fine-grained control by
defining steps at a higher rate than the passage of optical sensors. However, this also
incurs higher demands on latency of the IoT components.

Reinforcement Learning The model we present achieves a competitive score in com-
parison to human drivers. However, due to the uniqueness of the task no benchmarks or
alternative tasks exists to compare the performance with other documented approaches.
Experiments that compare different models and training methods are needed to acquire
more insights into the benefits and shortcomings of several methods including ours in this
setting. Due to time constraints, we were not able to refine the model with real-world in-
teraction using standard reinforcement learning techniques. It remains to be seen whether
such a training scheme can further improve performance in our case.

We conclude that telematic policies reveal great potential for both customers and in-
surance companies. In terms of safety, a broader application is desirable, but this has as
a prerequisite a proper quantification of the actual driving risk. Further advances in car
connectivity might act as an acceleration for telematics insurance.

References

[1] European insurance in figures 2020 data. url: https://insuranceeurope.eu/
publications/2569/european-insurance-in-figures-2020-data.

[2] Wiltrud Weidner, Fabian W.G. Transchel, and Robert Weidner. “Telematic driving
profile classification in car insurance pricing”. In: Annals of Actuarial Science 11.2
(2017), 213â€“236. doi: 10.1017/S1748499516000130.

[3] Guangyuan Gao, Shengwang Meng, and Mario V. Wüthrich. “Claims frequency
modeling using telematics car driving data”. In: Scandinavian Actuarial Journal
2019.2 (2019), pp. 143–162. doi: 10.1080/03461238.2018.1523068. eprint: https:
//doi.org/10.1080/03461238.2018.1523068. url: https://doi.org/10.1080/
03461238.2018.1523068.

[4] Telematics devices prompt changes in driving behavior - insurance research. Nov.
2015. url: https://www.insurance- research.org/sites/default/files/
downloads/TelematicsNR11172015%5C%20%5C%282%5C%29.pdf.

[5] Pierre Francois and Théo Voldoire. “The revolution that did not happen: Telematics
and car insurance in the 2010s”. In: Big Data & Society 9.2 (2022). doi: 10.1177/
20539517221142033. eprint: https://doi.org/10.1177/20539517221142033.
url: https://doi.org/10.1177/20539517221142033.

[6] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., 2020, pp. 1179–1191. url: https://proceedings.
neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.

pdf.

[7] Somayya Madakam et al. “Internet of Things (IoT): A literature review”. In: Journal
of Computer and Communications 3.05 (2015), p. 164.

[8] Cisco Press. “IoT Fundamentals: Networking Technologies, Protocols, and Use
Cases for the Internet of Things”. In: (2017).

[9] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. “Introduction to IOT”. In:
International Advanced Research Journal in Science, Engineering and Technology
5.1 (2018), pp. 41–44.

[10] Malihe Asemani, Fatemeh Abdollahei, and Fatemeh Jabbari. “Understanding IoT
Platforms : Towards a comprehensive definition and main characteristic descrip-
tion”. In: 2019 5th International Conference on Web Research (ICWR). 2019,
pp. 172–177. doi: 10.1109/ICWR.2019.8765259.

[11] Wikipedia. Slot car - Wikipedia, The Free Encyclopedia. [Online; accessed 09-February-
2023]. 2023. url: http://en.wikipedia.org/w/index.php?title=Slot%5C%
20car%5C&oldid=1138317880.

[12] Jacek Wernik. “Investigation of Heat Loss from the Finned Housing of the Electric
Motor of a Vacuum Pump”. In: Applied Sciences 7.12 (2017). issn: 2076-3417. doi:
10.3390/app7121214. url: https://www.mdpi.com/2076-3417/7/12/1214.

29

https://insuranceeurope.eu/publications/2569/european-insurance-in-figures-2020-data
https://insuranceeurope.eu/publications/2569/european-insurance-in-figures-2020-data
https://doi.org/10.1017/S1748499516000130
https://doi.org/10.1080/03461238.2018.1523068
https://doi.org/10.1080/03461238.2018.1523068
https://doi.org/10.1080/03461238.2018.1523068
https://doi.org/10.1080/03461238.2018.1523068
https://doi.org/10.1080/03461238.2018.1523068
https://www.insurance-research.org/sites/default/files/downloads/TelematicsNR11172015%5C%20%5C%282%5C%29.pdf
https://www.insurance-research.org/sites/default/files/downloads/TelematicsNR11172015%5C%20%5C%282%5C%29.pdf
https://doi.org/10.1177/20539517221142033
https://doi.org/10.1177/20539517221142033
https://doi.org/10.1177/20539517221142033
https://doi.org/10.1177/20539517221142033
https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://doi.org/10.1109/ICWR.2019.8765259
http://en.wikipedia.org/w/index.php?title=Slot%5C%20car%5C&oldid=1138317880
http://en.wikipedia.org/w/index.php?title=Slot%5C%20car%5C&oldid=1138317880
https://doi.org/10.3390/app7121214
https://www.mdpi.com/2076-3417/7/12/1214

[13] Edson da Costa Bortoni. “Are my motors oversized?” In: Energy Conversion and
Management 50.9 (2009), pp. 2282–2287. issn: 0196-8904. doi: https://doi.org/
10.1016/j.enconman.2009.05.004. url: https://www.sciencedirect.com/
science/article/pii/S0196890409001824.

[14] Edison Gundabattini et al. “A review on methods of finding losses and cooling
methods to increase efficiency of electric machines”. In: Ain Shams Engineering
Journal 12.1 (2021), pp. 497–505. issn: 2090-4479. doi: https://doi.org/10.
1016/j.asej.2020.08.014. url: https://www.sciencedirect.com/science/
article/pii/S2090447920301854.

[15] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduc-
tion. Adaptive Computation and Machine Learning series. MIT Press, 2018. isbn:
9780262352703. url: https://books.google.de/books?id=uWV0DwAAQBAJ.

[16] Guangyuan Gao and Mario Wüthrich. “Feature extraction from telematics car driv-
ing heatmaps”. In: European Actuarial Journal 8 (Oct. 2018). doi: 10 . 1007 /

s13385-018-0181-7.

[17] Aske Plaat. Deep Reinforcement Learning. Springer, 2022. isbn: 978-981-19-0637-4.
doi: 10.1007/978-981-19-0638-1. url: https://doi.org/10.1007/978-981-
19-0638-1.

[18] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: nature 518.7540 (2015), pp. 529–533.

[19] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. “An Optimistic
Perspective on Offline Reinforcement Learning”. In: Proceedings of the 37th In-
ternational Conference on Machine Learning. Ed. by Hal Daumé III and Aarti
Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 13–18 Jul 2020,
pp. 104–114. url: https://proceedings.mlr.press/v119/agarwal20c.html.

[20] Ioannis Livieris, Emmanuel Pintelas, and P. Pintelas. “A CNN-LSTM model for
gold price time series forecasting”. In: Neural Computing and Applications 32 (Dec.
2020). doi: 10.1007/s00521-020-04867-x.

[21] Narit Hnoohom, Anuchit Jitpattanakul, and Sakorn Mekruksavanich. “Real-life Hu-
man Activity Recognition with Tri-axial Accelerometer Data from Smartphone us-
ing Hybrid Long Short-Term Memory Networks”. In: 2020 15th International Joint
Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP).
2020, pp. 1–6. doi: 10.1109/iSAI-NLP51646.2020.9376839.

[22] Ronald Mutegeki and Dong Seog Han. “A CNN-LSTM Approach to Human Ac-
tivity Recognition”. In: 2020 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC). 2020, pp. 362–366. doi: 10 . 1109 /
ICAIIC48513.2020.9065078.

[23] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[24] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016). arXiv:
1606.01540. url: http://arxiv.org/abs/1606.01540.

30

https://doi.org/https://doi.org/10.1016/j.enconman.2009.05.004
https://doi.org/https://doi.org/10.1016/j.enconman.2009.05.004
https://www.sciencedirect.com/science/article/pii/S0196890409001824
https://www.sciencedirect.com/science/article/pii/S0196890409001824
https://doi.org/https://doi.org/10.1016/j.asej.2020.08.014
https://doi.org/https://doi.org/10.1016/j.asej.2020.08.014
https://www.sciencedirect.com/science/article/pii/S2090447920301854
https://www.sciencedirect.com/science/article/pii/S2090447920301854
https://books.google.de/books?id=uWV0DwAAQBAJ
https://doi.org/10.1007/s13385-018-0181-7
https://doi.org/10.1007/s13385-018-0181-7
https://doi.org/10.1007/978-981-19-0638-1
https://doi.org/10.1007/978-981-19-0638-1
https://doi.org/10.1007/978-981-19-0638-1
https://proceedings.mlr.press/v119/agarwal20c.html
https://doi.org/10.1007/s00521-020-04867-x
https://doi.org/10.1109/iSAI-NLP51646.2020.9376839
https://doi.org/10.1109/ICAIIC48513.2020.9065078
https://doi.org/10.1109/ICAIIC48513.2020.9065078
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

[25] Takuma Seno and Michita Imai. “d3rlpy: An Offline Deep Reinforcement Learning
Library”. In: CoRR abs/2111.03788 (2021). arXiv: 2111.03788. url: https://
arxiv.org/abs/2111.03788.

[26] Arduino Nano. url: https : / / store . arduino . cc / products / arduino - nano
?gclid=CjwKCAiA0JKfBhBIEiwAPhZXD1hlnY01f8PP6tkT2Rc4YxEYeqz4zInkZrR6q

qrYiaj7iSLaFSujzRoC-2AQAvD_BwE.

[27] Ryan Chan. How to use the L298N motor driver. Dec. 2022. url: https://www.
hackster.io/ryanchan/how-to-use-the-l298n-motor-driver-b124c5.

[28] Codefls et al. H-bridge with L298N motor driver. Nov. 2019. url: https://forum.
fritzing.org/t/h-bridge-with-l298n-motor-driver/7711.

31

https://arxiv.org/abs/2111.03788
https://arxiv.org/abs/2111.03788
https://arxiv.org/abs/2111.03788
https://store.arduino.cc/products/arduino-nano?gclid=CjwKCAiA0JKfBhBIEiwAPhZXD1hlnY01f8PP6tkT2Rc4YxEYeqz4zInkZrR6qqrYiaj7iSLaFSujzRoC-2AQAvD_BwE
https://store.arduino.cc/products/arduino-nano?gclid=CjwKCAiA0JKfBhBIEiwAPhZXD1hlnY01f8PP6tkT2Rc4YxEYeqz4zInkZrR6qqrYiaj7iSLaFSujzRoC-2AQAvD_BwE
https://store.arduino.cc/products/arduino-nano?gclid=CjwKCAiA0JKfBhBIEiwAPhZXD1hlnY01f8PP6tkT2Rc4YxEYeqz4zInkZrR6qqrYiaj7iSLaFSujzRoC-2AQAvD_BwE
https://www.hackster.io/ryanchan/how-to-use-the-l298n-motor-driver-b124c5
https://www.hackster.io/ryanchan/how-to-use-the-l298n-motor-driver-b124c5
https://forum.fritzing.org/t/h-bridge-with-l298n-motor-driver/7711
https://forum.fritzing.org/t/h-bridge-with-l298n-motor-driver/7711

A Appendix

A.1 IoT Environment

A.1.1 Electrical Circuit

The structure of the Carrera track and the controller as identified in Section 2.1.1 is
depicted in Figure 16. Figure 17 shows the simplified version of the figure with the slot
car. The controller handle works like a switch with a potentiometer. If one releases
the handle, the electric circuit becomes completely interrupted, thus current doesn’t flow
on the track. If one presses the handle, the total circuit is connected and the slot car
drives. Depending on how much the handle is pressed, the resistance in the controller
is changed, thus the voltage for the slot car also changes. This leads to a different
speed of the DC motor inside the slot car.

Figure 16: Electric circuit of the Carrera track and the controller.

Figure 17: Electric circuit of the Carrera track, the controller and the slot car.

A.1.2 Wiring

This section shows how the electronic components should be wired.

32

Arduino: Nano We use a total of 3 pins from the Arduino. Two of them are used to
send motor drive signals, and the other to send motor speed regulating signals. The
pins are depicted in Figure 18a.

Motor Driver: L298N The motor driver L298N receives power from an external power
supplier via power pins on the left bottom side. There are in total four logic pins on the
right bottom side, and the left two of them decides whether the motor, that is connected
via left side of the motor driver, drives or stop, and the right two logic pins the right side
connected motor. On both end sides of the logic pins, enable pins are positioned. With the
enabled pins, the speed of the motor can be regulated. The pins are depicted in Figure 18b.

(a) Arduino Nano (b) Motor Driver L298N

Figure 18: Description of the pins of the Arduino and the L298N that used
in the project [26, 27].

Overall wiring Based on Figures 17 and 18, the overall components should be wired as
in Figure 19. The Arduino and the motor driver are simply connected with wires. Due to
the specific formats of the controller and power slots and the power supplier, the other con-
nections were not straight forward. For convenience, we cut the wire of the original power
supplier and the controller as in Figure 20 and used them to connect the components.

33

Figure 19: Wiring between Arduino, motor, driver, and power supplier [26, 28].

Figure 20: The power supplier and the controller after cutting.

A.2 Scoring

Calibrating an Exponential We refer to an exponential function as f : R −→ R,
t 7→ exp

(
t−t0
b

)
with one parameter b and a constraint f(t̃) = β, where t0, t̃ ∈ R, b ∈ R\{0},

and β ∈ (0, 1). To determine the value of b, we see that

exp

(
t̃− t0
b

)
= β ⇐⇒ b =

t̃− t0
log(β)

.

Calibrating a Gaussian We use the Gaussian density function

f(x) = 1
σ
√
2π

exp

(
−1

2

(
x−µ
σi

)2
)
, with µ ∈ R and σ ∈ R>0. To normalize the function

(require f(µ) = 1), we divide by f(µ) and define g(x) := f(x)/f(µ) = exp

(
−1

2

(
x−µ
σi

)2
)
.

Now, given µ and a value x̃ > µ, we want to find σ, such that g(x̃) = 0.5. We use the
Full Width Half Maximum from Remark 1 and note that FWHM = 2 · (x̃ − µ), since

34

the normal density function is symmetric. Then we see that

FWHM

2
=
√
2 ln 2 · σ ⇒ σ =

x̃− µ√
2 ln 2

.

Remark 1 Full Width Half Maximum (FWHM) is the difference between two values of
the independent variable at which the dependent variable is equal to half of its maximum
value. For the density function of the normal distribution, we get

FWHM = 2
√
2 ln 2 · σ.

A.3 Reinforcement Learning

Conv. filters Conv. Kernel Size LSTM Hidden Features
2 2 4

Table 2: Hyperparameter Choices in the Sensor Branch.

Conv. filters Conv. Kernel Size LSTM Hidden Features
2 2 12

Table 3: Hyperparameter Choices in the Time-Action Branch.

Hidden Layers Hidden Size
2 256

Table 4: Hyperparameter Choices in the Final MLP.

Batch Size Target Update Interval Discount Factor
64 512 0.3

Table 5: Hyperparameter Choices for Training.

Learnig Rate Decay Rate (1st Moment) Decay Rate (2nd Moment)
1e-4 0.9 0.99

Table 6: Hyperparameter Choices for the Adam Optimizer.

35

	Abstract
	Introduction
	Motivation
	Project Goals and Contributions

	IoT Environment
	Method: Implementation of Layers
	Devices and Controllers
	Connectivity
	Edge Computing
	Data Accumulation and Abstraction
	Applications

	Experiments
	System Inconsistency
	Settings

	Scoring Function
	Data Generation and Exploration
	Combined scoring function

	Reinforcement Learning
	Preliminaries
	Method: Implementing CQL
	Defining step, action, state and reward
	Data Generation
	Model Architecture
	Implementation Details

	Experimental Analysis

	Dashboard
	Discussion and Outlook
	References
	Appendix

