
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

MIT CS and AI Laboratory

&

TUM Chair of Bioinformatics

Final report of project:
Diffusion Models for Rigid Protein-Protein
Docking and Binding Pocket Conditioned

Receptor Flexibility

Authors Simon Dobers, Mohamed Amine Ketata, Cedrik Laue, Rus-
lan Mammadov, Michael Plainer, Marcella Toth

Mentor(s) Hannes Stärk, M.Sc.
Co-Mentor Céline Marquet, M.Sc.
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Feb 2023

1

Abstract

Understanding how proteins interact with other molecules or even proteins is crucial to
modern biology, with applications ranging from drug discovery to protein design. The
recent machine learning method DiffDock has formulated protein-small molecule dock-
ing as a generative problem, with significant performance boosts over both traditional
and recent deep learning baselines. In this work, we investigated different ways to ex-
tend this work and improve its results. In the first part of the report, we modeled the
proteins as semi-flexible to account for structural changes upon docking and to predict
the amino acid sidechains’ conformations near the ligand’s proposed binding site. The
experiments presented in this report show promising results. This additional task can aid
in predicting better ligand poses alongside structural changes during binding, especially
when relying on unbound protein structures. Most prominently, we have shown that the
underlying model mainly relies on information from atoms near the binding site, allow-
ing us to gain a significant speedup when discarding atoms too far away without losing
accuracy. Still, further research into this direction is needed to make firm claims. In
the second part of this report, we investigated a different adaption of the diffusion-based
algorithm for rigid protein-protein docking: DiffDock-PP, a generative diffusion model
that learns to translate and rotate unbound protein structures to their bound poses. We
achieve state-of-the-art performance on DIPS with a median C-RMSD of 4.85, outper-
forming all considered baselines. Additionally, DiffDock-PP is significantly faster than
all search-based methods and generates reliable confidence estimates for its predictions.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3
1.1 Background and Project Scope . 3
1.2 Molecular Docking as a Generative Process 4

2 Datasets 6
2.1 Motivation . 6
2.2 PDBBind . 6
2.3 Other Datasets . 7

2.3.1 Binding MOAD . 7
2.3.2 scPDB . 8

2.4 Issues when Creating Custom Selection Algorithms 8

3 Binding Pocket Conditioned Receptor Flexibility 9
3.1 Literature and Background . 9
3.2 Methodology . 10

3.2.1 Prior Knowledge of Pocket . 10
3.2.2 Computing Sidechain Torsional Degrees of Freedom 11
3.2.3 Model Adaptation . 11

3.3 Results . 12
3.3.1 Pocket-Reduced Proteins . 12
3.3.2 Flexible Sidechains . 13

4 Protein-Protein 15
4.1 Literature . 15
4.2 Method . 16

4.2.1 Benefits of Generative Modeling for Rigid Protein Docking 16
4.2.2 Method Overview . 17
4.2.3 Diffusion Process . 17
4.2.4 Model Architecture . 18
4.2.5 Training and Inference . 19

4.3 Experimental Setup . 19
4.3.1 Datasets . 19
4.3.2 Baselines . 19
4.3.3 Implementation Details . 20

4.4 Results . 20

5 Conclusion 22

Bibliography 23

Appendix 28

1 INTRODUCTION 3

1 Introduction

Proteins realize their myriad biological functions through interactions with other biomolecules,
such as other proteins or small molecules. These interacting biomolecules (ligands) can
recognize proteins (receptors) and bind to them in a specific manner resulting in intri-
cate molecular complexes. The functionality of these biological complexes is substantially
influenced by their final structure. Hence, most of the time when a ligand docks to a
receptor, the underlying biological function of the complex changes. It is therefore crucial
to understand the protein interaction mechanisms and their effects. With this, we can
predict the new complex structure, or more specifically, the position and conformation of
the protein and the interaction partner after the binding process. Figure 1 visualizes a
ligand that has been docked to a protein.

Figure 1: The protein-ligand complex 2rox [61] with a ligand (blue) docked at the binding
site (i.e., a cavity) of the protein (gray).

1.1 Background and Project Scope

Most traditional methods for predicting complex structures based on unbound biomolecules
[4, 9, 63, 58, 65, 56] rely on optimization algorithms that sample from a large search space
and a scoring function that determines the sampled structure’s likeness of correctness.
Since these sampling algorithms search in a large space and the optimization landscape
of the scoring function is usually complicated, generating results is typically a very time-
consuming process. In light of recent successes of deep learning, more and more works try
to utilize regression-type deep learning models to directly predict protein complex struc-
tures [15, 22, 33, 35, 51]. Although these methods are magnitudes faster than classical
approaches, they do not achieve similar accuracies.
In contrast to recent regression-based methods, [7] frames the problem as a generative
task. As done in [7] for small ligand-protein docking, we argue that for the general task of
the molecule (ligand) to protein (receptor) docking, simple one-shot prediction methods
only imperfectly serve the objectives of the docking task. Thus given a ligand and a
receptor, we try to estimate the distribution over all poses of the ligand using diffusion
generative models (DGMs). We then sample from this distribution multiple times and
use a trained confidence model to determine the best pose.

1 INTRODUCTION 4

The goal of this project was to build upon the work of DiffDock [7] and improve as
well as extend it in the following ways:

1. Assess the feasibility of creating a new dataset to improveDiffDock’s performance

2. Model protein flexibility during docking

3. Adapt ligand-protein docking to rigid-body protein-protein docking

1.2 Molecular Docking as a Generative Process

Following the arguments of [7] and noting that directly optimizing such thresholding-based
objectives is not feasible as they are not differentiable, we argue that these objectives
are better aligned with training a generative model to maximize the likelihood of the
observed structures under the learned distribution. Concretely, since real-world data and
complex deep learning models suffer from inherent multi-modal uncertainty, regression-
based methods trained to predict a single pose that minimizes an MSE-type loss [15]
learn to predict a structure as the weighted mean among many viable alternatives, which
is often not biologically plausible. In contrast, a generative model aims to capture the
distribution over these alternatives resulting in more accurate and plausible structures.
In generative modeling, the objective is to fit a model to the underlying distribution of a
given dataset. This objective allows the synthesis of new data points by sampling from
the learned distribution. Representing the probability distribution can be done explicitly
or by estimating the score function ∇x log pt(x) of the distribution as in [50, 7]. Modeling
the score function eludes the necessity of normalization [20] and can come up naturally
in regard to diffusion generative modeling [50].
The idea of diffusion generative models is to sequentially add increasing noise to the
training data and learn to reverse this process such that new samples of the prior dis-
tribution can be generated from random noise. The data perturbation steps can be cho-
sen to form a diffusion process described by the stochastic differential equation (SDE):
dx = f(x, t)dt+ g(t)dw, where f(·, t) is a vector function called the drift coefficient (in [7]
always 0), w is a Wiener process (with Gaussian increments of variance dt), and g(·) (a
scalar function) the diffusion coefficient of x [50]. Reversing this diffusion process is the
key to obtaining new samples. It is important to note that the reverse process corresponds
to a closed-form reverse SDE: dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, which can be
derived from the diffusion process SDE and the score function of the modeled probability
distribution [50]. Thus it becomes a natural objective to learn the score function as it is
sufficient to reverse the diffusion process and generate new samples, as seen in Figure 2.
The performance of a docking system can be measured using the root mean squared de-
viation (RMSD) between the predicted and ground truth structure. Often only parts of
the complex, e.g., ligand or interface, are used to determine this RMSD. Instead of using
the raw RMSD value, docking methods are often evaluated based on thresholding [1, 28],
for instance, a ligand RMSD < 2 Å might be considered acceptable quality. Score-based
diffusion generative models have demonstrated exceptional performance, outperforming
previous models in a range of areas, such as image generation [50, 48, 12] audio synthesis
[43, 3], music generation [39] or molecular docking [7, 40].

1 INTRODUCTION 5

Published as a conference paper at ICLR 2021

Forward SDE (data → noise)

Reverse SDE (noise → data)

score function

Figure 1: Solving a reverse-
time SDE yields a score-based
generative model. Transform-
ing data to a simple noise dis-
tribution can be accomplished
with a continuous-time SDE.
This SDE can be reversed if we
know the score of the distribu-
tion at each intermediate time
step, ∇x log ptpxq.

et al., 2020). To enable new sampling methods and further extend the capabilities of score-based
generative models, we propose a unified framework that generalizes previous approaches through the
lens of stochastic differential equations (SDEs).

Specifically, instead of perturbing data with a finite number of noise distributions, we consider a
continuum of distributions that evolve over time according to a diffusion process. This process
progressively diffuses a data point into random noise, and is given by a prescribed SDE that does not
depend on the data and has no trainable parameters. By reversing this process, we can smoothly mold
random noise into data for sample generation. Crucially, this reverse process satisfies a reverse-time
SDE (Anderson, 1982), which can be derived from the forward SDE given the score of the marginal
probability densities as a function of time. We can therefore approximate the reverse-time SDE by
training a time-dependent neural network to estimate the scores, and then produce samples using
numerical SDE solvers. Our key idea is summarized in Fig. 1.

Our proposed framework has several theoretical and practical contributions:

Flexible sampling and likelihood computation: We can employ any general-purpose SDE solver
to integrate the reverse-time SDE for sampling. In addition, we propose two special methods not
viable for general SDEs: (i) Predictor-Corrector (PC) samplers that combine numerical SDE solvers
with score-based MCMC approaches, such as Langevin MCMC (Parisi, 1981) and HMC (Neal et al.,
2011); and (ii) deterministic samplers based on the probability flow ordinary differential equation
(ODE). The former unifies and improves over existing sampling methods for score-based models.
The latter allows for fast adaptive sampling via black-box ODE solvers, flexible data manipulation
via latent codes, a uniquely identifiable encoding, and notably, exact likelihood computation.

Controllable generation: We can modulate the generation process by conditioning on information
not available during training, because the conditional reverse-time SDE can be efficiently estimated
from unconditional scores. This enables applications such as class-conditional generation, image
inpainting, colorization and other inverse problems, all achievable using a single unconditional
score-based model without re-training.

Unified framework: Our framework provides a unified way to explore and tune various SDEs for
improving score-based generative models. The methods of SMLD and DDPM can be amalgamated
into our framework as discretizations of two separate SDEs. Although DDPM (Ho et al., 2020) was
recently reported to achieve higher sample quality than SMLD (Song & Ermon, 2019; 2020), we show
that with better architectures and new sampling algorithms allowed by our framework, the latter can
catch up—it achieves new state-of-the-art Inception score (9.89) and FID score (2.20) on CIFAR-10,
as well as high-fidelity generation of 1024ˆ 1024 images for the first time from a score-based model.
In addition, we propose a new SDE under our framework that achieves a likelihood value of 2.99
bits/dim on uniformly dequantized CIFAR-10 images, setting a new record on this task.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING WITH LANGEVIN DYNAMICS (SMLD)

Let pσpx̃ | xq :“ N px̃; x, σ2Iq be a perturbation kernel, and pσpx̃q :“
ş

pdatapxqpσpx̃ | xqdx, where
pdatapxq denotes the data distribution. Consider a sequence of positive noise scales σmin “ σ1 ă

σ2 ă ¨ ¨ ¨ ă σN “ σmax. Typically, σmin is small enough such that pσminpxq « pdatapxq, and σmax is

2

Figure 2: This illustration shows the basis of score-based diffusion. Noise is gradually
applied to the data, and the model tries to revert it in the reverse step. This figure was
taken from [50, Fig. 1].

Moving forward to molecular docking, for the case of n-atom ligands, the naive approach
is to model docking as a diffusion process over R3n. However, a large subset of this space
does not represent biologically plausible structures, which suggests modeling the diffusion
process only over the main degrees of freedom that are given by rotation, translation, and
rotatable bonds of the ligand or more specifically the product space T(3)×SO(3)×SO(2)m

[23, 7]. Intuitively speaking, this approach treats an undocked ligand as a “noisy” version
of the binding pose, meaning there exist translation, rotation, and torsional updates that
define a transformation between the poses. DiffDock[7] applies this method in a two-
step process: 1. Train a score-model akin to the above-described methodology that can be
used to draw samples from the distribution of docked ligand poses. 2. Train a confidence-
model, that predicts how physically plausible a given pose is, allowing to selectively choose
samples from the score model that are likely to have a low RMSD to the ground truth pose.

With the described methodology, DiffDock has achieved exceptional results in ligand-
protein docking. It nearly doubled the previous state-of-the-art deep learning model’s
performance (from 20% to 38%) and outperforms even the current state-of-the-art search-
based methods (23%), while still being three to twelve times faster when run on a GPU.
DiffDock also provides an accurate confidence score for its predictions, with 83% of
RMSD being less than 2Å in its most confident third of predictions for previously unseen
complexes [7]. This project aims to explore new use cases of this method and extend its
capabilities.

2 DATASETS 6

2 Datasets

2.1 Motivation

It is well known that the training data has a significant influence on the model’s accuracy.
More data can help the model to generalize better, while better quality could ensure that
the model can recognize the patterns easier and as a result could improve the model’s
accuracy. Therefore, we have investigated different existing datasets that could be used
for protein-ligand docking to boost the performance of DiffDock.
Our analysis consisted of three steps: Firstly, we searched for existing protein-ligand
docking datasets. Then, we analyzed how these datasets were curated, and evaluated their
advantages and disadvantages based on the underlying methods. Finally, we analyzed the
feasibility of reproducing their curation steps to create our own datasets. The advantage
of this approach would be that it would give us more control over the quality of the data
and the possibility to generate an up-to-date dataset when needed.

2.2 PDBBind

Most protein-ligand complex datasets (which contain 3D structure information) are de-
rived from the Protein Data Bank [2]. PDB consists of experimentally derived 3D
structures of proteins and protein complexes [2]. Its number of entries is currently over
200, 000, and it is constantly being updated. However, not all of these structures are
relevant for protein-ligand docking, therefore filtering methods have been created that
use a subset of PDB to create smaller datasets suitable for docking purposes [32, 47, 10].
Some of these methods also process PDB files and curate them with useful information
for docking such as binding affinities [47, 10].
One of the most widely used secondary databases for docking is PDBBind, on which
DiffDock has also been trained and tested on. It consists of four nested datasets called
valid, general, refined, and core set (in 2020 they contained 78, 460, 23, 496, 5, 316, and
285 complexes respectively). The valid complexes dataset filters out complexes from PDB,
excluding single proteins and complexes with non-valid ligand heterogens (e.g., inorganic
ions, buffer components, or organic solvent molecules). Unfortunately, PDB entries are
not properly indicated whether they describe a complex, so the filtering must be done
by interpreting the contents of the PDB structure files. In this step, PDBBind selects
four major categories of complexes: those formed between protein and small-molecule
ligand, between nucleic acid and small-molecule ligand, between two protein molecules,
and those formed between protein and nucleic acid. In this first subset of PDB, PDBBind
also checks the validity of ligands based on a hand-curated dictionary (derived from the
Chemical Component Dictionary provided by PDB) [32].
The general set requires further curation by hand, since for every entry, binding affinity
information is extracted from the studies listed in the annotation of the PDB files (if there
is such information in the cited studies) [32].
A complex set of criteria is considered when selecting the refined set, considering the
quality of the complex structures, the quality of the binding data, and the biological
and chemical characteristics of the complex. For example, the refined set excludes data
obtained by NMR, data with resolution lower than 2.5Å, covalently bonding ligands,

2 DATASETS 7

ligands with their mass more than 1000 Da and so on [31].
The core set has been created as a benchmarking dataset for evaluating docking/scoring
methods. Its entries are selected in a way that reduces the sample redundancy present in
the refined set. For example, nearly 10% of the protein-ligand complexes in the refined
set are formed by HIV-1 protease [32].
PDBBind provides a large and diverse collection of curated and validated protein-ligand
binding affinity data, making it a valuable resource for computational studies. However,
its lack of transparency (e.g., the hand-curated ligand validation dictionary and its se-
lection criteria being unknown) makes its usage less flexible and reliable. The lack of
flexibility is also well represented by the fact that the database only gets updated by
its maintainers at somewhat arbitrary times. As of writing, the last time PDBBind was
updated was 2020 [42], depriving its users of the last three years of complex structure
additions of PDB.

2.3 Other Datasets

Additionally, we looked at the Binding MOAD and scPDB datasets. Both datasets are
based on PDB but use different methods to extract the ligand-protein complexes from
PDB databank [47, 10].

2.3.1 Binding MOAD

In the release of 2020, Binding MOAD dataset contains 41, 409 protein-ligand complexes.
For all these complexes, 3D structures are available. Additionally, for 15, 223 of these
samples, the binding affinity data is available [47].
Similarly to PDBBind, Binding MOAD is made up of valid complexes extracted from
PDB, for which the affinity strength is extracted manually from the literature. However,
there are a few differences to PDBBind. Firstly, complexes without affinity strength
information are also included in the dataset. Secondly, the extraction algorithm and
criteria are different from PDBBind. In particular, only ligands with a resolution better
than 2.5Å are considered. Additionally, only complexes with relatively small ligands
are included. For example, peptides larger than ten amino acids and chains containing
more than four nucleic acids are not considered valid ligands. Therefore, replicating their
curation method would give us more control over which complexes get excluded based on
the ligand [47].
However, as in the case of PDBBind, the extraction algorithm for Binding MOAD con-
tains both automated and manual curation steps [47]. The main steps are illustrated in
Figure 9. As can be seen from this figure, 38, 493 samples needed to be analyzed manu-
ally to filter out invalid complexes [47], which may require a lot of human resources and
time. Additionally, according to the authors, they have also compiled a list of known
crystallographic additives over the course of 20 years. They informed us that they have a
list of suspect ligands, which are molecules that can either be additives or genuine ligands
(such as citrate) and categorizing these suspect ligands requires a manual evaluation of
each structure.

2 DATASETS 8

2.3.2 scPDB

In the release of 2017, scPDB dataset contains 16, 034 entries. These entries contain 4, 782
proteins and 6, 326 ligands. As in the case of PDBBind and Binding MOAD, the valid
complexes are extracted from PDB. Similarly to Binding MOAD, only small ligands are
considered. However, the biggest difference to the previous datasets is that in the case of
scPDB, the binding sides are extracted from the complexes. In other words, this dataset’s
main focus is on the binding mode and not on extracting protein-ligand complexes [10].
The curation steps of the dataset are illustrated in Figure 10. As in the previous datasets,
scPDB also contains a manual step—in particular, the ligand is checked for validity [10].

2.4 Issues when Creating Custom Selection Algorithms

Looking through the current existing protein-ligand binding databases, we have come
to the conclusion that it would be very beneficial to create an open-source script-based
filtering method. Such a project would have many advantages, for example improving
data quality by providing a clear overview of the selection criteria and thus also enabling
users to select preferred criteria needed for their individual projects. A clear overview of
the filtering method would also ensure a consistent and more importantly standardized
approach to analyzing protein-ligand complexes. This would make it easier to compare
results between studies. When the script does not require manual labor, such a binding
dataset could keep up to date with new PDB additions.
However, the reasons which make creating an open-source filtering project highly desirable—
such as the current lack of standardization or clear overview of the filtering algorithms and
data (including the original PDB structures)—also make this task very difficult. Some
descriptions of PDBBind and BindingMOAD methods are vague, and thus their filtering
steps cannot be used as instructions for a new method (the authors have not cleared up
these uncertain points even upon our inquiries). Because of this, one would have to create
a new algorithm that only partially relies on the outlines provided by previous methods
which would require in-depth biological understanding and analysis of the filtering steps.
Further, the diverse nature of the data produces a lot of edge cases one would have to
account for and make well-thought-out decisions on how to handle them. Another issue
is that although PDB entries are stored in a standardized format, some inconsistencies
can still occur which make the parsing and processing of the data harder [26].
It is crucial to note that the binding datasets we looked at (PDBBind, scPDB and Bind-
ingMOAD) rely on hand curation as their last step [47, 32, 10]. This is needed for adding
binding affinity, dissociation, and binding coefficient information, which is not necessarily
a requirement for our goal. Another reason for it is to overcome inconsistencies in the
PDB structure files and even more importantly, to check the validity of the ligands for
which even the best standardized computerized methods (used in the previously men-
tioned datasets) seem to only reduce the need of manual checking but not completely
exclude it [47, 32, 10].
Because of the above reasons we decided that the goal of creating a comnpletely script-
based open-source filtering algorithm is infeasible during the timeframe of the project
and—because of the possibly unavoidable necessity of hand curation required by the
large variety and diversity of PDB structure files and biological data—perhaps in general.

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 9

3 Binding Pocket Conditioned Receptor Flexibility

In this part of the project, we investigated how a reduced representation of the receptor
structure and the explicit modeling of sidechain torsional flexibility influence the success
and efficiency of protein-ligand docking.

3.1 Literature and Background

Molecular docking typically uses a rigid protein structure and only explores the confor-
mational space of the ligand. This approach is suitable when the protein structure does
not change upon binding. Still, it does not accurately reflect the biochemical processes
when the protein conformation (significantly) changes during the docking process and is
hence a major limitation [36, 54]. Multiple directions have been studied to overcome this
drawback and successfully perform ligand docking. [5] examined 305 distinct proteins
with a total of 2, 369 unbound (apo), and 1, 679 bound (holo) structures. They found
that conformational changes in the protein backbone upon ligand binding are small com-
pared to changes in the sidechains near the active site. Furthermore, they identified that
backbone conformational changes influenced their docking accuracy by less than 0.5Å.
The authors of [65] report that 76% of their failed dockings were due to sidechain con-
formational changes near the active site. By modeling sidechain flexibility, they were
able to decrease failed dockings by 60%. Further work about protein-ligand docking also
suggests that modeling sidechain flexibility greatly improves the docking success [41, 17].
As modeling flexible sidechains for the full receptor is computationally infeasible [36] and
the docking success seems to be primarily influenced by sidechain conformational changes
near the binding pocket, modeling flexibility for sidechains within a radius of 3.5Å to the
ligand was found to be a reasonable representation for structural changes happening upon
ligand binding [38].
To model sidechain flexibility, different methods have been applied. [36, 65, 37, 14, 17]
use search-based methods, however, the additional computational cost grows immensely
for flexible docking. Other methods use a classical Molecular Dynamics simulation [41],
which is unscalable. More recent work also utilizes deep learning methods (GNNs) [35,
33], however, no diffusion models that aim to solve this task are known to us. Modeling
those flexible sidechains near the binding site of a ligand (where they are most likely to
change), can be useful on its own but more importantly, might increase the success of
docking. For the sake of computational feasibility, it makes sense to keep the protein rigid
apart from the place where the ligand is likely to dock.

When looking at the 3D structure of a protein, it is often unevenly shaped, or there are
“cavities” on the surface (compare Figure 1). Some cavities have the right biochemical
conditions that allow a ligand to dock to the so-called binding pocket [52]. Having 10–20
different pockets is not uncommon [29], and each ligand interacts differently with each of
those pockets. The volume of those binding pockets differs drastically between proteins
but is somewhere in the range of 102–103Å3 [29].
As only the sidechains near the pockets will be made flexible, prior knowledge of one
of these binding pockets is necessary to make those predictions. This position can be
analytically determined if a ligand-protein complex has already been analyzed (e.g., is

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 10

available in PDBBind). One can simply take the mean of all receptor atoms close enough
to the ligand. In the case where the binding pocket is not known ad-hoc, a docking
algorithm [7] can be run to compute the most likely ligand pose. In some cases, expert
knowledge can also be incorporated to choose pockets of interest. Additionally, each
pocket has a radius which is typically the length of the ligand atom farthest away from
the pocket.

3.2 Methodology

This section will discuss the technical changes made to DiffDock [7], such that it can
model sidechain flexibility.

3.2.1 Prior Knowledge of Pocket

As the semi-flexible sidechain prediction requires the specification of a binding pocket, we
will discuss different approaches that were implemented to give the model access to this
prior knowledge. Namely the pocket-prior and the pocket-reduction mode. In both cases,
the pocket will form the center of the predictions, but the concrete implementations are
different. Further, it is important to note that DiffDock relies on a maximal variance
that limits the denoising procedure. In all modes where the pocket is known, this maximal
σtr has been reduced so that the model is limited to making predictions near the pocket.
The pocket and the two modes are visualized in Figure 3.

Pocket-Prior. This mode was already present inDiffDock and modifies the prior dis-
tribution of the diffusion process such that the pocket forms the mean of the distribution.
In more constructive words, this means that in [7, Algorithm 2], sampling of ztr, ztor, zrot
is done from N (p,∆σ2

tr),N (p,∆σ2
rot),N (p,∆σ2

tor) respectively. p denotes the center of
the pocket in this adaption compared to the center of the protein in the initial algorithm.

Pocket-Reduction. This approach is more general and can be applied to a wider va-
riety of different models and was implemented by us. The core idea is that instead of
merely shifting the center of the prediction to the center of the pocket, all atoms that a
too far from the pocket will be deleted. When predicting the ligand position and pose,
this forces the model only to consider atoms that are close to the pocket. As for our
model, we assume a rigid protein that is only flexible around the binding pocket, meaning
that, in theory, those atoms should not be able to influence them.
DiffDock supports two different modes, the standard, and the all-atom mode. In the
standard setup, only the positions of the Cα atoms of the protein are used. In this case,
the pocket reduction removes all Cα atoms (i.e., all residues) beyond a certain threshold
distance to the pocket. In the all-atom model, we decided not to discard individual atoms
but either keep all atoms of a residue or discard a residue completely. Hence, as long as
a single atom of a residue is within proximity of the pocket, it will be retained. This is
especially important when modeling flexible sidechains, as this ensures that no rotatable
bonds are missing.

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 11

(a) Reduced 6agt (b) Full 6agt with pockets

Figure 3: This illustration shows a pocket of the protein 6agt [64]. In Figure 3a, only the
atoms near the pocket are visualized, with no additional buffer added to the radius (red)
and +8Å added (blue). This part visualizes the pocket-reduction mode, as the remaining
part of the protein is removed completely. Figure 3b shows the complete protein on the
other hand, illustrating that this protein indeed has a cavity suitable for some molecules
to bind to (i.e., a binding pocket). In the pocket-prior mode, the complete protein is
available but merely the center is shifted.

3.2.2 Computing Sidechain Torsional Degrees of Freedom

Despite the limited number of possible sidechains (see Figure 12 for a list of possible
sidechains), different representations throughout PDB files required us to dynamically
determine the rotatable bonds and affiliated subcomponents instead of predefining them.
To establish a deterministic and reliable process, we first select each residue that has at
least one atom within a specified distance to the pocket center to be made flexible. We
compute each selected residue’s torsional degrees of freedom by the procedure summarized
in algorithm 1. The inputs are all-atom positions of the residue x and their corresponding
namesN , for instance, [“Cα“,“Cγ“, ...]. We first filter out non-heavy atoms and construct
a directed graph that starts at the Cα atom of the sidechain, see Figure 11a for an
example. As we ensure the correct edge directions during graph construction, we can
then traverse the graph via Breadth-First-Search to find rotatable bonds (see Figure 11b–
Figure 11g). A rotatable bond is (in this graph structure) characterized by the graph
not being connected after removing the edge and each subcomponent having at least two
atoms. For each identified rotatable bond, we store the edge defining this bond in B
alongside with the subgraph containing the second vertex of the bond as a substructure
inM. The full subgraph gets rotated around the bond when applying the torsion angles
predicted by the model.

3.2.3 Model Adaptation

Once the data preprocessing has been done and the flexible sidechains are determined,
the next major step is to adapt the model/loss to predict and learn the positions of the
sidechains. The mechanisms and underlying procedure are very similar to the ones used
in [7] and originally presented in [23]. Instead of predicting all 3D positions of the atoms,
which would be computationally infeasible, we predict the torsions of the rotational bonds

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 12

of the sidechains. Those predicted rotations are then applied along the chain of atoms
so that the position of the Cα atom stays fixed. The specific implementation is based on
SE(3)-equivariant convolutional networks [55], with the e3nn library [16].
Regarding the specific implementations, since the underlying predictions are similar to
the predicted ligand rotations, we relied on a similar architecture. Although, instead
of relying on the ligand node attributes, we use the learned embeddings of the atoms.
Similarly, we apply a tensor product convolution layer followed by a standard two-layer
feed-forward network. The same distances and cutoffs as for the ligand predictions were
used. For a complete reference, see the implementation of DiffDock [7].
Although it might seem like the modifications do not influence anything but only pre-
dict the sidechain torsions, they will also impact the atoms’ representations, which are
used with message passing to predict the ligand position. So in principle, modeling the
sidechain flexibility can positively impact the expressive power of DiffDock.

3.3 Results

This section is structured so that we first discuss how the different ways to encode pocket
knowledge impact performance. Then we will investigate the results of modeling flexible
sidechains and discuss the different pocket modes. Due to time and computational con-
straints, we were not able to evaluate the results on the full models in this section but
used a smaller model as a surrogate, see Table 4 for a comparison of model sizes. We have
no reason to believe that the presented findings do not generalize to the larger model.
All models have been trained, validated, and tested on the same datasets as DiffDock.

3.3.1 Pocket-Reduced Proteins

Both, changing the prior of the diffusion process to sample from the pocket and removing
additional makes learning the ligand pose much easier. This is because the model could
learn to predict “0” as a translation, allowing it to have a very low RMSD already. With
this in mind, it comes as no surprise that almost all of the predictions have an RMSD of
< 5 (compare Figure 4a). What is more important is to analyze the difference between
the different pocket modes.
When comparing the empirical results on this small model (see Figure 4), the difference
in model performance between the two different pocket modes is noticeable in Figure 4a
but diminishes in Figure 4b. This confirms the hypothesis that the model’s predictions
of the ligand are mostly influenced by atoms close to the binding pocket. Furthermore,
one can also see that when relying on the predicted unbound ESMFold [30] structure, the
predictions perform significantly worse. This can mainly be credited to the fact that the
bound holo-structures from PDBBind already contain a conformation of the protein where
the ligand docks; the ESMFold structures, on the other hand, might be very different.
Also, while the all-atoms configuration did not make much of a difference for the score
model in DiffDock, for all pocket-aware models it did.
In summary, this lets us conclude that the pocket-reduction mode seems superior (at
least for the smaller model). As the predictions are on-par or slightly better but take
significantly less time. This is also why some training runs were stopped prematurely
because the pocket prior runs needed much more computational power.

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 13

0 200 400 600 800
Epochs

30

40

50

60

70

Pe
rc

en
ta

ge
s

prior_rec_apo
prior_rec_holo
prior_all_apo
prior_all_holo
pocket_rec_apo
pocket_rec_holo
pocket_all_apo
pocket_all_holo

(a) Percentage of inference RMSDS < 5Å

0 200 400 600 800
Epochs

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
s

prior_rec_apo
prior_rec_holo
prior_all_apo
prior_all_holo
pocket_rec_apo
pocket_rec_holo
pocket_all_apo
pocket_all_holo

(b) Percentage of inference RMSDS < 2Å

Figure 4: Both figures show the percentage of ligand pose predictions with an RMSD
less than 5Å or 2Å respectively. All combinations of runs with the following parameters
(separated by “ ”) are shown: 1) Whether the pocket reduction or the pocket prior was
used 2) whether all atoms or only the Cα atoms of the receptor were used, 3) and if the
training was run on the structures from PDBBind (bound structures) or predicted by
ESMFold (unbound structures) [30].

3.3.2 Flexible Sidechains

Due to computational constraints, only smaller models (see Table 4) could be trained
for 103 epochs. Consequently, we evaluate our implementation of sidechain flexibility in
comparison to the rigid pocket-prior model (No. 1 in Table 1) instead of the fully trained
model from [7].

Table 1: Training results for different combinations of pocket-reduction and sidechain
flexibility, each model trained for 103 epochs. SC-RMSD refers to Sidechain-RMSD.

Parameterization Valinf. RMSD (Å) Valinf. SC-RMSD (Å) Epoch Runtime (m)

No. Pocket-Reduction Pocket-Cutoff Flexible Sidechains Flexdist %<2 %<5 %<0.5 %<1 Mean

1. No - No - 16 55 - - 27.2
2. Yes 3.5 No - 18 57 - - 10.5
3. No - Yes 3.5 20 60 29 96 36.8
4. No - Yes 1.5 21 57 39 96 36.2
5. Yes 3.5 Yes 3.5 22 61 7 90 12.1
6. Yes 10 Yes 3.5 27 61 36 96 20.0

Table 1 shows that all models with sidechain flexibility (No. 3-6) perform better in terms
of RMSD for the predicted ligand poses compared to the rigid models (No. 1–2). This lets
us conclude that modeling receptor flexibility does not negatively influence the learning
of ligand transformations and even suggests a slightly better performance for the docking
process. Furthermore, when comparing pocket-reduced (No. 2,5,6) to pocket-prior models
(No. 1,3,4), the average epoch runtimes show that pocket-reduction models are, with
similar performance, at least 45% faster than pocket-prior models.
Another point worth mentioning is that our model with a flexible sidechain radius of 1.5Å
has a better sidechain RMSD than the model with a radius of 3.5Å. This is expected,
as model No. 4 predicts fewer sidechain torsions, which can be learned after a smaller
number of epochs than the larger number of sidechain torsions of model 3. Comparing
models 5 and 6 suggests that modeling the full (reduced) receptor is not reasonable, as the

3 BINDING POCKET CONDITIONED RECEPTOR FLEXIBILITY 14

sidechain RMSD <2% is significantly worse for model 5. Instead, reducing the receptor
by +10Å and modeling sidechain flexibility for a subset seems to be the most promising
approach, as model 6 has the highest percentage of ligand RMSDs below 2% and sidechain
RMSDs in the range of model 4 while still realizing a runtime speedup of 45% compared
to pocket-prior models.

Table 2: Inference Results on the DiffDock testset. Inference was run for 10 samples
per complex and numbers are given for (holo/apo) or (bound/unbound) structures. Mean
RMSD is given by the average over all predictions and perfect selection RMSD refers to
the prediction having the lowest ligand RMSD.

Parameterization Mean RMSD (Å) Perfect Selection RMSD (Å) Runtime (h)

No. Pocket-Reduction Pocket-Cutoff Flexible Sidechains Flexdist %<2 %<5 %<1 (sc) %<2 (sc) %<2 %<5 %<1 (sc) %<2 (sc)

1. No - No - 6.9 / 3.7 36.3 / 39.9 - - 30 / 20.5 73.3 / 75.2 - - 1.2 / 1.3
2. Yes 3.5 No - 10.9 / 7.6 57.4 / 53.1 - - 46.5 / 32.5 93.2 / 89.1 - - 0.4 / 0.4
3. No - Yes 3.5 1.8 / 1.3 25 / 28.3 0 / - 16.9 / - 10.5 / 9.1 67.2 / 69 0 / - 51.5 / - 3.7 / 3.7
4. No - Yes 1.5 0.8 / 0.7 19.4 / 22.1 0.1 / - 16.6 / - 6.6 / 5.7 57.6 / 63 1.1 / - 49.6 / - 2.3 / 2.3
5. Yes 3.5 Yes 3.5 6.9 / 4.6 55 / 50.9 0 / - 48.9 / - 44.1 / 23.4 94.1 / 90.3 0 / - 89.6 / - 1 / 0.9
6. Yes 10 Yes 3.5 5.7 / 3.3 53.2 / 45.7 0 / - 54.9 / - 31.1 / 19.3 93.3 / 87.7 0 / - 93.3 / - 1.3 / 1.3

Gnina - - Yes 3.5 28.3 / 7.4 55.4 / 30.3 100 / - 100 / - 44 / 17.3 82.6 / 64.4 100 / - 100 / - 20 / 165

Table 2 shows the inference results for the models from Table 1 as well as GNINA [36]
predictions, are the state-of-the-art baseline for flexible docking. The sc-RMSDs for apo
structures are not shown, as currently, no ground-truth sidechains are available. One
would have to align each apo sidechain to the holo sidechains akin to the conformer
matching procedure of [7] to get ground-truth apo sidechain conformations. Due to the
aforementioned model size and training limitations, the shown versions of our models are
not fully comparable to the GNINA performances as this would only be reasonable after
extensive training and hyperparameter optimization.
Nevertheless, there are already multiple interesting points worth noting. First and fore-
most, Table 2 shows, that the rigid pocket-reduction model (2) outperforms the pocket-
prior model (1) in terms of prediction quality as well as runtime. When comparing mean
and perfect-selection RMSDs, one finds a great discrepancy between the two, suggesting
that increasing the number of samples per complex alongside a pocket-reduction confi-
dence model could lead to a great performance increase. Especially the pocket-reduced
models (flexible and rigid: 2,5,6) already achieve better results on the apo structures for
the perfect selection, which leads us to the assumption that these methods could poten-
tially outperform the baseline once being fully optimized. In terms of sidechain RMSD,
GNINAs 100%<1 differ from our results, as the sidechains of the holo structures are not
randomized before processing, giving GNINA already access to the ground truth struc-
tures which are likely to be selected by the scoring function. Besides that, it can be seen,
that our pocket-reduced flexible models (5,6) achieve a mean sidechain-RMSD < 2 of 50%,
which lets us conclude that this might be the most efficient method for flexible docking, as
it already shows promising pose and sidechain precisions, comes with a significant runtime
speedup and the predicted sidechains can be reinserted to the receptor to retain the full
predicted holo structure.
As already pointed out, future work in this direction would include extensive training
and hyperparameter optimization for our proposed models in order to assess the possi-
bilities and limitations. Additionally, a specified confidence model should be trained, to
improve the choice of predictions. Further, training on the apo structures with conformer
matching, as discussed before, also seems like a promising research direction.

4 PROTEIN-PROTEIN 15

4 Protein-Protein

In this part of the report, we focus on the task of rigid protein-protein docking, the under-
taking of predicting the structure of protein-protein complexes based on their standalone
structure, assuming the rigidity of the proteins’ individual backbones during binding. We
adapt DiffDock [7] to this task and call this method therefore DiffDock-PP.

4.1 Literature

Protein-Protein Docking. The goal of protein-protein docking is to predict the (bound)
structure of a protein-protein complex based on the individual proteins’ (unbound) struc-
tures. Specifically, we focus on the task of rigid body protein-protein docking, which
assumes that the proteins do not undergo any deformations during binding, restricting
their relative degrees of freedom to a rotation and translation in 3D space. This assump-
tion is often realistic [59] and even leads to improved results for most interacting proteins
[11].
To evaluate the quality of the predicted structures, a common approach is to compute the
fraction of those lying within some threshold distance to the true bound structure [59, 1,
28].
Search-based Docking Methods. Traditional methods for protein-protein docking
usually rely on the physical properties of the complexes [4, 9, 63]. These methods typ-
ically 1) generate an initial population of plausible complex structures, 2) further pose
proposals using optimization algorithms, and 3) refine the complexes with the highest
score according to some scoring function.
Template-based modeling (TBM), which predicts the structure of a target protein by
aligning it to one or multiple template proteins with known structures, is also used as a
subroutine by some search-based methods [59]. While some of these methods offer decent
predictive performance, they are usually computationally expensive and impractical for
large-scale molecular screening campaigns.
Deep Learning-based Docking Methods. Deep learning approaches to protein-
protein docking can be broadly partitioned into two categories: single-step and multi-step
methods. Single-step methods directly predict the complex structure in a one-shot fash-
ion. Notably, [15] proposed EquiDock, a pairwise-independent SE(3)-equivariant graph
matching network that directly predicts the relative rigid-body transformation of one of
the interacting proteins. In contrast, multi-step methods produce their final predictions by
iteratively refining a set of proposed structures. For instance, AlphaFold-multimer
[13] was designed to co-fold multiple protein structures, given their primary sequences
and multiple sequence alignments (MSAs) to evolutionary-related proteins. Finally, [53]
incorporated different physical priors into an energy-based model for predicting protein
complex 3D structure.
Our method, DiffDock-PP , naturally falls into the category of multi-step methods
due to the multiple steps required to sample from the distribution induced by diffusion
generative models. Compared to search-based methods, however, we sample orders of
magnitude fewer poses during our refinement process.

4 PROTEIN-PROTEIN 16

Input: unbound
protein structures

DiffDock-PP
Reverse diffusion process

Confidence-based
pose selection

✓

✗

t=0.625 t=0.5 t=0.375

t=0.25 t=0.125 t=0

t=1 t=0.875 t=0.75

Figure 5: Overview of DiffDock-PP . The model takes two proteins as input, where
the ligand has been randomly rotated and translated in 3D space. Then it runs a reverse
diffusion process to sample multiple poses. The confidence model ranks these poses, and
we output the pose with the highest confidence score. Depicted structure is PDB 1KEE
over 40 steps of reverse diffusion.

4.2 Method

4.2.1 Benefits of Generative Modeling for Rigid Protein Docking

Protein-protein docking is often evaluated on the basis of thresholding [1, 28], e.g., a
Ligand-RMSD < 5 Å and an Interface-RMSD < 2 Å are among several conditions to
consider a given prediction to be of medium quality [28].
Following the arguments of [7] and noting that directly optimizing such thresholding-
based objectives is not feasible because they are not differentiable, we argue that these
objectives are better aligned with training a generative model to maximize the likelihood
of the observed structures than with fitting a regression model as done in previous work.
Concretely, since real-world data, as well as complex deep learning models, suffer from
inherent multi-modal uncertainty, regression-based methods trained to predict a single
pose that, in expectation, minimizes some MSE-type loss [15] would learn to predict a
structure as the weighted mean among many viable alternatives, often not a plausible
structure itself. In contrast, a generative model would aim to capture the distribution
over these alternatives resulting in more plausible, accurate, and diverse structures.
To illustrate this phenomenon, we visualize some of the structures predicted by our model
and compare them to those generated by the baselines, especially EquiDock, which was
trained using an MSE-type loss and whose one of the main limitations is the existence of
steric clashes in the model’s predicted structures [15]. Figure 6 illustrates such predictions.
We observe that our model predicts structures with no steric clashes, which we hypothesize
is partly due to the adopted generative approach to protein-protein docking.

4 PROTEIN-PROTEIN 17

C-RMSD=0.51 C-RMSD=10 C-RMSD=14 C-RMSD=8.7 C-RMSD=22 C-RMSD=9.9PDB ID: 1KQ1

DiffDock-PPGround Truth EquiDock HDock Attract ClusPro PatchDock

Figure 6: Visualization of the different methods’ predictions for a protein complex from
our test set.

4.2.2 Method Overview

In rigid protein-protein docking, we aim to predict the complex structure of an interacting
protein pair based on the individual structure of each protein.
In this work, we model the proteins on the residue level, representing each protein as a
set of amino acid nodes. Each residue is, in turn, represented by its type and the position
of its α-carbon atom. We denote X1 ∈ R3n as the ligand consisting of n residues and the
receptor as X2 ∈ R3m with m residues. The ligand/receptor assignment can, in principle,
be arbitrary; however, we define the ligand X1 as the protein with fewer residues. This
means that withX∗

1 ∈ R3n andX∗
2 ∈ R3m denoting the ground truth complex, the receptor

is kept fixed X2 = X∗
2 and the task is to predict the structure of the ligand with respect

to the receptor.
It is important to note that - since we are considering rigid-body protein docking - we only
need to consider poses that can be obtained by a rigid-body transformation (i.e., a rotation
and a translation) of the initial pose X1. These poses lie on a 6-dimensional submanifold
M ⊂ R3n corresponding to the 6 degrees of freedom introduced by the rotation and
translation in 3D space. We consider rigid-body protein-protein docking as the task of
learning a probability distribution p(X1|X2) of ligand poses in M, conditioned on the
receptor structure X2.
Now we discuss how we can effectively deploy DGMs to learn this probability distribution.
In order to avoid the inefficiencies arising from learning DGMs on arbitrary submanifolds
[8], we map the submanifold M to the manifold defined by the product space of the
rotation and translation group analogously to what was done in [7] and define our DGM
over this manifold.

4.2.3 Diffusion Process

To formalize the discussion in the previous section, let us introduce the 3D translation
group T(3) and the 3D rotation group SO(3) as well as their product space P = T(3) ×
SO(3). With this, we can define a rigid-body transformation as the mapping A : P×R3n →
R3n with

A((r, R),x)i = R (xi − x) + x+ r, (1)

where xi ∈ R3 corresponds to the position of the i-th residue and x represents the center
of mass of the ligand protein. This equation simply describes a rotation around the center
of mass followed by a translation.

4 PROTEIN-PROTEIN 18

The submanifold of ligand poses introduced informally in the previous section can now
be described using this transformation asM = {A ((r, R) ,X1) | (r, R) ∈ P}. For similar
arguments to [7], the map A (·,X1) : P→M is a bijection, which guarantees the existence
of the inverse map. We can therefore develop a diffusion process over the product space
P to generate a distribution on the manifold.
Given that P is a product manifold, we can define a forward diffusion process indepen-
dently on each manifold [44] with the score as an element of the corresponding tangent
space [8]. A score model can then be trained with denoising score matching [49]. In both
groups, we define the forward SDE as dx =

√
dσ2 (t) /dt dw, where σ2 is σ2

tr for T(3)
and σ2

rot for SO(3) and dw denotes the corresponding Brownian motion. The reader is
referred to [7] for a description of how we can sample from and compute the score of the
diffusion kernel on each of these groups.

4.2.4 Model Architecture

From the discussion in the previous subsection, we see that we need to design the score
model s(X1,X2, t) such that it produces two outputs that lie in the tangent spaces of
the translation and rotation groups. These spaces correspond respectively to translation
and rotation (Euler) vectors, which are 3-dimensional SE(3)-equivariant vectors. On
the other hand, the output of the confidence model d(X1,X2) is a single scalar that is
SE(3)-invariant.
We adapt DiffDock’s architecture [7] to mainly account for: i.) the symmetry in-
troduced by operating on protein-protein pairs instead of small ligand-protein pairs; we
achieve this by using the same input representation for both proteins and using the same
set of weights to process them in the early layers of the network, and ii.) the rigidity
assumption of the proteins, in contrast to the flexibility of the ligand typically assumed in
small ligand-protein docking; we achieve this by simply discarding the parts of DiffDock
that are responsible for the torsion angles diffusion.
Input representation. Protein structures are represented as heterogeneous geometric
graphs with the amino acid residues as nodes. Node features comprise the residue’s type,
its α-carbon atom’s position, as well as language model embeddings trained on protein
sequences from ESM2 [30]. In order to construct the edges, we connect each node to its
20 nearest neighbors from the same protein (intra-edges), and we use a dynamic cutoff
distance of (40 + 3 · σtr) Å, where σtr is the current standard deviation of the diffusion
translational noise (zero for the confidence model) to connect the nodes from different
proteins (cross-edges). The intuition behind using a dynamic cutoff distance is to increase
the chances that each node interacts with potentially relevant nodes from the other protein
even when the proteins are still far apart (at early diffusion steps) while having a lower
computational cost than using a fixed higher cutoff distance (especially at later diffusion
steps).
Intermediate layers. Both the score model and the confidence model have similar archi-
tectures based on the increasingly popular SE(3)-equivariant convolutional networks over
point clouds [55, 16]. We follow very closely the architectural details in [7]. Specifically,
the model first applies a set of embedding layers to embed and process the initial features,
the diffusion time, and the edge lengths. Then, we define a different set of convolutional
layers for each edge type (intra-edges and cross-edges). However, in contrast to [7], we

4 PROTEIN-PROTEIN 19

use the same intra-edge layers for both proteins.
Output layers. This is where the main difference between the score and confidence model
lies. On the one hand, the score model applies a tensor-product convolution placed at the
center of mass of the ligand to produce two 3-dimensional vectors as the translational and
rotational scores. On the other hand, the confidence model applies a fully connected layer
on the mean-pooled scalar representations from the last convolution layer to produce the
confidence value.

4.2.5 Training and Inference

The training and inference regimes follow very closely [7]. We reiterate the most important
points here.
Diffusion model. Even though the diffusion kernel and score matching objectives were
defined on the product space P, we follow [7] and develop the training and inference proce-
dures directly on ligand poses in 3D space. This should lead to better generalizations and
allows the model to reason about physical interactions more easily. Another interesting
point to note is that each training example (X∗

1,X2) is the only available sample from the
conditional distribution p(X1|X2). This is unlike the standard generative modeling set-
ting, where many samples are drawn from the same data distribution. Therefore, during
training, we iterate over distinct conditional distributions with only one sample. Apart
from some details related to torsional diffusion, we otherwise adopt the same training and
inference procedure as [7]. During inference, in order to avoid the problem of overdis-
persed distributions typically observed with generative models, we use low-temperature
sampling [21], which allows the model to concentrate on modes with high likelihood.
Confidence model. The training data of the confidence model is generated by sampling
the diffusion model for every training example. Based on the generated samples, the
corresponding label is then generated via thresholding, i.e., equal to 1 if the RMSD is
below a certain threshold and 0 otherwise. In our experiments, we choose the threshold
to be 2Å for complex RMSD. We train the binary classification model based on the
generated labels.
Combined Inference. We sample multiple candidate poses using reverse diffusion on
the score model during inference. These samples are then ranked by the confidence model
and sorted in descending order.

4.3 Experimental Setup

4.3.1 Datasets

We evaluate our model in two settings: Database of Interacting Protein Structures (DIPS)
[57]. DIPS consists of 42,826 binary protein complexes (no distinction between obligate
vs. transient protein interactions). We use the same dataset splits proposed by [15]
(protein-family split for DIPS).

4.3.2 Baselines

We compare our method to deep-learning model EquiDock [15], and search-based dock-
ing algorithms ClusPro (Piper) [11, 27], Attract [45, 60], PatchDock [34, 46], and

4 PROTEIN-PROTEIN 20

HDock [63, 62, 18, 19]. Due to substantial overlap of AlphaFold-multimer’s training
corpus with our test sets and the unavailability of code for [53], we primarily consider
EquiDock as our deep learning baseline.
To ensure a fair comparison, we follow the evaluation scheme proposed by [15]. All models
were evaluated using complex root mean square deviation (CRMSD) and interface root
mean square deviation (IRMSD). CRMSD is determined by superimposing the ground
truth and predicted complex structures via the Kabsch algorithm [24] and computing the
RMSD between all C-α coordinates. IRMSD is determined by similarly aligning both
complexes and computing the RMSD over interface C-α coordinates (within 8Å of the
binding partner).

4.3.3 Implementation Details

DiffDock-PP was trained on the DIPS train set with the Adam optimizer [25] for a
maximum of 170 epochs, with a learning rate of 0.001.
Every 10 epochs, we run reverse diffusion on the DIPS validation set to compute ligand
RMSD (LRMSD) and update the best validation model if it achieves a better LRMSD
mean and median than the previous one. The best model obtained with this procedure
is finally tested on the DIPS test set. During training and inference, the smaller protein
is selected as a ligand, and we randomly rotate and translate the ligand in space before
running our model.
For both DIPS, we note that except for EquiDock, which used the same data splits as we
did, we cannot control the training and testing data of the other baselines. This implies
that some of these baselines might have used a part of our test set to train or validate
their models. Thus, the reported performance of these methods might be overestimating
the true performance.

4.4 Results

Table 3 reports the performances of the different methods on DIPS test set. DiffDock-
PP achieves a CRMSD median of 4.85, outperforming all baselines while being more than
4 times faster than the best-performing baseline HDock. When limited to generating one
sample for each complex, DiffDock-PP outperforms the majority of the baselines while
having the fastest runtime. Specifically, in this setting, it outperforms the deep learning-
based approach EquiDock by a large margin while being slightly faster and is very
close to HDock’s performance while being significantly faster. Ensuring computational
efficiency without a significant drop in performance is critical for computational screening
applications like drug discovery and antibody design, where one needs to analyze a very
large number of complexes.
We note that when we evaluate the model in such a way that we pick the complex with
the smallest RMSD from the ones generated by the model, the performance exceeds that
of all baselines by a large margin. As such, the performance of DiffDock-PP can be
significantly boosted by improving the used confidence model or designing more effective
ranking methods.

4 PROTEIN-PROTEIN 21

Table 3: Complex prediction results on 100 samples from the DIPS test set. The last three
rows show our method’s performance. The number of poses sampled from the generative
model is in parenthesis. DiffDock-PP is our model with 1.62M parameters. The
methods highlighted with * do not use the same training data as our models and might
be using parts of our test sets (e.g., to extract templates or features).

DIPS Test Set
Complex RMSD (Å) Interface RMSD (Å) Runtime (s)

Methods %<2 %<5 %<10 Median %<2 %<5 %<10 Median Mean

Attract* 20 23 33 17.17 20 22 38 12.41 1285
HDock* 50 50 50 6.23 50 50 58 3.90 778
ClusPro* 12 27 35 15.77 21 27 42 12.54 10475
PatchDock* 31 32 36 15.25 32 32 42 11.45 7378
EquiDock 0 8 29 13.30 0 12 47 10.19 5
DiffDock-PP (1) 34.2 41 45.6 11.95 35.8 41.6 52.8 8.60 4.76
DiffDock-PP (40) 42 50 55 4.85 45 52 63 4.23 179

DiffDock-PP (40) - oracle 71 79 86 0.67 72 82 91 0.54 179

0 1 2 3 4 5

ε

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
w

it
h

lo
w

er
C

R
M

S
D

HDock

Attract

ClusPro

EquiDock

PatchDock

DiffDock-PP(40)

EquiDock-No-Clash

Figure 7: Fraction of complexes with a CRMSD < ϵ. Each method’s fraction of
complexes with an error below a certain CRMSD value ϵ on the DIPS test set.

0 10 20 30 40

Number of generative samples

0.4

0.5

0.6

0.7

F
ra

ct
io

n
w

it
h

C
R

M
S

D
<

2
Å

Top-1

Top-5

Top-10

Perfect selection

0 20 40 60 80 100

Percentage of rejected complexes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Baseline performance

Perfect selection

Confidence model

Figure 8: Left: Performance of DiffDock-PP for with increasing number of generative
samples. Perfect selection refers here to always choosing the sample with the lowest
CRMSD. Right: Fraction of predictions with CRMSD < 2Å considering only predictions
for the part of the dataset where DiffDock-PP is most confident.

5 CONCLUSION 22

5 Conclusion

In this work, we investigated different ways to extend the recent DiffDock [7] and
improve its results. In the first part of the report, we explored the datasets that can be
used for ligand-protein docking problems. We investigated existing protein-ligand docking
datasets, analyzed their curation processes, and evaluated the possibility of duplicating
these steps to create our own datasets. Many of these datasets are generated by extracting
complexes from the PDB database using various criteria derived from the contents of the
PDB structure files [47, 26, 10]. Prominent examples of these datasets include PDBBind
and Binding MOAD [47, 26], which seem to be well-suited for ligand-protein docking
problems, according to our analysis. However, many of these datasets involve manual
verification steps, particularly for the validation of ligands [47, 26, 10], which seems to be
a very complicated step to automatize and may require a lot of human resources. Based
on these and other reasons discussed in the first part of the report, we concluded that
duplicating their curation steps would not be feasible for the scope of this project.
In the first presented contribution of this report, we altered the rigid docking of Diff-
Dock to model receptor flexibility during docking and investigated different directions
to incorporate binding pocket information into the diffusion process. We showed that our
pocket-reduction approach is superior to the existing pocket-prior method with accuracy
and significant runtime increases. Furthermore, our binding-pocket-conditioned receptor
flexibility method matches the performance of the rigid approaches, while showing promis-
ing results, especially for docking on unbound structures even at an early training stage
with reduced model sizes. This opens the door to predicting the binding pose of a ligand,
and also the structural changes in the protein, making DiffDock’s method applicable to
new areas. However, to confirm the promising results of short training periods, training
until convergence with the full model and hyperparameter optimization should be done.
The second presented contribution is DiffDock-PP, a diffusion generative model for
rigid protein-protein docking. Our approach is inspired by recent advancements in molecu-
lar docking [7], which tackles docking via a generative model over ligand poses. DiffDock-
PP outperforms existing deep learning models and performs competitively against search-
based methods at a fraction of their computational cost. The effectiveness of our simple
approach paves the way for further investigation into deep learning for modeling biomolec-
ular interactions.
All in all, with the methods presented in the report, we were able to explore different
applications of diffusion-based docking and expand upon the existing methods.

Acknowledgement

Beyond our mentors, Hannes Stärk and Céline Marquet, we also want to thank Gabriele
Corso and Rachel Wu. We are very grateful for all the time they have invested to help us
with various problems and have given us insightful input throughout the project. Thank
you!

Bibliography

[1] Sankar Basu and Björn Wallner. “DockQ: a quality measure for protein-protein
docking models”. In: PloS one 11.8 (2016), e0161879.

[2] Stephen K Burley et al. “Protein Data Bank (PDB): the single global macromolec-
ular structure archive”. In: Protein crystallography: methods and protocols (2017),
pp. 627–641.

[3] Nanxin Chen et al. “Wavegrad: Estimating gradients for waveform generation”. In:
arXiv preprint arXiv:2009.00713 (2020).

[4] Rong Chen, Li Li, and Zhiping Weng. “ZDOCK: an initial-stage protein-docking al-
gorithm”. In: Proteins: Structure, Function, and Bioinformatics 52.1 (2003), pp. 80–
87.

[5] Jordan J Clark et al. “Inherent versus induced protein flexibility: comparisons within
and between apo and holo structures”. In: PLoS computational biology 15.1 (2019),
e1006705.

[6] Wikimedia Commons. Table of amino acids. 2017. url: https://upload.wikimedia.
org/wikipedia/commons/a/ac/AAs_table.png.

[7] Gabriele Corso et al. “DiffDock: Diffusion Steps, Twists, and Turns for Molecular
Docking”. In: arXiv preprint arXiv:2210.01776 (2022).

[8] Valentin De Bortoli et al. “Riemannian score-based generative modeling”. In: arXiv
preprint arXiv:2202.02763 (2022).

[9] Sjoerd J De Vries, Marc Van Dijk, and Alexandre MJJ Bonvin. “The HADDOCK
web server for data-driven biomolecular docking”. In: Nature protocols 5.5 (2010),
pp. 883–897.

[10] Jérémy Desaphy et al. “sc-PDB: a 3D-database of ligandable binding sites-10 years
on”. In: Nucleic Acids Research 43.D1 (Oct. 2014), pp. D399–D404. issn: 0305-1048.
doi: 10.1093/nar/gku928. eprint: https://academic.oup.com/nar/article-
pdf/43/D1/D399/17438022/gku928.pdf. url: https://doi.org/10.1093/nar/
gku928.

[11] Israel T Desta et al. “Performance and its limits in rigid body protein-protein dock-
ing”. In: Structure 28.9 (2020), pp. 1071–1081.

[12] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image syn-
thesis”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 8780–
8794.

[13] Richard Evans et al. “Protein complex prediction with AlphaFold-Multimer”. In:
BioRxiv (2021), pp. 2021–10.

[14] Richard A. Friesner et al. “Glide: A New Approach for Rapid, Accurate Docking and
Scoring. 1. Method and Assessment of Docking Accuracy”. In: Journal of Medicinal
Chemistry 47.7 (2004). PMID: 15027865, pp. 1739–1749. doi: 10.1021/jm0306430.
eprint: https://doi.org/10.1021/jm0306430. url: https://doi.org/10.1021/
jm0306430.

23

https://upload.wikimedia.org/wikipedia/commons/a/ac/AAs_table.png
https://upload.wikimedia.org/wikipedia/commons/a/ac/AAs_table.png
https://doi.org/10.1093/nar/gku928
https://academic.oup.com/nar/article-pdf/43/D1/D399/17438022/gku928.pdf
https://academic.oup.com/nar/article-pdf/43/D1/D399/17438022/gku928.pdf
https://doi.org/10.1093/nar/gku928
https://doi.org/10.1093/nar/gku928
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430

[15] Octavian-Eugen Ganea et al. “Independent se (3)-equivariant models for end-to-end
rigid protein docking”. In: arXiv preprint arXiv:2111.07786 (2021).

[16] Mario Geiger et al. “Euclidean neural networks: e3nn”. In: Zenodo. https://doi.
org/10.5281/zenodo 5292912 (2020).

[17] Hervé Hogues et al. “ProPOSE: Direct Exhaustive Protein-Protein Docking with
Side Chain Flexibility”. In: Journal of Chemical Theory and Computation 14.9
(2018), pp. 4938–4947.

[18] Sheng-You Huang and Xiaoqin Zou. “A knowledge-based scoring function for protein-
RNA interactions derived from a statistical mechanics-based iterative method”. In:
Nucleic acids research 42.7 (2014), e55–e55.

[19] Sheng-You Huang and Xiaoqin Zou. “An iterative knowledge-based scoring function
for protein–protein recognition”. In: Proteins: Structure, Function, and Bioinfor-
matics 72.2 (2008), pp. 557–579.

[20] John Ingraham et al. “Illuminating protein space with a programmable generative
model”. In: bioRxiv (2022), pp. 2022–12.

[21] John Ingraham et al. “Illuminating protein space with a programmable generative
model”. In: bioRxiv (2022), pp. 2022–12.

[22] Arian R Jamasb et al. “Deep learning for protein–protein interaction site predic-
tion”. In: Proteomics Data Analysis (2021), pp. 263–288.

[23] Bowen Jing et al. “Torsional Diffusion for Molecular Conformer Generation”. In:
ICLR2022 Machine Learning for Drug Discovery. 2022. url: https://openreview.
net/forum?id=D9IxPlXPJJS.

[24] Wolfgang Kabsch. “A solution for the best rotation to relate two sets of vectors”.
In: Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography 32.5 (1976), pp. 922–923.

[25] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[26] Johannes Kirchmair et al. “The Protein Data Bank (PDB), its related services and
software tools as key components for in silico guided drug discovery”. In: Journal
of medicinal chemistry 51.22 (2008), pp. 7021–7040.

[27] Dima Kozakov et al. “The ClusPro web server for protein–protein docking”. In:
Nature protocols 12.2 (2017), pp. 255–278.

[28] Marc F Lensink, Raúl Méndez, and Shoshana J Wodak. “Docking and scoring pro-
tein complexes: CAPRI 3rd Edition”. In: Proteins: Structure, Function, and Bioin-
formatics 69.4 (2007), pp. 704–718.

[29] Jie Liang, Clare Woodward, and Herbert Edelsbrunner. “Anatomy of protein pock-
ets and cavities: Measurement of binding site geometry and implications for ligand
design”. In: Protein Science 7.9 (Sept. 1998), pp. 1884–1897. doi: 10.1002/pro.
5560070905. url: https://doi.org/10.1002/pro.5560070905.

[30] Zeming Lin et al. “Language models of protein sequences at the scale of evolution
enable accurate structure prediction”. In: BioRxiv (2022).

24

https://openreview.net/forum?id=D9IxPlXPJJS
https://openreview.net/forum?id=D9IxPlXPJJS
https://doi.org/10.1002/pro.5560070905
https://doi.org/10.1002/pro.5560070905
https://doi.org/10.1002/pro.5560070905

[31] Zhihai Liu et al. “Forging the basis for developing protein–ligand interaction scoring
functions”. In: Accounts of chemical research 50.2 (2017), pp. 302–309.

[32] Zhihai Liu et al. “PDB-wide collection of binding data: current status of the PDB-
bind database”. In: Bioinformatics 31.3 (2015), pp. 405–412.

[33] Wei Lu et al. “TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein
Binding Structure Prediction”. In: bioRxiv (2022).

[34] Efrat Mashiach et al. “An integrated suite of fast docking algorithms”. In: Proteins:
Structure, Function, and Bioinformatics 78.15 (2010), pp. 3197–3204.

[35] Matthew Masters et al. “Deep Learning Model for Flexible and Eflificient Protein-
Ligand Docking”. In: ICLR2022 Machine Learning for Drug Discovery. 2022. url:
https://openreview.net/forum?id=WNwsnE81meC.

[36] Andrew T McNutt et al. “GNINA 1.0: molecular docking with deep learning”. In:
Journal of Cheminformatics 13.1 (June 2021), p. 43.

[37] Jens Meiler and David Baker. “ROSETTALIGAND: protein-small molecule docking
with full side-chain flexibility”. en. In: Proteins 65.3 (Nov. 2006), pp. 538–548.

[38] Rocco Meli et al. “Learning protein-ligand binding affinity with atomic environment
vectors”. In: Journal of Cheminformatics 13.1 (Aug. 2021), p. 59.

[39] Gautam Mittal et al. “Symbolic music generation with diffusion models”. In: arXiv
preprint arXiv:2103.16091 (2021).

[40] Shuya Nakata, Yoshiharu Mori, and Shigenori Tanaka. “End-to-end protein-ligand
complex structure generation with diffusion-based generative models”. In: bioRxiv
(2022). doi: 10.1101/2022.12.20.521309. eprint: https://www.biorxiv.org/
content/early/2022/12/21/2022.12.20.521309.full.pdf. url: https:
//www.biorxiv.org/content/early/2022/12/21/2022.12.20.521309.

[41] Youngshang Pak and Shaomeng Wang. “Application of a Molecular Dynamics Sim-
ulation Method with a Generalized Effective Potential to the Flexible Molecular
Docking Problems”. In: The Journal of Physical Chemistry B 104.2 (2000), pp. 354–
359. doi: 10.1021/jp993073h. eprint: https://doi.org/10.1021/jp993073h.
url: https://doi.org/10.1021/jp993073h.

[42] PDBBind Official Website. http://www.pdbbind.org.cn/index.php. Accessed:
2022-02-09.

[43] Vadim Popov et al. “Grad-tts: A diffusion probabilistic model for text-to-speech”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 8599–8608.

[44] Emanuele Rodolà et al. “Functional maps representation on product manifolds”. In:
Computer Graphics Forum. Vol. 38. 1. Wiley Online Library. 2019, pp. 678–689.

[45] Christina EM Schindler et al. “Protein-protein and peptide-protein docking and
refinement using ATTRACT in CAPRI”. In: Proteins: Structure, Function, and
Bioinformatics 85.3 (2017), pp. 391–398.

[46] Dina Schneidman-Duhovny et al. “PatchDock and SymmDock: servers for rigid and
symmetric docking”. In: Nucleic acids research 33.suppl 2 (2005), W363–W367.

25

https://openreview.net/forum?id=WNwsnE81meC
https://doi.org/10.1101/2022.12.20.521309
https://www.biorxiv.org/content/early/2022/12/21/2022.12.20.521309.full.pdf
https://www.biorxiv.org/content/early/2022/12/21/2022.12.20.521309.full.pdf
https://www.biorxiv.org/content/early/2022/12/21/2022.12.20.521309
https://www.biorxiv.org/content/early/2022/12/21/2022.12.20.521309
https://doi.org/10.1021/jp993073h
https://doi.org/10.1021/jp993073h
https://doi.org/10.1021/jp993073h
http://www.pdbbind.org.cn/index.php

[47] Richard D. Smith et al. “Updates to Binding MOAD (Mother of All Databases):
Polypharmacology Tools and Their Utility in Drug Repurposing”. In: Journal of
Molecular Biology 431.13 (2019). Computation Resources for Molecular Biology,
pp. 2423–2433. issn: 0022-2836. doi: https : / / doi . org / 10 . 1016 / j . jmb .

2019.05.024. url: https://www.sciencedirect.com/science/article/pii/
S0022283619302967.

[48] Yang Song and Stefano Ermon. “Generative modeling by estimating gradients of
the data distribution”. In: Advances in neural information processing systems 32
(2019).

[49] Yang Song and Stefano Ermon. “Generative modeling by estimating gradients of
the data distribution”. In: Advances in neural information processing systems 32
(2019).

[50] Yang Song et al. “Score-based generative modeling through stochastic differential
equations”. In: arXiv preprint arXiv:2011.13456 (2020).

[51] Hannes StÃ¤rk et al. “EquiBind: Geometric Deep Learning for Drug Binding Struc-
ture Prediction”. In: (2022). doi: 10.48550/ARXIV.2202.05146. url: https:
//arxiv.org/abs/2202.05146.

[52] Antonia Stank et al. “Protein Binding Pocket Dynamics”. In: Accounts of Chemical
Research 49.5 (Apr. 2016), pp. 809–815. doi: 10.1021/acs.accounts.5b00516.
url: https://doi.org/10.1021/acs.accounts.5b00516.

[53] Freyr Sverrisson et al. “Physics-informed deep neural network for rigid-body protein
docking”. In: ICLR2022 Machine Learning for Drug Discovery. 2022. url: https:
//openreview.net/forum?id=5yn5shS6wN.

[54] Simon J Teague. “Implications of protein flexibility for drug discovery”. en. In: Nat
Rev Drug Discov 2.7 (July 2003), pp. 527–541.

[55] Nathaniel Thomas et al. “Tensor field networks: Rotation-and translation-equivariant
neural networks for 3d point clouds”. In: arXiv preprint arXiv:1802.08219 (2018).

[56] René Thomsen and Mikael H. Christensen. “MolDock: A New Technique for High-
Accuracy Molecular Docking”. In: Journal of Medicinal Chemistry 49.11 (2006).
PMID: 16722650, pp. 3315–3321. doi: 10.1021/jm051197e. eprint: https://doi.
org/10.1021/jm051197e. url: https://doi.org/10.1021/jm051197e.

[57] Raphael Townshend et al. “End-to-end learning on 3d protein structure for interface
prediction”. In: Advances in Neural Information Processing Systems 32 (2019).

[58] Oleg Trott and Arthur J Olson. “AutoDock Vina: improving the speed and accuracy
of docking with a new scoring function, efficient optimization, and multithreading”.
en. In: J. Comput. Chem. 31.2 (Jan. 2010), pp. 455–461.

[59] Ilya A Vakser. “Protein-protein docking: From interaction to interactome”. In: Bio-
physical journal 107.8 (2014), pp. 1785–1793.

[60] Sjoerd J de Vries et al. “A web interface for easy flexible protein-protein docking
with ATTRACT”. In: Biophysical journal 108.3 (2015), pp. 462–465.

26

https://doi.org/https://doi.org/10.1016/j.jmb.2019.05.024
https://doi.org/https://doi.org/10.1016/j.jmb.2019.05.024
https://www.sciencedirect.com/science/article/pii/S0022283619302967
https://www.sciencedirect.com/science/article/pii/S0022283619302967
https://doi.org/10.48550/ARXIV.2202.05146
https://arxiv.org/abs/2202.05146
https://arxiv.org/abs/2202.05146
https://doi.org/10.1021/acs.accounts.5b00516
https://doi.org/10.1021/acs.accounts.5b00516
https://openreview.net/forum?id=5yn5shS6wN
https://openreview.net/forum?id=5yn5shS6wN
https://doi.org/10.1021/jm051197e
https://doi.org/10.1021/jm051197e
https://doi.org/10.1021/jm051197e
https://doi.org/10.1021/jm051197e

[61] A. Wojtczak et al. TRANSTHYRETIN (ALSO CALLED PREALBUMIN) COM-
PLEX WITH THYROXINE (T4). Apr. 1997. doi: 10.2210/pdb2rox/pdb. url:
https://doi.org/10.2210/pdb2rox/pdb.

[62] Yumeng Yan et al. “HDOCK: a web server for protein–protein and protein–DNA/RNA
docking based on a hybrid strategy”. In: Nucleic acids research 45.W1 (2017),
W365–W373.

[63] Yumeng Yan et al. “The HDOCK server for integrated protein–protein docking”.
In: Nature protocols 15.5 (2020), pp. 1829–1852.

[64] M. Yogavel et al. Crystal structure of PfKRS complexed with chromone inhibitor.
Mar. 2019. doi: 10.2210/pdb6agt/pdb. url: https://doi.org/10.2210/
pdb6agt/pdb.

[65] Yong Zhao and Michel F Sanner. “Protein–ligand docking with multiple flexible
side chains”. In: Journal of Computer-Aided Molecular Design 22.9 (Sept. 2008),
pp. 673–679.

27

https://doi.org/10.2210/pdb2rox/pdb
https://doi.org/10.2210/pdb2rox/pdb
https://doi.org/10.2210/pdb6agt/pdb
https://doi.org/10.2210/pdb6agt/pdb
https://doi.org/10.2210/pdb6agt/pdb

Appendix

Figure 9: Extraction steps of Binding MOAD dataset. This figure was taken from [47].

Figure 10: Extraction steps of scPDB dataset. This figure was taken from [10].

28

(a) Directed Graph of Sidechain Heavy Atoms

(b) Step 1 (c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5 (g) Step 6

Figure 11: Graph Traversal to compute rotatable bonds for Histidine, algorithm 1

Figure 12: Table of possible Sidechains — taken from [6]

29

Algorithm 1: Graph Traversal to compute rotatable bonds

Input: Atom positions x, atom names N
Output: Rotable bonds B, rotation maskM
(x,N)← removeHydrogens(x,N);
G← constructDirectedGraph(x,N);
for e ∈ edges(BFS(G)) do

GU ← toUndirected(G);
GU ← removeEdge(GU , e);

if not isConnected(GU) then

c← connectedComponents(GU);

if size(sorted(c)[0]) > 1 then

M.append(c[1]);
B.append(e);

end

end

end

Table 4: Model sizes compared to the DiffDock [7] model.

PARAMETER DiffDock Pocket-Reduced Flexible Sidechains

CONVOLUTION LAYERS 6 5 4
NUMBER OF SCALAR FEATURES 48 25 20
NUMBER OF VECTOR FEATURES 10 6 5

NUMBER OF PARAMETERS (M) 20.24 2.53 2.20

30

	Abstract
	Introduction
	Background and Project Scope
	Molecular Docking as a Generative Process

	Datasets
	Motivation
	PDBBind
	Other Datasets
	Binding MOAD
	scPDB

	Issues when Creating Custom Selection Algorithms

	Binding Pocket Conditioned Receptor Flexibility
	Literature and Background
	Methodology
	Prior Knowledge of Pocket
	Computing Sidechain Torsional Degrees of Freedom
	Model Adaptation

	Results
	Pocket-Reduced Proteins
	Flexible Sidechains

	Protein-Protein
	Literature
	Method
	Benefits of Generative Modeling for Rigid Protein Docking
	Method Overview
	Diffusion Process
	Model Architecture
	Training and Inference

	Experimental Setup
	Datasets
	Baselines
	Implementation Details

	Results

	Conclusion
	Bibliography
	Appendix

