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I

Abstract

Large-scale single-cell atlases have the potential to transform our understanding of human
biology. Through integration of multiple datasets, it is possible to capture the variability
present in the population. Due to the large availability of single-cell RNA sequencing
data of human blood, it is especially interesting for atlas creation. However, the size of
the datasets lead to computational and procedural problems. Here, we present different
analyses, solutions and possibilities to improve the integration of large-scale single-cell
RNA sequencing data.

Firstly, we evaluate GPU implementations of regular data analysis methods. In order
to improve computational performance and scalability, we introduce a parallel version of
SCRAN, a state of the art normalization method, making normalization of even huge
atlases feasible.

Furthermore, we compare the current best practice method of performing quality control
to an alternative approach, where low quality cells are identified in the joint space of
integrated datasets. We find that the alternative approach has no disadvantages with
regards to the integration process and can potentially lead to improved quality control.

To reduce the size of the data, we benchmark random subsampling against a cluster-
dependent downsampling approach and two further optimization algorithms. To compare
the four diverse methods, we evaluate them in practicability and preservation of the bi-
ological variance in the subsample, which is essential for a deeper understanding of how
cells function and interact. We find that the Leiden-cluster-dependent subsampling and
the algorithm Sphetcher are the most promising methods in this regard.

Lastly, we examine the possibility of preserving the biological distinctions between healthy
and diseased cells after single-cell data integration. Our results show that the “mapping
after integration” method effectively retains this difference, and we confirm its biological
significance through multiple assessments.
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1 INTRODUCTION 1

1 Introduction

RNA-sequencing is a genomic approach for detection and quantitative analysis of mes-
senger RNA molecules in a biological sample [1]. Traditional profiling methods assess
samples comprising thousands to millions of cells. While these bulk genomics have fueled
much discovery and innovation in medicine, they fail to enable the direct analysis of the
fundamental unit of biology - the cell [1]. Single-cell RNA-sequencing in contrast, assesses
the genomics on a cellular level. It can therefore reveal complex and rare cell populations,
uncover regulatory relationships between genes, and track the trajectories of distinct cell
lineages in development [2].
The key elements of an experimental single-cell RNA-sequencing workflow are described
by [3]. As a first step, the single-cell data from a biological sample is generated by
single-cell dissociation, single-cell isolation, library construction and sequencing. The
resulting raw data is processed to obtain matrices of molecular counts or, alternatively,
read counts. The next step is to perform quality control, to ensure that all cellular
barcode data correspond to viable cell, and normalization, which corrects relative gene
expression abundances between cells. This is followed by data correction, which targets
further covariates to remove unwanted technical variability. The last step is to reduce
the size of the dataset by keeping only genes that are informative of the variability in
the data, which is followed by dimensionality reduction and visualization. To extract
biological insights and describe the underlying biological system, downstream analysis is
performed. Thereby, we distinguish between cell-level approaches, describing clusters and
trajectories, and gene-level approaches [3].
Single-cell omics datasets often contain many samples, that are generated across and
under various conditions [4], leading to complex batch effects. Batch effects are technical
variations in data, generated from observations in distinct batches. Not only technical
settings such as sequencing depth, experimental laboratories, and sample composition
can cause these effects, but also biological factors such as tissues and time points can
be considered as batch effects. A single-cell data integration method aims to combine
various datasets or samples into a joint space to create a consistent version of the data for
downstream analysis. Ideally, after integration the joint version should be able to cluster
cells with similar biological information together and at the same time, remove various
batch effects. In the scope of this project, we aim to, on the one hand side, improve the
computational performance of a state of the art single-cell RNA normalization method
and on the other hand, study the impact of quality control on integration. Furthermore,
we compare different subsampling approaches to decrease the sample size but preserve
the biological variance from the original data, as well as examine what cells to include
in the reference atlas, and what cells to map onto the reference atlas after integration to
preserve biological diversity.
In this report, we present different analyses, solutions and possibilities to improve the
integration of large-scale single-cell dataset integration. While there already have been
integrated atlases for some organs[5, 6], the blood remains one of many organs that do
not have an adequate atlas released yet. The creation of such an atlas would be of great
importance to the research community as a whole, not only because of the importance
of blood to the immune system, but also because of the great accessibility of single-cell
RNA data on blood compared to other organs.
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1.1 Data

The data we used throughout this project is Peripheral Blood Mononuclear Cells (PBMC)
data, which comes from 28 different batches. In total, it contains 8195299 cells and 34001
genes and involves various health conditions. We have detailed information on cell type,
disease, and age for each cell in our PBMC dataset. Additionally, information on the
batch in which each cell was collected is provided. Figure 1 displays the distribution of
cells per batch and per disease in the PBMC data.

(a) Proportion of cells per batch (b) Proportion of cells per disease

Figure 1: Proportion of cells in the PBMC data

The dataset is utilized differently across various tasks:

• In order to investigate the impact of quality control on the integration performance,
the raw data from original batch datasets was used, where quality control was not
already applied. Only healthy data was considered, from which we took a subset
into account. The data was later normalized (with a target sum of one million cells,
known as CPM normalization) and log(x+ 1)-transformed for integration.

• Apart from quality control, the other tasks were performed on the aggregated
dataset, which was already normalized (with a target sum of one million cells, known
as CPM normalization) and log(x+ 1)-transformed.

• For the improvement of computational performance, the focus lays on the methods
not the data, hence a subset of approximately 350000 cells was used.

If not mentioned otherwise all methods were run on Python using the packages scanpy
for functions and anndata for the annotated single-cell data.
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2 Improving computational performance

One of the biggest problems when dealing with currently generated datasets is how to scale
existing tools to the ever-increasing size of the data. With single-cell RNA dataset sizes
growing immensely in recent years[3] as well as atlases trying to combine these to even
larger data, scalability is becoming more and more critical for single-cell RNA analysis
methods.
This section covers the introduction of two performance-increasing methods to the general
project: First, the setup and testing of the NVIDIA RAPIDS suite[7] using GPU imple-
mentations of common single-cell RNA analysis workflows. Second and more importantly,
the parallelization of one of the most widely used single-cell RNA normalization methods,
SCRAN.

2.1 Introduction of RAPIDS suite

2.1.1 Approach

As single-cell RNA analysis uses a lot of common data science methods such as PCA,
t-SNE, and UMAP, any improvement in either memory usage or computing time would
be hugely beneficial. To achieve this, NVIDIA introduced their RAPIDS suite in 2019[7],
providing GPU implementations of multiple methods used for data analysis. In addition,
the implementations were tested specifically on single-cell RNA data, with the authors
citing the rapid increase of dataset sizes and the new development to integrate multiple
datasets as key reasons.
To test whether these methods could also be used on atlas-scale single-cell data of PBMCs,
the task was to run these methods on data provided by the institute and measure the
time improvement compared to regular CPU implementations. Additionally, a python
environment including all required dependencies was created together with a Jupyter
notebook detailing the workflow and improvements of each method. The main goal here
was to make these new methods easily accessible for other project members and their
downstream analyses.

Task
CPU Time
Blood Data

GPU Time
Blood Data

Improvement
Blood Data

Improvement
Krasnow Data

PCA 2min 24s N/A N/A -85,6%
t-SNE 48min 33s 26.2 s -99,1% -99,6%
k-Means 58.6 s 724 ms -98,8%d -99%
Nearest Neighbors 40.5 s 21 s -48% -79%
UMAP 10min 47s 10.4 s -98,4% -99,6%
Louvain Clustering 3min 14s 2.45 s -98,7% -99,3%
Leiden Clustering 3min 12s 1.1 s -99,4% -99,5%

Table 1: Improvements of the RAPIDS suite in different data analysis tasks, compared
on both an internal blood dataset as well as the public Krasnov HLCA 10x lung dataset

2.1.2 Results

Table 1 indicates the performance for seven different data analysis tasks on two datasets:
A blood dataset of the Helmholtz institute containing ∼350000 cells, as well as the public



2 IMPROVING COMPUTATIONAL PERFORMANCE 4

Krasnov HLCA 10x lung dataset[8] containing around 70000 cells. While the first two
columns indicate the absolute time each method took on the internal dataset for CPU
and GPU respectively, the latter two columns list the relative improvement between CPU
and GPU for both datasets.
Except for PCA and Nearest Neighbors, all methods achieved an improvement of ∼98-
99%, with t-SNE and UMAP experiencing the largest absolute time improvement. The
GPU implementation of PCA did not execute on our 350000 cell large dataset due to
memory issues. However, due to other team members already experiencing memory issues
using the regular CPU implementation of PCA and its low absolute CPU time it was
decided to not pursue this issue further.

2.2 SCRAN parallelization

While methods of capturing scRNA are improving rapidly, there is still a lot of vari-
ability occurring in the overall data collection process.[3] This can lead to differences in
gene counts solely as a result of sampling effects. To estimate the number of molecules
originally in the cells and therefore make any downstream-analysis task more significant,
normalization has to be done.

2.2.1 SCRAN as state of the art normalization method

Normalization, just like a lot of other scRNA analysis steps, offers a wide variety of
methods that can be used. One of these methods is SCRAN[9], whose approach not only
computes more robust size factors but also helps to alleviate batch effects to a certain
extent.[3] To estimate true size factors more effectively, SCRAN assumes at least 50% non-
differentially expressed genes, requiring a first clustering of cells. It first pools the cells
in each cluster over a sliding window, constructing pool-based size-factors[9] consisting
of the still unknown cell-specific size-factors. This linear system is then solved to receive
cluster-specific size factors per cell, which are finally aligned with the help of a chosen
reference cluster. For every cluster, all genes are then compared against the genes of the
reference cluster, resulting in ratios for every single gene occurring in both clusters. The
median of these ratios is then taken to get one value with which the cluster is scaled one
final time.

Figure 2: Proposed parallel version of SCRAN

This approach, however, does not scale well for larger datasets and results in a lot of
current studies rather using a more naive total counts normalization, in which all counts
are just divided by the total number of counts per cell.
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2.2.2 Assumed method for paralellization

To combat this issue, we proposed and tested a new parallelized version of SCRAN,
visualized in figure 2. Because SCRAN normalizes cells first in each cluster separately
before scaling it once against the reference cluster, each cluster only needs the additional
reference cluster to be correctly normalized. Leveraging this information, it should be
possible to split all clusters into smaller chunks, before adding the same reference cluster
to each chunk. These chunks can then be normalized on smaller partitions in parallel,
before finally being merged back into one normalized file.

(a) (b)

Figure 3: Size factors computed by chunks both before and after scaling the chunks by
the scaling factor between each reference cluster

First using the functionality provided by SCRAN of this approach however experienced
some issues. While there was an exact linear correlation between the size factors of each
chunk with the size factors of the whole file, the correlation between the merged size
factors was only 0.93. On closer inspection, it was found that each chunk was scaled
differently3(a). One potential reason for this could be a faulty indexing of the SCRAN
package, resulting in the SCRAN not always choosing our proposed reference cluster but
a random cluster as the reference cluster instead.
With this information in mind, a second approach was proposed. As the normalization
inside each cluster is deterministic, all size factors of each chunk only differed in size by a
single factor. By choosing one reference cluster and dividing the size factors of another,
we get a scaling factor by which the chunks differ from each other. To finally normalize
all chunks, we, therefore, scale the whole chunk by this scaling factor obtained from each
reference cluster to achieve chunks with the same scaling.

2.2.3 Results

To evaluate the effect this approach would have on normalization, we evaluated the size
factors of three different approaches, all done on a smaller subset mentioned in section
2.1 containing 350k cells. In the first approach, which we used as the baseline, the whole
dataset was to be normalized with a maximum cluster size of 5000 and a minimum cluster
size of 100. In the second approach, the data was to be first split into 10 chunks, adding
a reference cluster to each one. These chunks were then normalized in parallel, before
being merged back once more and scaled based on the scaling factor between each of the
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SCRAN chunks -
SCRAN whole

SCRAN whole -
total counts

SCRAN chunks -
total counts

HVG Overlap 0.966 0.952 0.936
ARI - Leiden 0.625 0.068 0.066
ARI - Kmeans 0.507 0.023 0.016

Table 2: Comparison of HVG overlap as well as ARI-score for leiden and kmeans clustering
between our proposed SCRAN by chunks, SCRAN on the whole dataset(baseline) and
normalization by total counts

10 reference clusters. Lastly, the dataset was normalized using the total counts method
described above. The results can be seen in figure 3 (b). The size factors of our proposed
parallel approach and the baseline normalization of the whole dataset correlated with a
factor of 1, while both had a correlation of 0.89 against the total counts.
To further evaluate the quality of the size factors obtained by our parallelized SCRAN
approach, we looked at two different downstream analysis steps typically done with single
cell RNA data. The first is the computation of highly

Figure 4: HVG comparison

variable genes(HVG), indicating the genes that ex-
plain the most variability of the data[3]. With the
second, we once more clustered the data by both K-
means and Leiden clustering and compared their sim-
ilarity using the Adjusted Rand Index[10]. Both re-
sults can be seen in table 2, with a closer inspection
of the highly variable genes in figure 4. Our parallel
approach had 0.966 overlap of highly variable genes
with the baseline, while the total counts normalized
method only achieved an overlap of 0.952. Similar
trends were observed with the ARI score, with our
approach achieving an ARI score of 0.625 and 0.507
for Leiden and K-means clustering respectively, while
the total counts normalization only achieved 0.068 and 0.023.

2.3 Conclusion and Outlook

In this chapter, we showed the implementation of GPU implementations and a paral-
lelized scran approach to improve the performance and scalability of single cell RNA
analysis workflows. While the shown solutions already yield great improvements, there
are still several aspects to further be addressed. One first potential improvement would
be the ability of SCRAN to reliably specify a single Reference Cluster. As we showed
in this chapter that the normalization per cluster is deterministic as shown by correla-
tion between the different reference clusters, the usage of the same reference cluster for
normalization between clusters as originally proposed should work in theory, making the
current scaling between the reference clusters obsolete. In addition, a thorough analysis
and benchmarking between current normalization methods could be done in the future,
enabling a proper evaluation of the impact of our findings.
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3 Quality control

Quality control (QC) is the process of ensuring that all profiled droplets used in down-
stream analysis correspond to viable cells. When performing droplet QC, the droplets
are examined to detect low quality cells by studying the three QC metrics (total counts,
number of expressed genes and fraction of mitochondrial genes) [4]. The standard prac-
tice in QC is to filter out low quality cells by setting appropriate thresholds on the QC
metrics [11]. In addition, QC also includes filtering out genes which are not informative of
the cellular heterogeneity as they are not expressed in more than a few cells. Lastly, QC
comprises special computational strategies for ambient RNA removal [12, 13, 14], empty
droplet removal [15] and doublet detection [16, 17, 18].
To ensure a sufficient data quality within single-cell atlases QC plays an important role in
the workflow of creating the atlases. In the state of the art approach, QC is performed as a
preprocessing step at the beginning of the workflow [5]. By applying different thresholding
methods to all samples of each dataset individually, outliers are filtered out. In a later
step, the datasets are integrated into an atlas.
An alternative approach to identify low quality cells is to study the data on the joint space
after data integration with the same metrics as described above. This method could lead
to time savings because the QC step has to be performed only once instead of repeating
it for every sample in each dataset respectively. Furthermore, we hypothesize that the
clustering approach could lead to an improved detection of low quality cells.

3.1 Goals of the study

In this study, we evaluate how low quality cells affect the data integration and compare the
two QC approaches described above. The main goal is to find out whether the alternative
QC approach leads to better results than the current best practice of performing QC on
the individual datasets before integration via thresholding. To break down this problem,
we defined two guiding questions that examine different aspects of a successful atlas
creation:

1. Which approach leads to better integration results?

2. Which approach is able to better identify low-quality cells?

In this study we will focus on the effect of damaged or dying cells.

3.2 Methods

To approach the problem two atlas versions are created from the same subset of datasets
as shown in Figure 5. Atlas (1) is created by first performing QC via thresholding on the
individual datasets and then executing the integration of the filtered datasets. For atlas
(2) no QC is performed before integration. Instead, the unfiltered datasets are integrated
into an atlas. At a later stage, a QC analysis via clustering is performed on atlas (2).
To answer the first guiding question, we compare atlas (1) and atlas (2) with regards to
their integration performance. To assess the second guiding question, the low quality cells
identified in the workflow of creating atlas (1) and analysing atlas (2) are evaluated.
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(a)

Figure 5: Process of atlas creation for the analysis.

3.2.1 Data selection and sub-sampling

The first step was to create a subset consisting of several datasets which serves as a basis
for the creation of the different atlases mentioned above. All datasets considered in the
following analysis need to be unfiltered in order not to distort the results. As QC was
already performed on some of the datasets available for analysis, we had to select the
datasets which were not filtered yet. Therefore, for each dataset we created a violin plot
for every sample showing the total counts per cell, the number of genes per cell and
the fraction of mitochondrial genes per sample. By manually analysing these plots we
excluded datasets with clearly visible cut-offs, which indicates that QC has already been
performed.
From every unfiltered dataset a few samples were chosen. To ensure that these samples
are representative of their respective dataset, we choose samples whose number of cells is
close to the median number of cells in the dataset. Furthermore, we manually analysed
the violin plots of all samples to exclude samples with strongly deviating distributions
with regards to total counts, number of genes per count and fraction of mitochondrial
cells to remove failed samples. The final subset consists of approximately 240000 cells
and 93 samples, with 3-27 samples per dataset.

3.2.2 Quality control before integration

On each of the samples selected in the previous section, we performed QC by analysing the
total number of counts per cell, the number of expressed genes per cell, and the fraction
of mitochondrial genes per cell. In particular, cells with low total counts and number
of expresses genes and at the same time a high fraction of mitochondrial genes are most
likely low quality cells. For one of the samples, we decided to consider cells as outliers,
for which one of the following conditions is satisfied.

• The fraction of mitochondrial genes is above 0.2.

• The total number of counts is below 2500 or above 30000.
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• The number of expressed genes is below 400.

Figure 6 shows the scatter plots of the number of expressed genes against the total number
of counts, coloured by the fraction of mitochondrial genes, before and after filtering the
outliers on the exemplary sample.

(a) (b)

Figure 6: Scatter plot of number of expressed genes against the total number of counts,
coloured by the fraction of mitochondrial genes (a) before and (b) after filtering out the
outliers.

After performing quality control, we created two datasets, where one of them contains
the unfiltered samples with a total number of 235201 cells, whereas the other one only
contains viable cells with a total number of 216408 observations. In particular, 18793 cells
were identified as outlier from which approximately 13300 cells are low quality cells.

3.2.3 Integration

For each of the two datasets from the previous section, we used the single-cell variational
inference (scVI) framework [19] to integrate cells coming from different samples into a
joint space. As the method uses stochastic optimization and deep neural networks, we
ran the procedure six times for each of the datasets to account for random initialization.

3.2.4 Metrics evaluating integration performance

To evaluate which of the two atlases performs better, we focused on two categories of
metrics, which were performed on each of the twelve atlases. With accordance to [4], the
first category consists of the metrics PC Regression, Average Silhouette Width (ASW),
Graph Connectivity, and Graph Local Inverse Simpson’s Index Graph on batch mixing
(iLISI). These evaluate the batch effect removal. The second group consists of the metrics
Normalised Mutual Information (NMI), ASW, Isolated Label F1, Isolated Label Silhou-
ette, and Graph Local Inverse Simpson’s Index Graph on cell type separation (cLISI).
These metrics measure how well the biological variation is conserved. All metrics scale
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between 0 and 1, where 1 is the optimal score. Based on the mean metric value in both
metric categories for each dataset, we can conduct a statistical test to investigate if there
are any significant differences between the two datasets.

Two sided t-test. For both metric categories, we considered the mean value of the
metrics for each of the six integration runs of both datasets. As integration was performed
on both datasets separately,we can assume that the integration results for the two datasets
to be independent. In order to perform a two sided t-test for the null hypothesis that the
two independent atlases have identical metric means for both metric categories, we further
need the assumptions that the data (mean value across metrics in a metric category) for
both atlases have equal variances and that the data follows a Normal distribution. We
assumed the later to hold and performed a Bartlett’s test for both metric categories to
check for equal variances (null hypothesis).

3.2.5 Quality control on atlas based on clustering

From six of the atlases, where all cells were included, we randomly selected one to identify
regions of low quality cells. For this, we computed a Leiden clustering with resolution
0.5, which can be seen in Figure 7a and studied the total counts, the number of expressed
genes and the fraction of mitochondrial genes on the atlas level, which are shown in Figure
7b - 7d.
Based on Figure 7, we can observe that cluster 10, 13, and 16 are very likely clusters
containing low quality cells as cells in these clusters tend to have low total number of
counts, low number of expressed genes and at the same time, high fraction of mitochondrial
genes. By observing Figure 7, we can see that there are potential low quality cells at the
borders of cluster 0, 1, 2, 3, 4, 5, 14, and 15. For each of these clusters, we recomputed
the neighbourhood graph individually and performed the Leiden clustering algorithm with
resolution 0.5 and 1 to identify subclusters, which contain low quality cells in a similar
way as we did to identify cluster 10, 13, and 16.

3.3 Results

Data integration is not worsened by low quality cells. In Figure 8 and 9, we
can observe that for both atlases similar cell types are rather clustered together while
different batches are quite well distributed across the entire atlas. The values of the
metrics specified in Section 3.2.4 for each atlas can be found in Table 4 and 5 in Appendix.
For each of the twelve atlases, Figure 10 shows the mean value of the metric scores in
both metric categories, as well as the overall mean across the six integration runs for each
dataset in both metric categories.
The Bartlett’s test for the batch effect removal metric category yields a p-value of 0.3272
and the Bartlett’s test for the conservation of biological variation metric group yields a
p-value of 0.6440. On a significance level of 5%, we cannot reject the null hypothesis.
Thus, we assume equal variance. Based on this assumption, we performed a two sided
t-test for the null hypothesis that the two independent atlases have identical averaged
means in both metric categories. The t-test for the batch effect removal metric category
yields a p-value of 0.1054 and the t-test for the conservation of biological variation metric



3 QUALITY CONTROL 11

(a) (b)

(c) (d)

Figure 7: (a) Leiden clustering with resolution 0.5 on atlas with all cells. (b)-(d) Atlas
of all cells coloured by the fraction of mitochondrial genes, log10 transformation of total
counts, and number of expressed genes, respectively.

group yields a p-value of 0.2535. For both metric categories, we cannot conclude, on a
significance level of 5%, that there is a difference in the averaged mean across metrics of
the two atlases.

QC on the entire atlas lead to better results. Based on the clustering approach
from Section 3.2.5, a total number of 7184 low quality cells were identified (see Figure
11b, which is approximately half the number of low quality cells identified before integra-
tion (see Figure 11a). Among these 7184 cells, 3352 were also identified as low quality
cells before integration. Furthermore, in Figure 11 we observe that the low quality cells
identified before integration are largely present in the same regions as the annotated low
quality cells on atlas. In addition, the low quality cells identified on the atlas are more
present at the borders of clusters or form a distinct cluster away from the other cells.
There are also cells labeled as low quality cells after integration, which were not considered



3 QUALITY CONTROL 12

(a) (b) (c) Batch labels

Figure 8: (a): Atlas of cleaned dataset. (b): Atlas of dataset with all cells.

(a) (b)

(c) Cell type labels

Figure 9: (a): Atlas of cleand dataset. (b): Atlas of dataset with all cells.
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(a)

Figure 10: Values of the metrics for all integration runs.

(a) (b)

Figure 11: Low quality cells identified (a) before and (b) after integration.

as low quality cells before integration. These cells are shown in Figure 12b. In particular,
we observe that these cells are mostly present in cluster 10 and 13 on the cleaned atlas
in Figure 12a. These two clusters are two of the smaller clusters in the middle of the
cleaned atlas, which have a larger distance to the other major clusters. This shows that
performing quality control on the entire atlas after integration is potentially able to better
identify the problematic low quality cells, which could hamper the downstream analysis.
Particularly, performing quality control on the atlas level could also potentially help to
annotate problematic low quality cells, which are difficult to be identified before integra-
tion, as the later only relies on summary statistics and not the complete transcriptome of
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(a) (b)

Figure 12: (a) Clusters on atlas of dataset with low quality cells identified before integra-
tion removed using Leiden clustering with resolution 0.5. (b) Location of annotated low
quality cells on atlas, which were not identified as low quality cells before integration.

a cell.

Low quality cells from different batches are clustered together on the joint
space. We explored how the cells within the different Leiden clusters identified in Sec-
tion 3.2.5 are distributed among the different datasets. This enables us to assess the
intermixing of batches in the cluster. We analysed both clusters with low fractions of
low quality cells, such as clusters 6, 7 and 8 as well as clusters with high fractions of low
quality cells, such as clusters 10, 13 and 16.

(a) (b)

Figure 13: Cell distribution in cluster (a) 7 and (b) 10 from atlas with all cells, clustered
using resolution 0.5.

Figure 13 visualizes how the cells within cluster 7 and 10 are distributed among the
datasets. Thereby, the blue bars show the share of cells that were not identified as low
quality cells whereas the orange bars show the share of cells that were annotated as low
quality cells in Section 3.2.2. We see that the cells in the clusters originate from multiple
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different datasets. The datasets within cluster 7 seem to be even more diverese than the
datasets within the low quality cluster 10. However, this is likely due to the fact that
with 7638 cells compared to 1237 cells, cluster 7 is significantly larger than cluster 10.
Analysing the low quality clusters further, we find that previously identified low quality
cells within the clusters also originate from different datasets. This allows us to conclude,
that integration leads to the creation of low quality clusters across datasets. This is an
important finding for the process of mapping new samples onto the atlas. It indicates that
low quality cells can be mapped onto low quality clusters. This would enable automated
QC during the mapping process.

3.4 Conclusion and Outlook

This study indicates that it is not necessary to perform QC before integration on each
of the samples, which can be time consuming. We showed, that the alternative method
of performing QC on the joint space could be superior to the state of the art approach.
To verify these findings it is necessary to perform similar analyses for data from different
tissue.
As this study solely considers the integration method scVI [19], it is to be investigated
whether the results can also be applied to atlas creation with other integration methods.
Likely, this will be the case for integration methods with similar or better integration
metric scores. That is because the clustering of low quality cells is improved by high
conservation of biological variance in combination with high removal of batch effects,
which is indicated by a high integration score.
Moreover, QC methods not considered in this report, can be investigated to find out
whether the findings of this study can be extended to QC methods in general. Doublet
detection might as well profit from clustering effects and could therefore possibly be
improved by the alternative QC approach. However, our hypothesis is that this is not the
case for ambient gene removal as a successful integration leads to dataset-diverse clusters.
If performing QC on the entire atlas via clustering turns out to be advantageous in the
cases named above, a best practice for executing it needs to be created.
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4 Comparative analysis of subsampling methods

Dealing with large amount of data is a fundamental issue when working with single-cell
RNA-sequencing data, especially for blood. Great sample sizes restrict computational
resources like memory access, therefore algorithms can take hours or even days. Some
methods are not even scalable to big data. It is often necessary to create a smaller
subset of representative cells from the original data to perform or accelerate computational
processes. However, this will leave out some important information from the original data
and can fail to represent the whole variance in the subsample. Working on a random
downsampling basis is a naive approach and relatively easy to implement, but brings
many drawbacks with it, such as distorting and misrepresenting this variance.

Figure 14: Weakness of random
subsampling: conservation of
transcriptomic landscape.
Image adapted from [20]

Single-cell data is highly multidimensional, the lo-
cation of cells in the so-called transcriptomic space
is determined by the gene expressions. This tran-
scriptomic space is a “genome-wide RNA profiling”
for single-cell sequencing data [21]. Whereas com-
mon, more frequent cell types are gathered densely
together, rarer cell types can either be grouped in
smaller sets or spread more sparsely in larger, com-
plex clusters [20]. A random downsampling captures
only partly the underlying transcriptomic structure in
the subset, see figure 14. Here, frequent and common
cell types show also a high occurrence in the subsam-
ple, while some rare cell types and complex transcrip-
tional structure remain unrecognized, this leads to a
distorted impression of the total geometry. Thus, the
biological variance is not represented correctly in the
subset.
The purpose of constructing an atlas is to represent
the diversity existing in human population in a hetero-
geneous reference. Hereby, the total biological vari-
ance ensures a deeper understanding of how cells func-
tion and interact. Thus, this biological complexity
needs to be preserved, otherwise highly relevant biological processes cannot be identified
correctly. In the following, random subsampling will be compared to a cluster-dependent
downsampling approach, and two further optimization methods designed to select a sub-
sample covering the full data’s topology as well as possible. A more detailed description of
the different subsampling method can be found in section 4.2. To benchmark the diverse
algorithms, we evaluate them in practicability and preservation of the biological variance
in the subsample, see section 4.4.

4.1 Data acquisition and cleansing

Data structure and preprocessing A downsampling size of 300 000 cells from the
original dataset (described in section 1.1) is chosen, which contains approximately 3.66%
of the original cells. It was not possible to run all methods on the full data due to



4 COMPARATIVE ANALYSIS OF SUBSAMPLING METHODS 17

rare cell types common cell types
dendritic cell, pDC, granulocyte, B cell, T cell, monocytes,

erythroid lineage cell, hematopoietic precursor cell innate lymphoid cell

Table 3: Categorization of the cell types

the large sample size, so additionally it was randomly split into four subsets. Because
the main goal of this work is to compare subsampling methods before integration, no
quality control was performed. Different embeddings were generated using 20, 50 and 100
principal components. Based on these the later subsets are created. Various embeddings
will serve as comparison since each method – except random subsampling – is based on
the embedding and therefore lead to different subsamples.

Rare cell types Around 4.11% of the cell types are unlabeled. Our data includes
10 different annotated cell types, which were categorized into rare and common ones
regarding the occurrence within blood data, as depicted in table 3. This classification was
important for the evaluation of the methods, where we investigate to what degree rare cells
are conserved and handled differently than common ones. We expect this investigation
to be informative of the heterogeneity and biological variance in the subsample.

4.2 Different subsampling approaches and methods

The most intuitive way to downsample is a random subsampling, but it has several
disadvantages which were introduced in section 4. The ultimate goal of this task is the
find a method which preserves biological variance, represents the transcriptomic space in
the subsample similar to the full data, and creates a heterogeneous downsample. To ap-
proach this, we implemented a Leiden-cluster-dependent subsampling. This cluster-
dependent approach selects cells from each cluster to guarantee that also small cluster
and underrepresented, rarer cells types are maintained instead of mainly keeping common,
more homogeneous cells. Thus, the biological complexity is expected to be better cap-
tured than for random subsampling. However, it was found that this cluster-dependent
way is not robust, and can result in an unsuitable subset for downstream analysis, as
demonstrated in [20]. Furthermore, our data is quite unbalanced, meaning it contains
way more common cells than rare cells. In this case it is found that clustering is often
assigned incorrectly and underrepresented data observations can be clustered together
even when they are not that similar and closely related [22].
More complex algorithms tailored for downsampling instead of cluster selection yield
subsets, that perform more effective in downstream analyses like clustering, visualization,
and integration as described in [20], [23],and [24]. These more sophisticated algorithms
tackle the aforementioned problems when generating a smaller dataset by subsampling
across the transcriptomic space more evenly. In the scope of this work, we will refer
to the introduced methods Sphetcher and scSampler as ’smart’ subsampling, because
they ’smartly’ aim to improve the representation of the trancriptomic space by minimizing
the Hausdorff distance, which is a similarity measure, further explanations are provided
in 4.3.1. This optimization results in a maximized distance and minimized similarity
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between the cells in the downsample. Thus, the biological diversity should be preserved
and rare cell types will likely be upsampled.

Leiden-cluster-dependent subsampling The Leiden algorithm aims to find well-
connected and high quality clusters, similar cells are assumed to be clustered together
[25]. Thus, we expect a rather heterogeneous subset retaining the biological variation
when subsetting on cluster basis. This downsampling approach was executed on the four
splitted subsets. For each subset, a kNN graph with number of neighbors per cell set to
15 was created before running the Leiden algorithm with a resolution of 20, which leads to
280–530 clusters. The number of cells within a cluster is highly varying from 1 to 32 000.
All clusters with less than 500 cells are kept fully, because they are assumed to have high
variations and therefore be important for the total variance. In contrast, similar cells do
not contribute to the biological variance and therefore are left out. Only a fixed number
of cells is kept from clusters with more than 500 cells, which is calculated as follows for
each subset to get the total downsampling size of 300 000 after merging them:

(75 000−# cells from clusters with < 500 cells)

(# clusters with more than 500 cells)

Sphetcher [23] This algorithm creates a so-called ’sketch’ taking into account the tran-
scriptomic space by generating small, fixed size spheres that cover cells in the transcrip-
tomic space. From each sphere one cell is selected with the goal of approximating the
global geometry and get the sketch, which is expected to preserve the geometric structure,
as it can be seen in figure 15. The selection of the cells from the spheres is designed as
minimax distance design, i.e. these cells are kept which minimize the maximal Hausdorff
distance to the next nearest cell [26]. Here, Pearson correlation distance is used as under-
lying distance metric. In opposite to the other methods, Sphetcher is not implemented in
Python but in C++, the input has to be a csv file of the latent space.

Figure 15: Visualization of Sphetcher algorithm taken from [23]

scSampler This downsampling method minimizes the Hausdorff distance with Eu-
clidean norm as distance metric. In contrast to Sphetcher, scSampler is based on the
maximin distance design, which allows a better separation of the cells with the downside
of being computationally more expensive [24]. To enable faster computations scSampler
provides a variant splitting the sample into k subsets. For this work, scSampler was
performed on three variants – 20, 50, and 100 random splits – on the three embeddings
to better understand the performance and detect possible differences in the outcome and
conservation of biological variance.
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4.3 Evaluation metrics

In finding a proper downsampling method, essential factors for the evaluation of the dif-
ferent methods include computational effort, running time, and scalability. In addition
to the technical part, another focus of this comparative analysis of subsampling methods
concentrates on the biological aspect. To approximate the general heterogeneity of the
subsample in comparison to the original data, we look at rare cell types. The percentage
of retained cells for each cell type is calculated, this provides insights into the effect of
subsampling on the transcriptional structure and general heterogeneity. We expect com-
mon cell types to be more homogeneous and therefore hold less biological variety. Thus, a
higher preservation of rare cell types indicates a higher conservation of the biological vari-
ance. A more sophisticated metric for this biological evaluation is the Hausdorff distance,
as explained in the following section.

4.3.1 Hausdorff distance

In quantifying the representation of the transcriptomic space, the Hausdorff distance
serves to compare how good the original data X is represented in the subsample S. This
means, a subsample more similar to the original data also contains more biological variance
and heterogeneity. This tool for measuring the similarity between two sets of points can
be calculated by :

dH(S;X) = max
x∈X

{min
s∈S

d(x, s)}, where d can be any distance metric [27]

For the later benchmarking, we used Euclidean, Manhattan, and Cosine distance. A
lower Hausdorff distance indicates that there is a high similarity between the two sets
of points (in this case, full data and subsample). This means: the smaller dH , the more
comprehensively S covers the transcriptomic space of X. In contrast, a higher Hausdorff
distance is evidence that there are transcriptional structures in X which are not well
represented in S. Thus, the transciptomic space is not captured well in S and some of
the biological variance from the original data is lost in the subsampling process.

4.4 Benchmarking the subsampling methods

To compare the four subsampling methods (random downsampling, a cluster-dependent
approach and two optimization algorithms), we ran each method five times to control for
possible random effects, caused by random subsampling and splitting.

4.4.1 Computational effort and time

Regarding the technical aspects, random subsampling was the quickest method, it finishes
in under ten seconds, it was simple to run, and worked on 8 million cells. The Leiden-
cluster-dependent subsampling is also relatively straightforward and quick, with a total
running time of approximately 15 minutes, where the kNN graph and Leiden algorithm
were run on GPU. It is scalable for the subset of two million cells and can be extended
to the full dataset.
Due to memory issues it was neither possible to run Sphetcher on the full dataset, nor
on half of the data (approximately four million cells). The four splitted subsets were
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subsampled on average in 24 minutes by the algorithm – independent of the number
of principal components. Finally, scSampler was on average the slowest method. The
running time highly varied and depended on the number of principal components and
random split, see figure 16. It took the longest time to finish between 40 minutes and 20
hours.

4.4.2 Conservation of biological variance

Figure 16: scSampler’s
running time

To approximate the general heterogeneity and estimate
how well the biological variance is preserved, we calcu-
lated the percentage of each cell type kept in the sub-
sample. Random subsampling keeps around the same
fraction of each cell type (3.68%). This value can be used
as a reference to evaluate the other methods. When the
kept percentage is larger than this value, then cell types
are upsampled. We want to archieve an upsampling in the
rare cell types, because we expect them to hold a crucial
part of the biological variance, a maintance promises a
more heterogeneous dataset.
It is notable that for 100 principal components, scSampler
is not performing as expected, as depicted in figure 17.
We find that it rather upsamples common cell types and
keeps a higher percentage of them, which we imagine to
result in a lower biological variance, because exactly these cells are more homogeneous
and therefore contain less variation. We suppose that the number of principal components
is too high, because for the lower 20 and 50 principal components the results are more as
expected. For further evaluations, scSampler with 100 principal components is therefore
excluded.
In general, we see that the ’smart’ methods preserve rare cell types with the exception of
hematopoietic precursor cells, see figure 17. The Leiden-cluster-dependent subsampling
is the only one handling the hematopoietic precursor cells in an upsampling way.
Taken together, the Leiden-cluster-dependent subsampling on the 20 principal compo-
nents embedding seems to work best, because it upsamples all the rare cell types. This
means more variation is retained on the subsample. On the contrary, Sphetcher is most
conservative algorithm in upsampling, since it keeps mostly a smaller amount of cells
compared to scSampler and the Leiden-cluster-dependent approach. However, it provides
– except for the hematopoietic precursor cells – solid results. Gennerally, the embedding
of 20 principal components appears to have a better influence on the subset regarding the
heterogeneity, because the percentage of kept cells is larger and therefore the biological
variety from the original data is expected to be better conserved.
Fewer common cell types are kept, especially B and T cells. We assume them to hold in
general less biological variance, since the cells are more frequent and their clusters more
homogeneous. The subsampling methods recognize this and ’punish’ them by down-
sampling in favor of rare cell types. In the appendix more detailed plots of cell types
preservation for each methods can be found.
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Figure 17: Overview: percentage of rare cell types kept from the different subsampling
methods

4.4.3 Hausdorff distance

To quantify the preservation of the original heterogeneity in the subsample, we calculated
the Hausdorff distance. A lower distance indicates that the biological variation is rather
conserved. In this case, the subset created from the Sphetcher algorithm covers the
transcriptomic space the most evenly, since it results consistently in the lowest Hausdorff
distance for various distance metrics and principal components, as depicted in figure 18.
We see a higher variability in the boxplots of the Leiden-dependent subsampling method,
this may gives a hint for the previously mentioned imbalance and lacking robustness.
In general, the Hausdorff distance of the Leiden-dependent subsampling and scSampler
are very close, except for the cosine distance, where the scSampler has nearer results to
Sphetcher. In general, we can conclude that in regard of similarity to the original data,
Sphetcher has the best results and preserves the heterogeneity and biological variance
best.



4 COMPARATIVE ANALYSIS OF SUBSAMPLING METHODS 22

Figure 18: Comparison of Hausdorff distances for the three smart subsampling methods
using Euclidean, Manhattan, and Cosine distance for 20 and 50 priniciple components

4.5 Conclusion: Effect of subsampling

For a complete comparison of the subsamples created by four different subsampling meth-
ods, which are either based on a random, cluster-dependent or optimization approaches,
we evaluated them in technical and biological aspects. The fastest and simplest to run
method is the random subsampling. However, in the creation of subsets for single-cell
RNA-sequencing data it is crucial to ensure the preservation of biological variance and con-
servation of the original transcriptomic heterogeneity, which is not given for the random
subsampling. For a better accounting, the cluster-dependent approach and the ’smart’
methods are compared in rare cell type conservation, where the Leiden-cluster-dependent
subsampling yielded the best upsampling, whereas for the Hausdorff distance, the con-
sistently lower results from Sphetcher indicate that this methods conserves the biological
complexity best. Therefore, Sphetcher and the Leiden-cluster-dependent seem to be the
most promising methods for our data, they can be investigated in more detail in a further
analysis.

4.5.1 Outlook

Since there are some concerns about cluster-dependent subsampling [22], it is recom-
mended to research and perform more experiments in this regard as proposed in [20].
Moreover, for a deeper inspection of the biological variance preservation, the methods can
also be executed on other datasets for a comprehensive comparison, especially to evaluate
the robustness [20].
Moreover, integration of the subsampled data reveals further insights and metrics for
evaluation and benchmarking. Since integration is also highly dependent on similar tran-
scriptional structures [28], metrics evaluating batch mixing and cell type preservation –
as proposed in [4] – in the integrated downsampled data give information of similarity of
the trancriptomic space compared to the original dataset.
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5 Preserving biological diversity after single-cell data

integration

5.1 Background

Single cell atlases offer valuable insights into the transcriptomic differences between dis-
eased and healthy cells. However, the complexity of these atlases, which can comprise
millions of cells collected through various protocols in different laboratories, can introduce
batch effects that obscure the true biological variation. To truly understand the biology
of disease, it is necessary to create a single cell atlas that accurately reflects biological
variation and eliminates technical artifacts.
The success of removing batch effects and preserving biological variation in single cell at-
lases relies heavily on the data integration method employed. There are several approaches
for mitigating batch effects, and in this section, we will explore two of these methods:
SCVI (Single-cell Variational Inference [4]), which uses a variational auto encoder, and
ScArches (Single-cell Architecture Surgery [29]), which employs transfer learning to map
query datasets onto a reference model. When integrating a new dataset into an existing
reference model, traditional integration methods typically train all weights. ScArches, on
the other hand, utilizes a different approach, only allowing the training of a small subset
of weights while keeping the rest fixed [29].
In this section, we will study whether either approach can preserve true biological vari-
ances between healthy and diseased cells and how well each method can preserve these
variances.

5.2 Dataset and Methods

Dataset and embeddings We examine the Peripheral Blood Mononuclear Cells (PBMC)
dataset of over 8 million (8195299) cells as introduced in Section 1.1. As seen in Figure
1b, 88.4% of the cells are labeled either as “COVID-19” or “normal”. To simplify our
discussion, we will primarily focus on these two cell types. Additionally, we were given
two pre-trained lower-dimensional embeddings of the cells as shown in Figure 19. With
pre-trained lower-dimensional cell embeddings, our focus will be on determining if these
embeddings can preserve the biological differences between healthy and diseased cells.

Methods In particular, following techniques are utilized for visualization and clustering:

(i) Visualization: We used UMAP (Uniform Manifold Approximation and Projec-
tion [30]), which is widely used for visualizing single-cell data, particularly for its
ability to handle large amounts of data [31]. Unlike other methods that preserve
global distances, UMAP focuses on preserving the topological structure of the data
by computing a neighborhood graph from existing embeddings. To improve compu-
tation efficiency, we utilized Rapids GPU environment [7] and observed a significant
performance improvement. For more information, refer to previous discussions.

(ii) Clustering: We performed Leiden clustering [25] on the monocyte subsets of both
embeddings. Leiden clustering is a method for detecting communities or clusters in
a network, which has been adapted for use with single-cell data. It is a variation of
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Disease 
Cells Heathy 

Cells

+ Data Integrat ion

E.g. SCVI

Integrated At las

Disease 
Cells

Heathy 
Cells

Data Integrat ion

E.g. SCVI

Reference At las

+ Transfer Learning

E.g., Architectural surgery
(scArches)

Integrated At las

(Full Integrat ion) In this embedding, both healthy and disease cells are included during the integrat ion phase.

(M apped after Integrat ion) In this embedding, only healthy cells are included during the integrat ion phase. 
Disease cells are mapped into the at las after the integrat ion phase.

Figure 19: Techniques for obtaining lower-dimensional cell embeddings. Our discussion focuses
on two pre-trained embeddings, which were derived using these methods and contain identical
cell samples. Each embedding has a dimensionality of 30.

the Louvain community detection method [32] and is known for its ability to handle
large-scale single-cell data efficiently. To improve performance, we again utilized the
Rapids GPU environment [7].

5.3 Visualization and Subsetting

In this section, we aim to gain an initial understanding of both embeddings by visualizing
them. Through this process, we hope to identify specific cell types where we observe dif-
ferences in transcription between healthy and diseased cells by examining the separations
in our two-dimensional representations. However, it’s still important to keep in mind
that the original topology of the data may be under-represented in the two-dimensional
representation. To address this, in the next subsection, we will further examine the two
embeddings by performing clustering using their original neighborhood graphs, with the
goal of capturing more crucial information.

Figure 20: Visualization of the entire dataset using UMAP, colored by disease status and cell
type.
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Visualization results The visualization results are shown in Figure 20. We find that
both embeddings separate disease and healthy cells mainly within monocytes. Therefore,
we focus on the subset of 1365262 monocytes in the following analysis. While it may be
desirable to further subset the data into specific monocyte sub-types to observe a more
significant separation between cells, some datasets lack the necessary annotations. To
have an adequate number of cells, focusing on the monocyte subset is considered as a
suitable solution.

5.4 Identifying disease-specific clusters

As a reminder, our goal is to find out if the lower-dimensional embeddings can preserve the
differences between healthy and diseased cells from a biological perspective. To accomplish
this, we will use clustering algorithms to uncover cell clusters that are specific to the
disease. Our first step is to identify these disease-specific cell clusters and separate them
from the normal cell clusters. In this section, we will focus on whether we can successfully
recover these disease-specific cell clusters. The next section will look into whether the cell
clusters we’ve identified are biologically significant.

(a) Cells colored by Leiden cluster (b) Cells colored by disease

Figure 21: Identifying disease-specific clusters. Left: Mapped after Integration Right: Full Integration

Identifying disease-specific clusters For both embeddings, we conducted Leiden
algorithms using different resolutions selected uniformly and independently from [1

2
, 1],

with the goal of obtaining resolution-independent results. Our objective was to determine
if disease-specific clusters could be identified. At a resolution of 0.6, we identified a single
disease-enriched cluster for the mapped after integration embedding. This cluster consisted
of 203,496 cells, and 96.8% of those cells were labeled as “COVID-19”. This specific cluster
is circled in Figure 21a. Although other smaller clusters with similarly high percentages of
disease cells were also identified, they were not considered in our analysis as they contained
cells from only a very limited number of batches (< 3) and could be attributed to batch
effects. In the case of the full integration embedding, despite trying different resolutions,
we were unable to identify a similar disease-specific cluster. Clusters with similarly high
percentages of disease cells tended to have fewer cells and those cells were from very few
batches. Therefore, we were unable to use clustering algorithms to recover disease-specific
clusters from the full integration embedding and determine the ability of that method to
capture the biological differences between disease and healthy cells.
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5.5 Validating the biological relevance of identified disease-specific
clusters

We have discovered a cluster specific to COVID-19 in the mapped after integration embed-
ding. Our next step is to confirm if this cluster is actually due to biological differences
across transcriptomes. To accomplish this, we will conduct two forms of validation

(i) It’s important to note that the separation between cells can also occur simply be-
cause they originate from different batches. To rule out this possibility, we will
verify that cells in the cluster are distributed evenly across all available batches, as
depicted in Figure 22a. This will ensure that the cluster is not simply driven by
batch effects.

(ii) To verify the biological significance of the cluster, we conduct statistical tests
and compare the highly differentially expressed genes in the disease-specific clus-
ter against those in other clusters, as shown in Figure 22b. The results show that
the highly differentially expressed genes, such as IFITM3 and IFI6, are indeed as-
sociated with inflammation and closely related to COVID-19. These findings are
supported by previous studies [33, 34, 35].

(a) Cells stem from different batches
(b) Highly differentially expressed genes are
disease-related

Figure 22: Validation of the identified disease-specific cluster

In light of the results from our validation, we are confident that the identified disease-
specific cluster is not due to technical artifacts, but rather has a biological basis that
enables us to determine cell identity. In conclusion, our results demonstrate that the
mapping after integration method effectively captures and retains biological transcrip-
tomic differences across cells.

5.6 Cluster-independent evaluation

So far, we have verified that disease-specific clusters can be recovered from the mapped
after integration embedding, but we have not been able to draw any conclusions about
the full integration embedding. As clustering can be influenced by other factors, including
resolution, we aim to compare the embeddings independent of clustering in this subsection.
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Scoring interferon genes Interferon genes play a crucial role in the intensity of the
immune response to specific pathogens and the severity of diseases [36]. Therefore, we
use this fact and consider the set of interferon genes as the ground truth for the disease.
Next, we score the set of interferon genes for each cell, as shown in Figure 23a. The score
is calculated as the difference between the average expression of interferon genes and the
average expression of a randomly selected reference set of genes [37]. Our aim is to assess
how well cells with high interferon scores are separated from cells with low interferon
scores.

(a) UMAP of cell embeddings colored by interferon genes scores
(b) Violin plot showing a potential cutoff be-
tween high- and low-interferon scores

Figure 23: Separating cells according to interferon genes scores

It’s worth mentioning that the scoring results are consistent with our previous findings:
cells in the identified disease-specific cluster (as shown in Figure 21a) tend to have higher
interferon gene scores. To quantitatively evaluate this, we can set a natural cut-off be-
tween high- and low-interferon scores and then use the Local Inverse Simpson’s Index [38]
to measure both the separation between high- and low-interferon score cells and the inte-
gration of different batches simultaneously. Unfortunately, due to the large number of cells
(over a million), the calculation could not be completed within a reasonable timeframe.

5.7 Discussion

In this section, we evaluated the capability of “full integration” and “mapping after inte-
gration” methods in capturing the biological differences between healthy and disease cells
through lower-dimensional embeddings. Our results showed that disease-specific clus-
ters were successfully recovered from the “mapped after integration” embedding and were
confirmed to have a biological significance. In conclusion, our findings suggest that the
mapping after integration approach is highly effective in preserving and highlighting bio-
logical transcriptomic diversity among cells. Future efforts could include calculating the
Local inverse Simpson’s index (LISI) as a quantitative measure of the separation between
cells with high and low interferon scores.
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6 Conclusion

During the TUM Data Innovation Lab in cooperation with Helmholtz Munich, we worked
on several aspects to improve the atlas creation of a single-cell blood atlas. Our results can
be applied to other large-scale single-cell atlases or serve as basis for future investigations.
Firstly, we analyzed GPU implementations of state of the art data analysis methods with
regards to their computational performance. Furthermore, we developed a parallel version
of SCRAN, which enables normalization of large, atlas-sized single cell RNA datasets.
Our subsequent investigation of QC in the workflow of atlas creation indicates that per-
forming QC on the joint space after dataset integration could be advantageous to the
state of the art process. While it does not harm the integration performance, our re-
sults suggest that it could lead to an improved detection of low quality cells. Based on
these findings similar analyses of different tissues and for further QC methods need to be
performed.
For a reduction of the large sample size, we benchmark random subsampling against a
cluster-dependent downsampling approach, and two further optimization algorithms. In
the creation of subsets for single-cell RNA sequencing data it is crucial to ensure the
preservation of biological variance and conservation of the original transcriptomic hetero-
geneity. For this purpose, the subsampling methods were compared in Hausdorff distance
and percentage of rare cell types kept. It was found that all methods except random sub-
sampling upsample rare cell types, the Leiden-cluster-dependent subsampling performs
best in this regard. The lowest Hausdorff distance and therefore the most heterogeneous
subsample is yield by the Sphetcher algorithm. Taken together, each method has its
strengths and weaknesses, but for our data the Leiden cluster depending subsampling
and Sphetcher on a 20 principle components latent space are the most promising ones.
Finally, we evaluated the preservation of transcriptomic heterogeneity between healthy
and diseased cells in lower-dimensional embeddings generated by widely used data in-
tegration methods like scVI and scArches. Our findings show that the “mapping after
integration” embedding produced by scArches has the ability to maintain this biological
diversity and we also confirmed its biological significance.
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Appendix

Quality control

Table 4 and 5 contain the values for the nine metrics evaluated for each of the atlases in
Section 3.3

Metrics measuring removal of batch effect
Atlas ASW label/batch PCR batch graph connectivity iLISI mean

All cells, 1 0.9037 0.9636 0.7588 0.3176 0.7359
All cells, 2 0.9019 0.9636 0.7555 0.3215 0.7356
All cells, 3 0.9050 0.9657 0.7584 0.3231 0.7380
All cells, 4 0.9038 0.9641 0.7559 0.3208 0.7361
All cells, 5 0.9046 0.9643 0.7401 0.3237 0.7332
All cells, 6 0.9062 0.9621 0.7408 0.3186 0.7319
Cleaned, 1 0.8990 0.9625 0.7411 0.3088 0.7279
Cleaned, 2 0.8982 0.9632 0.7459 0.3114 0.7297
Cleaned, 3 0.9020 0.9701 0.7608 0.3167 0.7374
Cleaned, 4 0.9003 0.9647 0.7649 0.3073 0.7343
Cleaned, 5 0.9000 0.9627 0.7542 0.3034 0.7301
Cleaned, 6 0.9036 0.9649 0.7578 0.3074 0.7334

Table 4: scIB metrics, which measure how well the batch effects are removed.

Metrics measuring conservation of biological variance
Atlas NMI clus-

ter/label
ASW label isolated label

F1
isolated label
silhouette

cLISI mean

All cells, 1 0.5550 0.4675 0.1853 0.5623 0.9766 0.5493
All cells, 2 0.5656 0.4671 0.1783 0.5636 0.9769 0.5503
All cells, 3 0.5601 0.4683 0.1836 0.5626 0.9763 0.5502
All cells, 4 0.5405 0.4704 0.1770 0.5556 0.9764 0.5440
All cells, 5 0.5622 0.4702 0.1866 0.5581 0.9761 0.5506
All cells, 6 0.5569 0.4706 0.1738 0.5597 0.9767 0.5475
Cleaned, 1 0.5655 0.4672 0.1430 0.5633 0.9767 0.5431
Cleaned, 2 0.5702 0.4664 0.1713 0.5571 0.9770 0.5484
Cleaned, 3 0.5641 0.4676 0.1393 0.5646 0.9768 0.5425
Cleaned, 4 0.5602 0.4675 0.1731 0.5584 0.9769 0.5472
Cleaned, 5 0.5666 0.4687 0.1772 0.5626 0.9774 0.5505
Cleaned, 6 0.5595 0.4671 0.1795 0.5576 0.9771 0.5481

Table 5: scIB metrics, which measure how well the biological variance is conserved.

Comparative analysis of subsampling single cell sequencing data

The following figures 24-26 visualize the performance of the Leiden-cluster-dependent sub-
sampling and the two ’smart’ subsampling methods (Sphetcher, scSampler) for either 20
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or 50 principle components. The key insight is that rare cell types are mostly upsampled,
while common cell types are downsampled. The dotted line indicates the random sub-
sampling fraction (3.68%), it can be used as a reference to evaluate the other methods.
If the percentage in the plots is larger, then the cell type is upsampled. On the contrary,
when the percentage is smaller, the cell type is downsampled.

Figure 24: Percentage of cell types kept from the Leiden-cluster-dependent subsampling

Figure 25: Percentage of cell types kept from the Sphetcher algorithm
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Figure 26: Percentage of cell types kept from the scSampler algorithm for
20 and 50 PC
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