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Abstract

While classical computer vision algorithms achieve remarkable success in several real-
world applications, they are not applicable to the Earth Observation (EO) domain due to
the inherent complexity of satellite data. For this reason, new and more tailored architec-
tures are required to effectively represent EO data. In this project, we aim at creating the
first-ever NAS database specifically for the classification tasks of EO data. This is done by
leveraging the search space of NASBench-101, where a collection of architectures was eval-
uated using the CIFAR-10 dataset for image classification tasks. Instead of exhaustively
searching and evaluating each model, we employ surrogate benchmarking on this search
space. A subset of architectures is evaluated on our own satellite dataset So2Sat LCZ42
that is 8 times larger compared to CIFAR-10. The quality of our neural network archi-
tecture database is assessed by using Fitness Landscape Analysis (FLA), which provides
insights into the difficulty of the architecture search problem by measuring the perfor-
mance of models over time as well as the consistency of the search trajectories. We utilize
the JUWELS supercomputer and implement distributed training with the Distributed-
DataParallel (DDP) method for PyTorch, which enables multiple GPUs to work together
per node. This helps to reduce the training time by 80% to approximately 2.5 hours per
architecture, allowing the search and evaluation of 907 architectures in the search space
within the given computational budget. The results of our analysis show that the So2SAT
LCZ42 dataset presents a more challenging landscape compared to CIFAR-10.
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1 Introduction
The success of deep learning is largely driven by the creation of advanced neural network
architectures. However, the manual design is a cost-intensive process that requires expert
knowledge in the field. This has led to the invention of Neural Architecture Search (NAS),
a technique for automating the design of high-performance neural network architectures.
NAS reduces the cost of implementing neural networks and enables robust representation
learning on a given dataset. NAS methods have achieved state-of-the-art results in various
computer domains, including semantic segmentation[10], image classification [17], trans-
fer learning, machine translation and reinforcement learning [5]. Furthermore, they have
even surpassed human-designed architectures [24]. For instance, NASBench-101 [31], a
public architecture dataset for NAS research, is based on the CIFAR-10 dataset and has
enabled NAS researchers to reduce the cost of inferences of search algorithms via simple
cost-free queries to the database. However, this benchmark has limitations, including a
limited search space and the time-consuming process of exhaustive search. In contra-
diction, NAS has recently seen a progressive increase in the search space size by several
orders of magnitude [35, 13, 11]. To address the computational challenges faced when
exploring the search space, we leverage the principles of surrogate NAS benchmarks [21],
which allows to significantly reduce the requirements on computational resources. Surro-
gate benchmarking is a technique that predicts the performance of neural architectures
by extrapolating the accuracy performance evaluated on a subset of models in the search
space, opposed to undergoing an exhaustive search process. Current state-of-the-art NAS
surrogate algorithms and benchmarks are evaluated on CIFAR-10 dataset [35, 13, 31, 21]
of images, where some approaches already surpassed 99.5% accuracy[4, 1]. This is due to
the fact that this classification dataset has limited complexity. By providing a surrogate
NAS database for the task of classifying images, we advance the realm of NAS to intrinsi-
cally more complex dataset, So2Sat LCZ42, in EO domain. To the best of our knowldege,
this is the first time an EO dataset is used in a surrogate NAS setting. Furthermore, we
propose a methodology for controlling the quality of a surrogate NAS benchmark based
on a fitness landscape analysis tool called fitness lanscape fitness footprints.

In Sec. 2, we revisit Neural Architecture Search, the surrogate setting, and landscape
analysis. In addition, we summarize state-of-the-art methods in this domain. This is
followed by Sec. 3, where we describe the dataset So2Sat LCZ42, and the methodology of
our work. We then provide an analysis of experiment’s results together with a statistical
analysis of the surrogate NAS benchmark in Sec. 5. This is followed by Sec. 6 where we
not only discuss the results but also give an outline for future work.

2 Related Work

2.1 Neural Architecture Search

Neural Architecture Search (NAS) is a subfield of Automated machine learning (AutoML),
which is concerned with the process of automating the tasks of applying machine learning
to real-world problems. AutoML potentially includes every stage from beginning with a
raw dataset to building a machine learning model ready for deployment. In contrast, NAS
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Figure 1: Abstract illustration of Neural Architecture Search process, adopted from [5]

focuses on how to automate the process of finding neural network architecture by opti-
mizing the topology of the network. NAS methods have outperformed manually designed
architectures on several tasks such as image classification [34, 35, 17], object detection [35]
or semantic segmentation [2]. NAS methods typically define a set of “building blocks” and
rules on how to connect them. Then they devise a search strategy that selects an archi-
tecture A from a predefined search space A, which is passed to a performance estimation
strategy. The returned estimated performance of A to the search strategy is used to refine
the architecture. This process is depicted in Fig. 1. In the next sections, we review search
space, search strategy, and estimation strategy advancements in recent years.

2.1.1 Search Space

A search space refers to the set of possible solutions for the neural network architectures.
It encompasses all the different hyperparameters, architectural choices, and other factors
that determine the final design of the network. The search space is considered a condi-
tional space because the options for layer hyperparameters, for instance, are limited by
the type of operation the layer performs. This means that the choices for these hyper-
parameters depend on the specific type of operation being executed. One of the most
seminal works [35] looks at the search space in terms of cell-based representation, which
contains two different cells. The first one is called a normal cell that does not change the
dimensionality of the input as opposed to the reduction cell. A cell contains several opera-
tions predicted by the NAS algorithm (e.g. multiple convolution layers). In the cell-based
representation, a neural architecture is defined as the same cell repeated multiple times.
Limiting the search space in such a way allows to speed up the NAS process and scalability
as the number of cells can be defined depending on the available computational resources.
In this type of search space, micro-architecture optimization refers to optimizing a sin-
gle cell, while macro-architecture optimization refers to optimizing the entire architecture.

For design principles, macro-architectures and micro-architectures should be jointly opti-
mized. If only micro-architectures are optimized, manual macro-architecture engineering
needs to be performed after finding the optimal cells. A remedy to optimize macro-
architectures is to design a hierarchical search space [12] that consists of multiple levels.
The first level consists of a set of basic building blocks (primitive operations). The sec-
ond level involves different combinations of these primitive operations (motifs) that are
connected to each other in a directed acycle graph. The third level involves higher-level
combinations of these second-level motifs. A caveat to the search spaces is they are
manually designed, which might contain human biases and constraint the philosophy of
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AutoML. The choice of the search space depends mainly on the difficulty of the optimiza-
tion problem that remains non-convex, non-continuous and high-dimensional.

2.1.2 Search Strategy

The search strategy details how to explore the search space (which is often exponentially
large or even unbounded). It encompasses the classical exploration-exploitation trade-off
of metaheuristics since, on the one hand, it is desirable to find well-performing architec-
tures quickly, while on the other hand, premature convergence to a region of sub-optimal
architectures should be avoided. Many different search strategies can be used to explore
the space of neural architectures, including random search, evolutionary methods, rein-
forcement learning (RL), Bayesian optimization, and gradient-based methods. Although
the foregoing methods have been actively used by researchers for different AI-related tasks,
NAS could gain momentum in the machine learning community after the work conducted
by Zoph and Le [34] that the found models achieved better performance on benchmark
datasets compared to that of manually designed models. Despite the heavy computational
requirement of the work, many methods have been published to ease this problem.

NAS can be viewed as an RL problem, with the generation of a neural architecture as
the agent’s action and the search space as the action space. The reward is based on the
performance of the trained architecture during inference. Different RL techniques differ
in how the agent’s policy is designed and optimized. For example, Zoph and Le [34]
use a recurrent neural network policy and train it with the REINFORCE policy gradient
algorithm. Another approach to NAS are neuro-evolutionary [5] methods that use evolu-
tionary algorithms to optimize the architecture. However, due to the scalability of large
neural networks, gradient-based weight optimization methods currently perform better
than evolutionary methods. Many recent neuro-evolutionary techniques use gradient-
based methods for weight optimization and evolutionary algorithms for architecture op-
timization. In neuro-evolutionary methods, a population of trained networks is evolved.
At each step, one or more models from the population are selected as parent networks
and offspring are generated by mutating the parent. After the child models are trained,
their performance is tested, and they are added to the population. Neuro-evolutionary
methods vary in parent selection techniques, population updates, and offspring genera-
tion methods. Parent selection methods may include sampling from a multi-objective
Pareto front and tournament selection, while population updates may include removing
the worst individuals or not removing any. Offspring can be generated by initializing the
child network randomly or by using different inheritance methods.

Bayesian optimization (BO) [20] is a method used for hyperparameter optimization. The
technique is based on Gaussian processes and is used for optimizing low-dimensional con-
tinuous problems. For example, Swersky et al. design a kernel function for the search
space to apply BO methods for NAS [23]. Evidence suggests that BO performs better
than evolutionary algorithms. However, all of the techniques discussed so far are designed
for discrete search spaces where only weights can be optimized using gradient-based meth-
ods. Liu et al. [13] proposed DARTS that can optimize both the architecture and weights
end-to-end by using a continuous relaxation for the search space. This method alternates
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between optimizing the weights using gradient descent on training data and optimizing
the architecture using gradient descent on validation data before it determines the best
operation for each layer by taking the argmax. Some methods have also been proposed
to optimize the parametrized distribution [29] over operations to better measure the un-
certainty of the networks, rather than just optimizing the coefficients.

2.1.3 Performance Estimation Strategy

The objective of NAS is typically to find architectures that achieve high predictive per-
formance on unseen data. Performance Estimation refers to the process of estimating this
performance: the simplest option is to perform standard training and validation of the
architecture on data, but this is unfortunately computationally expensive and limits the
number of architectures that can be explored. Much recent research, therefore, focuses
on developing methods that reduce the cost of these performance estimations [14, 18].
There are four main focuses on how to speed up the NAS algorithms. The first direction
is to lower the fidelities of model performances after training. These indicators include
shorter training time, training on a subset of a dataset, on lower-resolution images, or with
fewer filters per layer or fewer cells. The second method to speed up is to utilize learning
curve extrapolation to early terminate candidates that perform poorly. This helps to boost
the search process. Based on this idea, Liu et al. [12] proposed a surrogate model that
supports predicting performance based on cell or architectural properties and extrapolates
to those with larger sizes during training. The third approach is to initialize the weights
of novel architectures based on those of the models that have been trained before (weight
inheritance or network morphisms). The final method is a one-shot architecture search,
where all architectures are treated as different subgraphs of a supergraph (one-shot model)
and share weights. By doing this, only the one-shot model needs to be trained and the
sub-architectures can be separately evaluated during inference time.

2.2 NAS-Bench-101

NASBench-101 [31] was designed to address the challenges faced in the evaluation of
Neural Architecture Search (NAS) algorithms. These evaluations were previously time-
consuming and required a lot of resources, making it difficult to progress in the field of
NAS research. NASBench-101 provides a cost-effective, fast, and scalable solution for
evaluating the performance of NAS algorithms, including optimization of architecture
and hyperparameters. It offers a set of pre-trained neural network architectures for image
classification tasks on the CIFAR-10 [9] dataset, along with metrics like training time
and accuracy on train, validation, and test splits, making it possible to compare the
performance of different NAS algorithms.

2.3 NASLib

NASLib [19] is a modular and flexible NAS library that helps researchers to lightly imple-
ment and extend state-of-the-art NAS methods, and has been used in many NAS studies
[8, 28]. With a few lines of code, researchers can easily reuse search spaces, benchmark
interfaces, and evaluation pipelines, including the NASBench-101 benchmark used in this
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study.

NASLib consists of 4 main building blocks that can interact with each other[19]:

• Search spaces (cell search space, hierarchical)

• Optimizers (one-shot/weight-sharing optimizers, black-box optimizers)

• Predictors (estimators that, given an architecture as input, output its performance)

• Evaluators (run the architecture search loop and the final network training pipeline)

The search space is the most critical part of NASLib since the best hyperparameters
depend on the specific search space.NASLib conducts NAS space searches mainly in the
form of directed acyclic graphs (DAGs), and it inherits NetworkX’s basic graph classes to
create and manipulate graphs, where the properties of nodes and edges can be arbitrary
Python objects, allowing us to quickly implement different components (e.g., cells in a
macro architecture, graphs nested at multiple levels)[19].

NASLib optimizers interact with the search space and search for the best architecture,
mainly including one-shot/weight-sharing optimizers and black-box optimizers. With the
31 performance predictors provided by NASLib, the evaluation of specific benchmarks.
In summary, using NASLib, we can quickly and comprehensively evaluate new NAS al-
gorithms on Earth Observation problems and improve our research’s experimental rigour
and generality based on some of the benchmark suites it provides.

2.3.1 Surrogate NAS Benchmarks

In recent years, the search spaces of NAS algorithms have progressively increased in
size from PNAS [11], DARTS [13], which contain more than 1014 and 1018 architectures
respectively, up to search spaces that contain more than 1028 architectures [35]. For these
search spaces, exhaustive search of all possible architectures is infeasible. Overcoming
this issue is possible by using a surrogate NAS benchmark [32].
To foster reproducibility and accessibility, Siems et al. developed NASBench-301 [21]
that covers the cell-based search space of DARTS containing more than 1018 possible ar-
chitectures. The benchmark is proposed for evaluating surrogate functions for architecture
search instead of performing exhaustive computation for the entire collection of all archi-
tectures in the search space. The NASBench-301 was created by first, full training 60k
unique architectures on the CIFAR-10 dataset. Then, the authors trained a difference
performance predictor model including a graph convolutional network called GIN [30].
The predictors are trained on the classification accuracies of the 60k architectures which
can then be used to estimate the accuracy of the remaining 1018 possible architectures.

Due to the “locality” property of the models in the search space, the accuracy statistics of
a model can explain its neighborhood very well. Therefore, a surrogate (predictive) model
trained on the dataset can outperform the tabular method. The surrogate technique is
very useful for building new benchmarks for architecture search by being able to operate
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in large spaces and reduce computational resources vastly. For our project in Landscape
analysis, we will focus on constructing our architecture dataset following this methodology.

2.4 Landscape Analysis

Fitness Landscape Analysis (FLA) aims to characterize optimization problems [16] The
fitness landscape is defined as the triplet combination z = (S, f, N) where S denotes the
search space of all the possible soltuions, in our case NN architectures, by a fitness function
f that assigns value to each candidate from the search space (for example classification
accuracy) and a neighborhood operator N to navigate S. In our case, we can represent
each neural network architecture as a binary vector and subsequently define neighborhood
operator N as a hamming distance and say that the neighborhood of an architecture is a
set of architectures that have a hamming distance from the architecture. It can be seen
that FLA aims at describing the hardness of a problem, using limited knowledge of an
algorithm to be used.

2.4.1 Fitness Landscape Footprint

The fitness landscape footprint is an aggregation of eight general-purpose metrics to quan-
titatively describe such landscape [27].

1. Mean fitness: The mean classification accuracy of all the model architectures.

2. Variance fitness: The variance of classification accuracies.

3. Ruggedness: A metric measured by autocorrelation ρ of fitness of random walks
(hamming distance 1) in a search space. To get a single value, we use a mean
function.

4. Cardinal of optima: An estimate of the number of local optima in S.

5. Persistence: The probability that model keeps a rank (a position in terms of
classification accuracy compared to other models) it had after t0 iteration when
trained after k iteration. Then, we define persistence Π as the probability for model
configurations ranked by function Ranking(·) to keep their initial rank (i.e., the one
observed at t0 ) through Rall.

6. Positive persistence: The probability that the best models remain best perform-
ing.

7. Negative persistence: The probability that the worst performing models remain
worst performing.

8. Persistence positive AuC: Area under the Curve of positive persistence.

9. Persistence negative AuC: Area under the Curve of negative persistence.

In the paper, the authors used the footprint to describe the landscape of the NasBench-101
benchmark dataset and the So2Sat LCZ42 dataset. The NasBench-101 is a benchmark
for NAS methodologies in the context of image classification. It consists of 453k distinct
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CNN architectures and their fitness evaluation at various training steps (4, 12, 36, and
108 epochs), on the dataset of CIFAR-10. In the following text, two main findings are
highlighted. First, with approximately 75% more local optima on So2Sat LCZ42 (11153
versus 6373), the chances of being trapped in a non-optimal region of the space are higher
on So2Sat LCZ42 than on CIFAR-10. Then, solution diversity should be considered when
designing a (local search-based) algorithm to do NAS on So2Sat LCZ42 (i.e., exploration-
exploitation). Second, elite models persist over time, i.e., the chances of finding a model
that will be a top 25% performer in a test from 4 to 108 epochs of training are 32%. More-
over, on So2Sat LCZ42, elite models (rank < 25%) will remain on the top with a higher
probability (0.48). Therefore, spotting elite performers early could help to improve NAS
performance. However, overall, they observe similar characteristics in both footprints.
Therefore, we may extrapolate from one problem to the other.

2.4.2 Landscape of Neural Architecture Search Across Sensors

In the study done by Traoré et al., the authors leverage the footprint methodology to
compare how much the fitness landscape differs across sensors [25] (specifically with re-
spect to sensor data from satellites Sentinel-1, Sentinel-2, and a fusion of the sensors).
The paper considers a case of a fixed search space, training pipeline (hyperparameters,
duration, etc.), and evaluation protocol (fitness function). The fixed search space, i.e., the
search space of architectures to be evaluated, can be used, because for the fusion of the
sensors, the sensors are fused by simply stacking (addition) the data at the input level,
so the NN architectures don’t need to be modified. Similarly, as in the study introducing
Fitness Landscape Footprint [27], the landscape is analyzed on the NASBench-101 dataset
representing each neural network architecture as a binary vector. In terms of probability
density functions of classification accuracies of different architecture, they find that train-
ing on Sentinel-2 (µ = 0.94, σ2 = 0.03) outperforms training on Sentinel-1 (µ = 0.47, σ2

= 0.13) as well as fusing both sensors (µ = 0.89, σ2 = 0.05). It is surprising that with
the current search space, the search behavior is worse when using both sensors as input.
However, not that only one fusion configuration was considered.

3 Method
Our methodology for the project involves using the So2Sat LCZ24 dataset [33] for search-
ing, evaluating neural architectures and applying surrogate benchmark on the NASBench-
101 search space, given time constraints and computational resources. We search and eval-
uate a subset of architectures in the search space using the So2Sat LCZ24 dataset, then
fit a surrogate model on their validation accuracies in order to predict the performance of
the remaining models in the space. To reduce the training complexity, we employ the dis-
tributed data parallel technique to train the architectures on multiple GPUs. The quality
of the neural architecture database is assessed by the landscape analysis footprints.

3.1 Surrogate benchmark and search space

Due to compatibility issues with NASBench-301 in NASLib, we use NASBench-101 as
our search space since it is readily available and we were able to create an architecture
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database using the So2Sat LCZ42. Our technical choices are as follows:

• Search Space. We employ NASBench-101 search space for searching and evaluat-
ing architectures on the So2Sat LCZ42 dataset [33].

• Evaluation Metrics. We use the footprints described in Sec. 2.4.1 to compare
the final evaluated architectures in the search space. For the training process, we
keep track of the average macro accuracy, average micro accuracy, and per-class
accuracies of every model. While the micro average keeps track of average per-class
accuracy, the macro average can potentially reflect the true model performance
since we have a very imbalanced dataset, where some classes contain very fewer
data points compared to other major classes.

• Surrogate Model. We had consumed all of our compute hours for doing random
walk on the sampled architectures, training of surrogate model is not feasible. Thus,
we use a surrogate model on the NASBench-101 search space to predict the per-
formance of candidate architectures without having to train them completely. This
involves training on a subset of evaluated architectures and using their validation
accuracy to fit the surrogate model. We currently employ a Gradient Boosting Ma-
chine (GBM), which is an ensemble model of multiple decision trees. Specifically, we
use an open-source implementation of GBM provided by the XGBoost library [3].

3.2 Accessing the database

• Binary Feature Representation.

Each architecture in NASBench-101 [31] is identified by two parameters, a 7x7
upper-triangular module adjacency and an array with a length of 6 to represent
the module operations. The encoding strategy is based on these two parameters
to uniquely encode all 423 624 architectures in the search space. Each architecture
is represented by a binary-encoded value with a length of 289. Thus, a hamming
distance can be defined between any two architectures to move in the search space.

• Sampling, Random Walk, and Local Estimations (FLA).

Due to the size of the search space, a reasonable strategy to evaluate the performance
of the architectures is required to be decided. An illustration of the employed strat-
egy, namely the Design of Experiment (DOE), can be seen in Fig. 2. Every point in
the search space of our experiment represents an architecture from NASBench-101
which has 423 624 architectures in total. Identifying the performance of the search
space on So2Sat LCZ42 dataset is initialized by choosing starting points in the space.
This phase is completed by randomly choosing architectures from the space, then
performances of these points are evaluated Fig. 2(a). In the coming step, to en-
large the examined field, we randomly choose from sampled points and walk to their
neighbors. This operation is performed multiple times to expand the examined area
as much as possible. During this operation, we need to navigate inside the space,
and it is achieved by employing our neighborhood operator which basically changes
1-bit of given encoded input, thus finds a point which is 1-Hamming distance away
from the starting point, Fig. 2(b). At the end of second step, 907 architectures in
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the space are evaluated and it took approximately 120.000 compute hours. At the
last stage of experiment, we aim to move further from these accumulated points by
randomly choosing from them and using a similar strategy as in the second step. In
other words, we intend to visit new neighbors which are 1-hamming distance away
from the new chosen point. This stage is called local search Fig. 2(c). Consider-
ing the required time to train 1 architecture, approximately 2.54 hours, with the
complexity of dataset, this stage of the experiment is standing as a next step for
further studies. However, gathered results from the 907 architectures already gave
a promising result to understand the performance search space on our dataset.

4 Experiments

4.1 Data Description

Our surrogate benchmark uses data from the So2Sat LCZ42 dataset [33] to evaluate our
NAS search space. For large or global scale remote sensing areas, generating land use/land
cover (LULC) maps play a critical role to clarify some generic concepts including, climate
change, sustainable urban development or even providing information for disaster manage-
ment. Among the mentioned concepts, urbanization has the dominant share and LULC
maps provide useful information to follow and manage urban growth. Although there exist
some useful LULC materials obtained by using remote sensing, they all provide semantic
labels as urban or non-urban, in some cases finer classes. However, labels presented in
those studies can be debatable since mentioned semantic labels might depend on human
interpretation and are culture-specific. For instance, urban and non-urban categorization
can be defined differently in Europe and Africa and also can be classified differently by
individuals. At this point, local climate zone (LCZ) plays a key role to represent an ob-
jective and culture-independent classification methodology.

LCZs are composed of 10 built classes and 7 natural ones. They are called local climate
zones since classes are based on climate-relevant surface properties. For example, the
height and density of buildings as surface structures and trees, vegetation or palings as
surface cover, and anthropogenic parameters such as human-based heat output. A rep-
resentative illustration of LCZ classes can be seen in Fig. 3. Due to the nature of LCZ

Figure 2: Sampling strategy



4 EXPERIMENTS 12

classes that are defined according to the physical properties of obtained data, they can
be applied to the different regions on the earth. This classification method also brings an
opportunity for researchers to work on different subjects such as infrastructure planning,
disaster mitigation, and city planning.

To be able to provide such a database, 400,673 pairs of Sentinel-1 and Sentinel-2 images
were labeled. The data were obtained from two different satellites called Sentinel-1 and
Sentinel-2. Sentinel-1 is the first of the Copernicus Programme satellite constellation
conducted by the European Space Agency. The Sentinel-1 performs C-band synthetic
aperture radar (SAR) imaging. It uses the motion of the radar antenna over a target
region to provide fine spatial resolution resulting in two-dimensional images that describe
the earth’s landscape. The data from Sentinel-1 consist of 8 spectral real-valued bands.
On the other hand, Sentinel-2 uses MultiSpectral Instrument (MSI) to collect data from
13 spectral bands. Out of which, 10 are used in the So2Sat LCZ42 dataset with central
wavelengths of these bands ranging from 0.49 µm to 2.19 µm. Images from both satel-
lites have been pre-processed to have 32× 32 dimension, where each pixel corresponds to
10×10 meters on the ground. Sample data from Sentinel-21 and Sentinel-2 in the LCZ42
So2Sat dataset can be seen depicted in Fig. 4.

These images were selected from different continents apart from Antarctica. Samples
include 52 different regions, and only 10 of them represent relatively smaller areas. To
achieve a high-quality database, a well-defined workflow and decision rules were employed.
Before the labeling procedure, a pre-meeting was conducted to ensure that the understand-
ing of the 17 classes have the same meaning for all the members of the labeling crew. After
the pre-labeling step, results were inspected by different members to identify potential er-
rors. In the final step, a quantitative evaluation of the label quality was decided.

The labeling procedure is composed of four main steps, learning, labeling, visual valida-
tion, and quantitative validation. Although LCZs are less subjective compared to the
existing classification methods, as mentioned, a learning process is still required since an
understanding of the 17 classes are needed to be clarified. Moreover, some areas may not
fall into any of the LCZ classes or some of them can fall into multiple classes. Members
of the crew were enabled to understand the 17 classes using their representative samples
from Google Earth. As a first step during labeling, a couple of cities were chosen by the
labeling members, and assigned cities were further clarified by drawing a 50x50 kilometers
rectangle. After this step, specified regions were delineated in Google Earth and used as
preliminary labels. As a last part of this initial step, Landsat 8 images of these specified
regions in the selected cities were created.

In the upcoming stage, using those labels and Landsat 8 images a random forest classifier
was trained to produce an LCZ classification map for the desired city. This map was used
to provide a guide to label images; at the end of the procedure, the provided data set
includes only human-labeled images. This classification map and the images on Google
Earth were employed to check the correctness and completeness of the LCZ labels. The
correctness of the obtained result was strengthened by inspecting the differences between
the classification map and the manual labeling of members. In case of a difference; an-
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Figure 3: Visual description of the 17 LCZ42 So2Sat dataset classes, adopted from [22]
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Figure 4: So2Sat LCZ42 samples. Examples of Sentinel-1 SAR patches (top row),
followed by the corresponding Multi-spectral Sentinel-2 patches (bottom row), adopted
from [25]

other manual re-correction is performed by checking the related areas on Google Earth.
Another criterion – completeness is performed by deciding unlabeled areas again by using
Google Earth, to find negative samples.

After this manual labeling procedure, to get rid of personal bias and outliers, another
manual inspection process was conducted. This stage was performed by two persons
who did not label the current interested area. Two different types of inspections were
performed at this stage. The first one is called an obvious outlier, such as water being
classified as a dense-high-rise building. In the case of this problem, a polygon with the
correct label was added. The latter problem, a normal compactness-centric pattern, re-
quired more inspection to correct since such a problem is more difficult to identify since it
represents more complex problems such as the compactness of urban buildings decreasing
from the city to suburban. To solve this problem, adding more polygons or correcting the
labels of existing polygons are required.

As a last step, obtained results were fined to get better results. This stage includes exam-
ining close pixels of different LCZ classes. To overcome this issue, shrinking the polygon
of all non-urban LCZ classes apart from the water was conducted. Another improvement
stage is to balance the classes; since non-urban LCZ classes are naturally much larger
than the urban ones, non-urban classes were reduced to the maximum number of samples
from urban classes. Since it is difficult to label urban classes, they kept them as they were.

Finally, the obtained dataset reached a volume of 56GB, including 400,673 samples. The
total data set was split into 3 categories: 352,366 training samples, 24,119 test samples,
and 24,119 validation samples. As an important point, it is underlined that the test set and
training set are composed of different regions which increases the reliability of the dataset.
Trained models with this dataset including, random forest, support vector machines,
and attention-based ResNeXt, and overall accuracy obtained between 0.51 and 0.61. It
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Figure 5: Illustration of NASBench-101 neural network architecture design used to define
the search space, adopted from [31]

is emphasized that overall accuracy between 0.5 and 0.6 can be considered promising;
however, to satisfy the land cover mapping purpose, a value of 0.85-0.9 is still required.

4.1.1 Encoding Scheme

Our surrogate benchmark search space is built on top of the architecture search space
defined by NASBench-101. In the NAS-101 experiment, the search space (collection of
possible neural network architectures) is defined with a head (input layer), a body, and a
tail (output layer). The body consists of 3 identical block structures with down-sampling
modules. Each block structure is characterized by 3 cells, and each cell is represented by
the Directed Acyclic Graph (DAG). The architecture design is depicted in Fig. 5.

The DAG representing a single cell consists of at most 7 nodes, with 5 intermediate nodes,
1 input node, and 1 output node. Each node is labeled as one of the fixed operators: max-
pooling 3x3, convolution layer 3x3, and convolutional layer 1x1. A solution of the search
space is encoded by an upper-triangular adjacency binary matrix 7x7 from the DAG. In
our work, we flatten the binary matrix to get a binary vector representation similar to as
in [26], which allows us to easily explore the search space.

4.2 Experimental Settings

The system architecture can be seen in Fig. 6. To cover the search space better for the
Earth Observation data, we needed to train as many models as possible. To be able to
train them effectively, we built a model training pipeline.

Pipeline starts with the user’s connection to Login Node via SSH (Secure Shell). From
the Login Node, the user is able to trigger training scripts. There are two main scripts
the user should trigger to run proper experiments. One of these scripts is, randomly
sampling the architectures from NAS-Bench 101 search space and doing a random walk
on those sampled architectures. The other main script we have is the training script. This
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Figure 6: Model training pipeline overview

training script defines the training parameters and runs the model training in DDP(Data
Distributed Parallel) manner. The user first triggers the architecture sampling script and
samples the architectures randomly. After that, another function in the same script does
a random walk with those architectures and saves all the architectures in Pytorch format.
As the second step, a batch training script should be triggered. This script triggers the
training jobs in batches and submits around 200 individual training jobs to the SLURM.
Submitting jobs individually gives us flexibility in fault tolerance in case of a problem in
the training of one architecture, and also reduces the time spent in the waiting queue.
When the SLURM starts the jobs, it first creates an Apptainer container to run the job.
After this container has been created it checks, if the training data has been copied to the
faster temporary storage. This is crucial for our process, it makes the training process
faster. If the data is not there, the script copies the necessary data to faster temporary
storage. Finally, the training job starts and reads the data from faster temporary storage.
During training, the job starts writing the training time, training and validation overall
accuracies, and training and validation per class accuracies to the permanent storage. In
this way, we are able to read the job metrics and compare the results in the experiments.

4.2.1 JUWELS

JUWELS [7] is a supercomputer developed operated by Forschungszentrum Jülich. It is
the fastest supercomputer in Europe and the 52nd fastest supercomputer in the world,
capable of performing 85 petaflops or the equivalent of 85 quadrillion computing opera-
tions per second. It is also the world’s most energy-efficient supercomputer in the highest
performance class. JUWELS includes a GPU-equipped compute node called a Booster
module. The module features 936 compute nodes equipped with four NVIDIA A100 GPUs
with 40GB of memory each, connected via NVLink3 to each other. JUWELS uses a free
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and open-source job scheduler for Linux and Unix-like kernels called Slurm. Altogether,
we’ve been given 120.000 computing hours to perform the experiments.

4.2.2 Training pipeline

The project utilizes PyTorch [15] and PyTorch Lightning [6] to construct the training pro-
cess, which includes utilizing distributed computing. As the dataset is much larger com-
pared to CIFAR-10, and the original NAS-Bench-101 dataset took a significant amount
of time (months) and resources (extensive computing power from Google) to create, the
training time for our project will be substantial. To address this, we use multiple GPUs on
a single node (machine) to train an architecture and plan to train multiple architectures
simultaneously using different SLURM jobs.

Pytorch DistributedDataParallel. The DistributedDataParallel (DDP) framework
of PyTorch offers the capability for multi-node and multi-GPU training. In the current
project, we have implemented the DDP framework to achieve multi-GPU training within
a single node for a particular architecture. The torch.distributed package provides
communication primitives that are essential for parallel processing across nodes, processes,
and compute clusters. DDP acts as a wrapper that facilitates synchronous communication
among the nodes. The utilization of DDP has two main advantages. Firstly, DDP reduces
the time required for data transfer. During distributed training, each spawned process
has its own optimizer and performs optimization independently. This eliminates the need
to transfer tensors between nodes as each process holds the same gradients. Secondly,
DDP removes the overheads of data parallelizing that can arise due to the interpreter’s
requirement to copy models, perform multi-threading, and run processes from a single
“master” GPU. This is particularly critical for large models with many recurrent layers.

Utilizing DDP. Before training, each GPU uses a separate process (multi-threading),
and there are 4 GPUs available per node. The dataset is divided into 4 sub-mini-batches
with an equal size for each GPU. In the forward step, each GPU independently performs
a prediction, and their results are then aggregated. Fig. 7 illustrates the preparation
and forward step for distributed training in our project. In the backward pass of the
non-distributed data parallelizing version, a “master node” is required to collect all the
outputs, calculate the gradient and distribute it to all of the replicated models on each
GPU. This centralized mechanism creates an additional overhead, which is eliminated by
DDP. In DDP training, each GPU is responsible for communicating its own gradients
calculated by the corresponding sub-minibatch to the other GPUs. After all GPUs in the
node have received the full set of gradients, each GPU then aggregates the final result,
and its respective replicated model will receive the same update. This method is known
as all-reduce operation. Figure 8 shows the difference between the all-reduce operation
(right) and centralized aggregation (left) that causes overhead in synchronizing operation.
The DDP back-propagation step in our project is illustrated in Fig. 9.

To achieve a distributed environment, several important parameters need to be defined.
Firstly, an IP address and a port need to be defined for the processes to communicate with
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Figure 7: DDP forward pass with 4 GPUs

Figure 8: Centralized Reduce (left) versus All-Reduce operations [15]
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Figure 9: DDP backward pass with 4 GPUs. At the end of the backward step, each GPU
receives the sum of all gradients, thus each model has the same final update. submb is
the abbreviation for sub-minibatch.

Figure 10: Components of Pytorch DDP [15]

each other. Then, the environment enables the processes to be spawned and exchange
information by specifying the following parameters:

1. Rank: decides whether a process is a “worker” or a “master” process. There are
concepts of local rank (ranks of GPUs within a node) and global (ranks of GPUs
across all the nodes). Since we leverage the multi-GPU per node setting, we only
care about the local ranks. The process with rank 0 is automatically assigned as
the master process.

2. World size: corresponds to the total number of processes to be utilized. This
variable tells the master about the number of workers to have queued for the syn-
chronization process. It is calculated by multiplying the number of GPUs by the
number of nodes. For our project, the world size is always 4 (4 GPUs and 1 node).

3. Master Address: IP address of the machine that hosts the process with rank 0.

4. Backend: the platform that supports communication between the processes.

DDP with PyTorch Lightning. (PyTorch) Lightning [6] is a lightweight framework
for PyTorch that allows fast and easy experimentation with deep-learning models. It
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provides a high-level API for defining and training models, with built-in support for dis-
tributed training and other features. The framework is designed to be highly modular,
making it easy to add custom functionality and integrate with other libraries. It also aims
to minimize boilerplate code and reduce the amount of time needed to get a model up and
running. Overall, Lightning aims to make it simpler and more efficient to develop and
train models using PyTorch. Given that there is no member of our team who is proficient
in implementing distributed training in PyTorch, it is probable that we may encounter
unforeseen bugs when configuring the parameters and establishing the distributed envi-
ronment. Additionally, our training pipeline is restricted to a basic image classification
task utilizing the cross entropy loss. Therefore, we convert our training pipeline to Py-
Torch Lightning, making use of its proven and dependable implementation of DDP which
is recognized by the research community. Lightning’s DDP has been widely used and
benchmarked in various real-world projects. It provides a high-level API for distributed
training and abstracts away many of the low-level details, making it simpler to use DDP
in practice. Additionally, PyTorch Lightning provides built-in support for many advanced
features such as early stopping, and callback functions that can further improve the reli-
ability of distributed training. Hence, it requires a minimal effort of one line of code to
activate DDP after the pipeline has been developed. Fig. 10 illustrates different types of
backend supported by PyTorch in the red box. We use NCCL [15] backend for parallel
GPU computing as it provides the optimal communication between CUDA Tensors.

There are several key considerations for DDP training. The first factor is the number of
workers (processes) used for simultaneously loading data into RAM for fast processing.
While this can increase the efficiency of GPU usage, having too many workers can result
in a bottleneck due to additional overhead of communication between the workers. In
our experiments, using 8 workers for data loading has been found to provide a significant
improvement in terms of training time compared to single GPU training. In addition,
when training with multiple GPUs, the batch size needs to be reduced in order to achieve
the same results as training with a single GPU. For example, the performance of the
following two settings are equivalent: batch_size=1024, gpus=1 and batch_size=256,
gpus=4. Finally, the learning rate is linearly scaled with the number of GPUs to achieve
the same results of the normal setting with 1 GPU.

4.3 Training Setting

For the training, we tried to use the corresponding parameters from the NASBench-101
to allow for a reasonable comparison.

• Batch size: 256 as in [31].

• Number of workers: 8, which, after heuristic benchmarking per epoch in many
settings, 8 workers resulted in the shortest training time for many batch sizes, in-
cluding 64, 128, 51, 1024 and 2048.

• Optimizer: Stochastic Gradient Descent (SGD) with momentum 0.9 and weight
decay 5e− 4.



5 RESULTS 21

• Architecture Sampling Key: We set this key as 42, which is used during the
architecture sampling process.

We evaluate 1000 architectures using validation accuracy, similar to the approach taken in
NASBench-101 paper. Additionally, we compute and keep track of the accuracy per class,
and average micro accuracy to gain insight into the training process, given the imbalanced
nature of the data. Finally, all the models are trained using DDP with 4 GPUs.

5 Results
We perform a quantitative landscape analysis of the So2Sat LCZ42 search space in com-
parison to the CIFAR10 dataset. Altogether we use 907 fully trained architectures on
the So2Sat LCZ42 dataset and the corresponding classification accuracies obtained on
CIFAR10. Training each architecture took an average of 2.54 hours. To evaluate the
landscape, we’ve used an aggregation of the 8 landscape evaluation metrics called Foot-
print described in Sec. 2.4.1. This is depicted in Fig. 11.

Figure 11: Footprint analysis of the NAS landscape on the CIFAR10 and So2Sat LCZ42
dataset

The results indicate that So2Sat LCZ42 is a more challenging landscape compared to
CIFAR-10. The identical models are able to achieve significantly higher validation accu-
racy on the CIFAR-10 dataset than on the So2Sat LCZ42 dataset. Furthermore, the elite
and the worst-performing models persist over time substantially more often than on the
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CIFAR-10 dataset. This allows for the early stopping of the model training on CIFAR-
10, potentially reducing the computational time to explore the search space. However,
higher variance suggests more fluctuations and difficulties needed to be overcome by local
search-based algorithms on CIFAR-10 than on the So2Sat LCZ42 dataset.

Besides analyzing the landscape through the Footprint metrics, we’ve also computed
macro and micro classification accuracy statistics. Comparison between So2Sat LCZ42
and CIFAR-10 landscape can be seen in Tab. 1. The result of a significant difference
between micro and macro classification accuracies on the So2Sat LCZ42 dataset indicates
a class imbalance of the dataset. This is in contrast to the perfectly balanced CIFAR-10
dataset. Furthermore, higher micro classification accuracy shows that the trained models
tend to focus on the most represented class, unable to deal well with the class imbalance.
These results further support the claim that the So2Sat LCZ42 landscape is significantly
more challenging.

Macro Acc.↑ Micro Acc.↑
So2Sat LCZ42 41.34% 58.77%
CIFAR-10 89.62% 89.62%

Table 1: Comparison of the average micro and macro classification accuracy between the
So2Sat2 LCZ42 and CIFAR-10 landscapes

6 Conclusion
Automated Machine Learning and Neural Architecture Search have made many advances
in the fields of natural language processing and computer vision [5], significantly reducing
the cost of designing and implementing neural network architectures. However, the study
shows [25] that existing NAS benchmarks are difficult to be applied directly to the Earth
observation data analysis. To fill the gap in NAS in the field of Earth observation, we have
created and open-sourced a complete pipeline for the development of the NAS surrogate
benchmark for the So2Sat LCZ42 dataset. It is the first-ever NAS surrogate benchmark
for Earth Observation data.

We apply surrogate benchmarking on the NASBench-101 search space, given the time
constraints and limited computational resources. The benchmark was developed using Py-
Torch distributed parallel training framework on the JUWELS supercomputer. Through
utilizing the framework we saved tens of thousands of computational hours and there-
fore significantly reducing the environmental impact of the project. We evaluated the
search space by Fitness Landscape Footprint - an aggregation of eight general-purpose
metrics for quantitive fitness landscape analysis. The result of the analysis indicates that
the landscape is significantly more challenging compared to the state-of-the-art surrogate
benchmarks using the CIFAR10 dataset. This is especially the case in terms of the mean
fitness of the evaluated models as well as the inability of trained models to persist over
time on the So2Sat LCZ42 dataset. For future work, we plan to evaluate the surrogate
landscape by using a robust surrogate graph convolutional network (GIN) [30] predictor.
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