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Abstract

Viscosity measurement of non-Newtonian fluids plays a crucial role in adhesive develop-
ment, yet conventional testing methods are time-consuming and limit high-throughput
experimentation. In this study, we investigate a computer vision-based approach to esti-
mate viscosity from video recordings of fluid flow through a dispensing system. Our focus
is on complex geometries comprising a cylindrical section, a rapid diameter reduction,
and a smooth convergent section.
To predict key flow characteristics such as pressure drop, velocity distribution, and shear
rate, we initially considered using Computational Fluid Dynamics (CFD) tools, including
FEniCS, RheoTool [17], OpenLB [11], and deal.II [1]. However, due to their high com-
putational cost and setup complexity, we instead adopted analytical and semi-analytical
models based on the Navier-Stokes equations in spherical coordinates. While these mod-
els provided rapid predictions, they failed to match experimental measurements due to
the unknown boundary conditions of the experimental setup, but maybe also because of
uncertainties in flow rate estimation and sensitivity to power-law fluid parameters.
Given these challenges, we ultimately focused on deep learning techniques to enhance
viscosity prediction, leveraging structured video data, dispensing pressure, and adhesive
cartridge geometry. This approach aims to enable fast, contactless viscosity measurements
and streamline adhesive formulation in Henkel’s automated laboratory.
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1 Introduction

Adhesives, sealants, and functional coatings are critical to countless industrial applica-
tions—from automotive manufacturing and aerospace engineering to consumer electronics
and packaging. Henkel Adhesive Technologies, recognized as a global leader in this field,
continuously pushes the boundaries of innovation to develop products that meet rigorous
performance and sustainability standards. In particular, the rapidly evolving landscape
of high-throughput formulation requires not only precision in product performance but
also efficiency in testing and quality control.
One of the fundamental properties that determine the performance of adhesives is vis-
cosity—a parameter that influences flow, adhesion, and curing behavior. Traditionally,
viscosity measurements are obtained using mechanical rheometers, which, while accurate,
are inherently time-intensive and limited in throughput. This manual process presents a
significant bottleneck in automated laboratory environments, where rapid iteration and
immediate feedback are essential for optimizing formulations.
In response to these challenges, our project proposes a novel, computer vision–based
approach for estimating the viscosity of non-Newtonian adhesives from video recordings
of the dispensing process. By capturing the dynamics of fluid flow using high-speed
cameras and analyzing the recorded images with advanced optical flow algorithms and
deep learning models, we aim to extract critical flow features that are directly linked to
the underlying viscosity. Moreover, by trying to incorporate auxiliary parameters—such
as dispensing pressure and cartridge geometry—into our model, we enhance the predictive
accuracy and robustness of the viscosity estimation.
This work is built upon an interdisciplinary collaboration that spans expertise in fluid
dynamics, deep learning, and industrial process automation. The research leverages
cutting-edge cloud infrastructure, including Azure DevOps and Azure Machine Learn-
ing, to enable scalable model training and deployment. The resulting system is designed
to integrate seamlessly into Henkel’s automated laboratory workflow, providing a fast,
contactless, and reliable method for real-time viscosity monitoring.
In the following sections, we first outline the theoretical foundations underlying our ap-
proach, including the derivation of analytical models based on the Navier–Stokes equations
and power-law rheological descriptions. We then describe the data exploration, prepro-
cessing pipelines, and optical flow methodologies used to extract meaningful features from
raw video data. Finally, we present our deep learning–based architecture, which combines
visual cues with physical flow measurements to achieve high predictive performance across
diverse adhesive formulations.
By addressing the limitations of traditional viscosity measurement techniques, our ap-
proach not only promises to accelerate the formulation process but also paves the way for
further innovations in process monitoring and quality control within the adhesive industry.
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2 Mathematical Description of the flowing Fluid

To get an overall understanding of the problem at hand we present the governing Navier
Stokes equations. These model the viscosity as a constitutive relation and are used to
derive a boundary value problem describing the radial flow through a conical geometry
(see Appendix D)

2.1 Navier-Stokes Equations

We describe the fluid flow using the Navier-Stokes equations for incompressible fluids,
which embody the conservation of mass and momentum. For our analysis, we focus on
the momentum conservation equation:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ · τ + f , (1)

where:

• ρ is the fluid density,

• v is the velocity field,

• p denotes the pressure,

• τ is the deviatoric stress tensor,

• f represents the body force per unit volume (e.g., gravity).

For the flows considered here, the Reynolds numbers are very low—indicating that the
inertial forces (represented by the convective term (v · ∇)v) are negligible compared to
viscous forces. Moreover, the body forces f can be neglected. With these simplifications,
the momentum equation reduces to:

0 = −∇p+∇ · τ .

2.2 Rheological Models

In fluid mechanics, rheological models are constitutive equations that describe how a
fluid’s internal stresses (particularly the deviatoric stress) depend on the rate at which
the fluid deforms (characterized by the strain rate tensor). While Newtonian fluids have a
constant viscosity regardless of the deformation rate, many real-world fluids exhibit non-
Newtonian behavior, meaning that their effective viscosity changes with the local shear
rate. The choice of a rheological model depends on the fluid’s microstructure and the
observed flow behavior. Our overall task to solve was to calculate exactly this function
experimentally.
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1. Newtonian Model

For a Newtonian fluid, the relationship between the deviatoric stress tensor τ and the
strain rate tensor D is linear:

τ = 2ηD (2)

where η is the constant viscosity. This simple relationship implies that the fluid’s resis-
tance to deformation does not change with the shear rate.

2. Power-Law Model

Many non-Newtonian fluids, such as polymer solutions or blood, exhibit shear-thinning
or shear-thickening behavior. The power-law model is widely used to describe such fluids.
In this model, the effective viscosity ηeff is given by:

ηeff = K γ̇n−1, (3)

or equivalently, the deviatoric stress can be expressed as:

τ = 2K γ̇n−1D,

where:

• K is the flow consistency index,

• n is the power-law index (n < 1 indicates shear-thinning, n > 1 indicates shear-
thickening),

• γ̇ is a measure of the shear rate, typically defined as γ̇ =
√
2D : D.

3. Carreau Model

The Carreau model is designed to capture the behavior of fluids that exhibit a transition
between two viscosity plateaus: one at low shear rates (zero-shear viscosity, η0) and one
at high shear rates (infinite-shear viscosity, η∞). Its formulation is:

ηeff = η∞ + (η0 − η∞)
[
1 + (λ γ̇)2

]n−1
2 , (4)

where:

• η0 is the viscosity at very low shear rates,

• η∞ is the viscosity at very high shear rates,

• λ is a time constant related to the fluid’s relaxation behavior,

• n is the power-law index governing the high shear rate behavior.
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4. Cross Model

Like the Carreau model, the Cross model describes fluids with a gradual transition between
two viscosity limits. It is typically written as:

ηeff = η∞ +
η0 − η∞

1 + (λ γ̇)m
, (5)

where m is a dimensionless parameter that adjusts the sharpness of the transition between
the two regimes.

5. Yield Stress Models (Bingham Plastic and Herschel–Bulkley Models)

Some fluids require finite stress to initiate flow, exhibiting yield stress τy below which
they behave like a solid. Two common models incorporating yield stress are:

Bingham Plastic Model The fluid flows only when the applied stress exceeds the
yield stress, and above that threshold, it behaves like a Newtonian fluid:

τ = τy + 2ηD for τ > τy, (6)

with no flow (or a rigid behavior) when τ ≤ τy.

Herschel - Bulkley Model This model generalizes the Bingham plastic by combining
a yield stress with a power-law dependence:

τ = τy +K γ̇n for τ > τy, (7)

where K and n describe the flow behavior once the yield stress is overcome.

3 Data Exploration and Preprocessing

3.1 Evaluating the Data from a traditional Rheometer

One part of the data was obtained by employing a traditional rheometer to receive the
shear stress as a function of the shear rate. Using this data, we implemented a Python
class fitting the data to rheological models. The primary goal of this analysis was to
evaluate the performance of various rheological models, with a particular focus on the
Power Law model, and compare it against other models such as the Carreau, Cross,
Yasuda, Bingham, Herschel-Bulkley, and Casson models The value of this comparison is
that the Power-Law is the easiest model to deal with in a theoretical investigation.

3.1.1 Data Loading and Filtering

The analysis started with loading and filtering rheological data from a file. A threshold for
the maximum shear rate was applied to filter the data because the traditional rheometer
operates within a specific range of shear rate values, yielding physical results. This step
ensured that only relevant data points were included for further analysis.
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The results of the model comparison revealed that the Carreau model performed the
best in most cases, outperforming the Power Law and Cross models. This outcome was
expected, as the Carreau model is a more complex, 5-parameter model, whereas the Power
Law model is characterized by two parameters only.

3.1.2 Power Law Model Evaluation

Despite the superior performance of the Carreau model, the analysis also focused on
evaluating the suitability of the Power Law model for modeling fluid viscosity. The results
(see Fig. 1 for a subset of the data) showed that while the Power Law model had higher
MAE values compared to the Carreau model (see Fig. 2 for the same subset), it still
provided reasonable predictions for most products.
Now, Tab. 1 summarizes how often each viscosity model performed the best in our eval-
uation.

Model Name Count
Carreau 13
Power Law 3
Cross 3
Yasuda 2

Table 1: Counts of models achieving the best performance.

Figure 1: Rheometer Data fitted to the Power Law Model



3 DATA EXPLORATION AND PREPROCESSING 10

Figure 2: Rheometer Data fitted to the Best Performing Model

3.2 Evaluating the captured Videos of the Fluids

To extract the flow rate and free jet diameter for our models, we developed a structured
data pipeline that transforms raw .bmp files into both visual and numerical outputs while
displaying the result of each step. Like that we were able to use a simple draft implemen-
tation in order to validate our analytical formulations. The following steps describe the
pipeline´s operation:

1. Video Conversion: The pipeline begins by converting raw .bmp files into .mp4

video files. This conversion reduces storage requirements and simplifies processing,
while also providing an intuitive visual representation of the flow.

2. Preprocessing and Cropping: The generated videos are cropped to isolate the
region of interest:

• Left Crop: Excludes the flow tip to ensure measurements start after a set
distance.

• Top and Bottom Crop: Refines the vertical region.

• Right Crop: Removes irrelevant sections of the flow field.

These steps focus the analysis on the most pertinent parts of the fluid motion.

3. Optical Flow Analysis: The Lucas-Kanade optical flow algorithm [13] is applied
to the cropped videos to track particle movements. Here, the Lucas-Kanade optical
flow algorithms were used in order to obtain easy-to-interpret data, but we evaluated
other algorithms for their precision, as well (see Appendix B and Sec. 5.1). The
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resulting trajectories are visualized in the videos, providing an initial check of the
flow behavior. Detailed trajectory data, including particle coordinates and tracking
status (active or lost), is saved in .json files for further analysis.

4. Visualization and Metric Computation:

• Final Frames and Overlays: Final video frames are saved as snapshots and
active trajectories are overlaid to emphasize meaningful particle movements.

• Quantitative Metrics: For each trajectory, key metrics (trajectory length,
particle velocity, and flow rate) are computed. The velocity is calculated using
the trajectory length, tip diameter, and frame rate (see Sec. 4.2 for the con-
version approaches used). The results are compiled into a CSV file containing
experimental parameters and trajectory statistics.

• Statistical Visualization: Boxplots are generated to display the distribu-
tions of trajectory lengths, velocities, and flow rates across experiments. These
plots (see Fig. 12) include annotations such as the total number of processed
trajectories and flag cases where no trajectory was identified.

5. Interactive Reporting: The processed results are summarized in interactive
HTML tables that group experimental data and highlight key metrics (e.g., highest
velocities in dark red). A comprehensive report consolidates trajectory visualiza-
tions, last-frame snapshots, and cropped flow images into a single navigable HTML
file (see Fig. 13).

4 Pipeline Architecture & Model Framework

4.1 General Preprocessing Pipeline

Flow Frames

N
oise R

em
oval

G
reyscale

Processed Flow
Frames

Trim

Background
R

em
oval

Tip R
em

oval

Zoom
 to R

O
I

Sliding W
indow

R
esize

Figure 3: Preprocessing steps. Steps highlighted with orange colors are only used in
the learning-based approach.

Our preprocessing pipeline is one of the fundamental components of the architecture. It
begins with trimming the video frames by excluding the initial and final frames, as we
observed unstable flow states in these regions in certain cases.
In the learning-based approach, we apply a sliding window strategy, which is explained
in more detail in Sec. 4.4. To reduce noise in the images, we employ Gaussian blurring
and convert RGB videos to grayscale. Gaussian blurring is effective for noise reduction
by smoothing the image, which helps in subsequent processing steps.
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A common issue in most videos is the presence of a tip with varying sizes. To address this,
we incorporate a tip removal step, which ensures more consistent frames and enhances
focus on the flow near the tip. Additionally, the background in the images is often
nonuniform. We remove it to improve the robustness of the optical flow calculation and
prevent the model from learning irrelevant or misleading features. We utilize Canny
edge detection [5] and Hough transform implemented in OpenCV [3] for both tip and
background removal. These algorithms are fast and do not require training.
For the learning-based approach, we also zoom into the region of interest (ROI) to em-
phasize flow-related features while avoiding excessive resizing that could distort the input
dimensions. This step ensures that the processed flow frames highlight relevant areas
while maintaining a suitable input size for downstream tasks. Finally, we apply resizing
to ensure a manageable input size.

4.2 Optical Flow Models

Farneback

Velocity Fields

Z-score-based
O

utlier R
em

oval

Processed 
Flow Frames

M
orphological
O

pening 

Processed
Velocity Fields

(a) Dense Optical Flow Pipeline.

Lucas-Kanade

Velocities for
Tracked Points 

Processed 
Flow Frames

(b) Sparse Optical Flow Pipeline.

Figure 4: Comparison of Dense and Sparse Optical Flow Pipelines. We apply additional
post-processing steps to increase the stability and robustness of the dense algorithm.

We experimented with both dense and sparse optical flow algorithms in our architectures.
Dense optical flow algorithms calculate the velocity for every pixel in the image, as detailed
in Appendix B.1. For this purpose, we utilized the Farneback algorithm [7] as the primary
dense optical flow approach.
Since dense optical flow algorithms are sensitive to noise and may detect spurious or
outlier velocities in noisy images, we applied additional post-processing steps to enhance
their robustness. As illustrated in Fig. 4 (a), we introduced the following techniques:

• Morphological Opening: This operation uses a rectangular kernel to refine the
magnitude matrix. It removes small, noisy regions while preserving the primary
motion patterns in the image.

• Z-Score-Based Outlier Removal: Outlier flow vectors, which have magnitudes
significantly larger or smaller than the mean by more than two standard deviations,
are removed. This step helps reduce the impact of extreme noise or artifacts.

Sparse optical flow algorithms, on the other hand, calculate velocities for only the most
salient or feature-rich points in the frames. For this purpose, we employed the Lucas-
Kanade algorithm [13], one of the most widely used sparse optical flow methods. Since
sparse optical flow inherently operates on a reduced subset of points, we did not apply
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post-processing steps after this method. This decision was made to retain the detected
feature points and avoid reducing the number of tracked velocities.
We present and discuss the comparative performance of these two optical flow strategies
in Sec. 5.1.

4.3 Analytical Approach
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Figure 5: Analytical Approach Architecture

We utilized an analytical approach leveraging the physical properties of fluids. Specifically,
the Power-Law Fluid Model (detailed in Sec. 2.2) forms the basis of our viscosity prediction
method. The overall structure of the proposed analytical approach is depicted in Fig. 5.
The process begins by estimating the velocity field, v, from a fluid video using an optical
flow algorithm. The velocity profile of the fluid is highly relevant to its viscosity properties.
The planar velocity, vy, is computed as the average pixel velocity along a single y-plane,
evaluated across multiple planes near the tip to minimize measurement errors. A global
velocity, v̄y, is obtained as the temporal average of vy across all frames and planes.
The global velocity is converted into a flow rate using the frame rate (f) and a pixel-to-
meter conversion factor (pix2m), estimated from the tip length in the frame. The flow
rate Q is given by:

Q = π

(
d1
2

)2

v̄yf · pix2m, v̄y =
1

NM

N∑
i=1

M∑
j=1

vi,j,

where N is the number of frames, M the number of pixels in the y-plane, vi,j the velocity
at pixel j in frame i, and d1 the tip diameter.
The calculated flow rate, alongside the pressure drop, tip diameter (d1), opening diameter
(d2), and tip length, is used to calibrate the flow consistency index (k) and flow behavior
index (n) in the Power-Law Fluid Model.
This approach provides a physically grounded methodology for estimating fluid-specific
power-law parameters, ensuring efficiency and interpretability. The results and two for-
mulated approaches are investigated further in Sec. 5.2
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4.4 Learning-Based Approach
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Figure 6: Learning-based Approach Architecture. We combine the advantages of
deep learning architectures with optical flow algorithms and fluid dynamics models.

To overcome the limitations of purely analytical approaches, we propose a learning-based
architecture that leverages additional visual features to model the non-linear relationship
between flow rates, visual cues, and power-law parameters. Khayat et al. [10] show that
the width of a free-surface jet for shear-thinning power-law fluids at moderate Reynolds
numbers, with a fully developed Poiseuille flow upstream, strongly depends on the power-
law index n. Higher shear-thinning effects (n < 1) lead to a wider jet, whereas for higher
values of n, the fluid contracts. For sufficiently low values of n, this contraction effect
is significantly reduced or absent. A learning-based system can capture these patterns
using flow videos. The primary objective is to develop a model that adheres to physical
constraints, remains explainable, is robust to noise, and effectively captures the complex
relationship between flow rate and viscosity.
The proposed architecture follows a dual-branch design. The first branch estimates the
velocity field using the dense optical flow algorithm by Farneback [7]. Planar velocity
calculations are performed near the jet tip, followed by frame-wise global pooling of ve-
locity magnitudes to capture temporal dynamics. Additionally, we compute the velocity
gradient in the y-direction (orthogonal to the primary flow direction) and apply temporal
pooling to extract average velocity changes across the y-axis. These features provide a
comprehensive representation of flow behavior.
The second branch employs an encoder to extract visual features from the video. We
applied normalization and augmentation to the images to accelerate training and mitigate
overfitting. Normalization is performed by computing the mean and standard deviation
over the training dataset. Specifically, we used brightness augmentation to account for
lighting variations and small rotational augmentations to counteract the effects of camera
movements, following the work of Park et al. [16].
A 3D CNN was chosen as the backbone due to its effectiveness in capturing spatial re-
lationships in 2D data and spatiotemporal patterns in video data through convolutional
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operations [23]. Previous studies [16, 24] have also demonstrated the effectiveness of
CNN-based encoders in predicting fluid viscosities. Each layer incorporates batch nor-
malization to improve convergence and prevent overfitting, with the Rectified Linear Unit
(ReLU) serving as the activation function. Additionally, strided convolution is employed
for efficient downsampling.
The outputs from both branches are concatenated and passed through a shared linear layer
to generate a single feature vector representing the fluid video. Separate fully connected
layers predict the power-law parameters, K (flow consistency index) and n (flow behavior
index). Linear normalization is applied after each linear layer, and dropout is introduced
before the output layer to mitigate overfitting. ReLU activation is used after all linear
layers except the output layer. The n prediction is mapped using the tanh activation
function to constrain its range to [−1, 1], aligning with the theoretical boundaries of the
flow behavior index. SinceK exhibits a large and non-uniform range, we apply logarithmic
normalization to stabilize the model training.
We intentionally exclude geometrical and experimental setup information, as these factors
vary significantly across experiments for different products. Such variations can lead to
overfitting on the experimental configuration rather than learning fluid characteristics.
We also evaluated the effect of optical flow on the model’s performance by removing it
and retaining only the visual branch while keeping the rest of the architecture unchanged.
The results are discussed in Sec. 5.3.

4.5 Fluid Video Autoencoder

We utilized the 3D CNN encoder described in Sec. 4.4 to develop an autoencoder for
video sequences. The primary motivation for training the autoencoder was to initialize
the encoder in the learning-based architecture with robust weights. This process also
evaluates the encoder’s ability to capture patterns in fluid flows, a critical requirement
for downstream tasks.
The objective of the autoencoder is to reconstruct the input video sequence at the output.
The autoencoder employs a 3D convolutional neural network as the encoder backbone
and a 3D deconvolutional neural network as the decoder. Every convolutional layer other
than the last layer of the decoder is followed by batch normalization and reLu activation
function. The last layer of the decoder is finalized with Sigmoid activation to obtain
values between 0 and 1. Similarly, Linear layers other than the output layers are followed
by normalization and activation functions. Similar to our previous approach, we used a
sliding window method to augment the video dataset. In addition, we applied rotation
and brightness augmentations. To enhance feature extraction, we adopted ROI (region
of interest) zooming instead of simple resizing to reduce frame dimensions, as it provided
better feature representations. The overall preprocessing pipeline is illustrated in Fig. 3,
and the results, including our hyperparameter fine-tuning, are presented in Appendix G.

4.6 Fluid Dynamics Categorization

We also explored a categorization task to assess the encoder’s ability to learn visual
patterns relevant to viscosity properties. Fluids were classified into four categories based
on their fitted Power-Law parameters. Further details on fluid categories are provided
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in Appendix E. For multi-class prediction, we appended linear layers to the encoder,
applying softmax in the final layer.

5 Results

5.1 Optical Flow Algorithms

As discussed in Sec. 4.2, to estimate flow velocity, we experimented with both dense
(Farneback [7]) and sparse (Lucas-Kanade [13]) optical flow algorithms. To determine
the most suitable approach for our task, we conducted a comprehensive evaluation across
multiple criteria. Notably, for the dense optical flow method, we downscaled the resolution
to 25% of the original image size to enhance computational efficiency.

Accuracy of Flow Speed Estimation

• Objective: Identify the algorithm that yields the most accurate flow speed esti-
mation.

• Evaluation Metric:

– Absolute Error (%): The absolute deviation between the estimated flow
speed and the ground truth. Lower values indicate higher accuracy.

(a) Product 1 (b) Product 2 (c) Product 3

Figure 7: Manual Annotation. We manually annotated products by tracking distinct
particles across frames.

To facilitate this evaluation, we manually annotated a subset of the dataset to establish
ground truth flow speed values. We tracked distinct particles, as shown in Fig. 7, for the
first 100 frames, skipping every 10 frames to capture the average velocity. These anno-
tations served as the reference for computing absolute error and assessing the accuracy
of each method. Specifically, we annotated three different products under two distinct
pressure conditions. The selected products exhibited significant differences in appearance,
ensuring a diverse and representative evaluation set.
As shown in Tab. 2, the Dense Optical Flow method consistently outperforms the Sparse
method in accuracy, exhibiting a lower average absolute error. The accuracy of the Dense
method slightly decreases when the resolution is reduced to 25% of the original size.
Despite this minor increase in error, the Dense method remains the more reliable choice
for precise flow estimation.
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Table 2: Comparison of absolute error (%) for Dense and Sparse Optical Flow

Method Avg ↓ Min ↓ Max ↓ 25% ↓ 75% ↓
Dense 13% 1% 48% 3.0% 12.75%
Sparse 23% 7% 70% 13.75% 16.0%
Dense (Scale 0.25) 22% 0% 63% 8.25% 29.5%

Uncertainty in Flow Speed Estimation

• Objective: Assess the consistency of the flow speed estimation across different
frames.

• Evaluation Metric:

– Variance: Measures the fluctuations in flow speed estimates. A lower variance
indicates more consistent predictions.

Due to the absence of ground truth velocity values for the entire dataset, we also conducted
an unsupervised evaluation of the algorithms. A reliable optical flow algorithm should
estimate consistent velocities for the same product under identical pressure conditions.
Tab. 3 highlights the variance in flow speed estimation, indicating that the Dense Opti-
cal Flow method produces more consistent predictions than the Sparse method. Notably,
when the input resolution is downscaled to 25%, the variance further decreases, demon-
strating that a lower-resolution Dense method not only accelerates computation but also
enhances stability in flow predictions.

Table 3: Variance comparison of flow speed estimation

Method Avg ↓ Min ↓ Max ↓ 25% / 75% ↓
Dense 0.377 0.001 4.243 0.005 / 0.383
Dense (Scale 0.25) 0.097 0.00008 1.388 0.002 / 0.077
Sparse 1.321 0.0007 4.860 0.108 / 2.356

Computational Efficiency of Flow Speed Estimation

• Objective: Evaluate the computational efficiency of different flow estimation meth-
ods.

• Evaluation Metric:

– Processing Time per 10 Frames (s): Measures the average time required
to compute flow speed over ten frames. Lower values indicate higher efficiency.

Since our primary objective is to develop a pipeline for enhancing product control in the
laboratory, processing speed is another key evaluation metric. According to Tab. 4, the
Dense method is computationally more expensive than the Sparse method. However, by
downscaling the resolution to 25%, the Dense method becomes significantly faster, even
surpassing the Sparse method in processing speed. This demonstrates that reducing reso-
lution is an effective way to achieve an optimal balance between computational efficiency
and accuracy.
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Table 4: Comparison of processing time per 10 frames (in seconds)

Method Avg ↓ Min ↓ Max ↓ 25% / 75% ↓
Dense 14.33 13.38 15.51 14.12 / 14.52
Dense (Scale 0.25) 2.75 2.64 3.20 2.69 / 2.82
Sparse 4.47 3.52 5.01 4.28 / 4.75

Summary of Findings

• The Dense Optical Flow method outperforms the Sparse method in accuracy and
consistency, making it the preferred choice for our application.

• However, it is computationally more expensive. To balance performance and effi-
ciency, downscaling the input resolution to 25% provides an effective trade-off, main-
taining relatively high accuracy while significantly reducing computational cost.

• For our viscosity prediction task, we decided to use the Dense Optical Flow method
at 25% resolution as it provides the best balance between accuracy, stability, and
speed.

5.2 Analytical Approaches

For this evaluation, two products were selected where our simplified approach to measuring
the flow rate proved effective. It is important to note that our preprocessing algorithm—
based on the assumption of a constant jet width—is applicable only for fluids with low
flow behavior indices (low n values). Also, we found that by repeating the experiment,
we get different flow rates for the flowing fluid, which is a consistency problem for the
measurement technique as it is at the moment in general. You can observe that already
by eye (see also Fig. 12).

5.2.1 Boles’ Formula for Conical Extrusion Pressure Drop

Boles’ formula offers an analytical estimate for the viscous pressure drop in conical poly-
mer processing flows. Based on a generalized Newtonian (power-law) fluid model and
derived via a radial momentum balance in spherical coordinates with an assumed velocity
profile, the formula is given by:

∆Pcon =
2k

3n sinα

[
3Q(3n+ 1) sinα

4πn(1− cosα)2(1 + 2 cosα)

]n [
1

R3n
2

− 1

R3n
1

]
where α is the cone half-angle, R1 and R2 are the inlet and outlet radii, Q is the volumetric
flow rate, and k and n are the power-law fluid parameters.
Notably, for the same geometrical parameters, the pressure drop can be expressed as

P = C · k ·Qn

where C is a constant that encapsulates the geometry-dependent factors. This compact
representation emphasizes the direct proportionality of the pressure drop to the consis-
tency index k and the volumetric flow rate Q raised to the power n.
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Despite comprehensive testing, no functional dependency was found between the calcu-
lated pressure drop values and the pressure parameter used during initialization (see Fig. 8).

Figure 8: We see the measured flow rates and its corresponding pressure drops for the
Boles Formulation for two products at two dispensing pressure paramters.

5.2.2 Navier-Stokes Derived Pressure Model and Power-Law Constants

An alternative approach derives the pressure formulation directly from the Navier-Stokes
equations by converting them into a boundary value problem. This method integrates the
full momentum balance with the power-law description of viscosity, yielding a pressure
expression that more comprehensively captures the flow dynamics—including scenarios
where viscoelastic effects are significant. Although this model is inherently more complex,
it offers improved predictive capabilities over a wider range of flow conditions. For a
detailed derivation and discussion, please refer to Appendix D.
Again, the plots of flow rate versus calculated pressure drop revealed no functional de-
pendency between the predicted pressure drop values and the pressure parameter used
during initialization (see Fig. 9).
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Figure 9: We see the measured flow rates and its corresponding pressure drops for the
BVP Formulation

5.2.3 Summary of Findings

In this evaluation, two analytical approaches—the Boles’ formula and a Navier-Stokes
derived pressure model—were compared for predicting pressure drops in conical process-
ing flows. Both models rely on a power-law description of viscosity but differ in their
derivation and complexity. Boles’ formula provides a straightforward analytical estimate,
while the Navier-Stokes approach, formulated via a boundary value problem, captures
additional flow dynamics and viscoelastic effects.
Experimental investigations using two products (each under two distinct pressure param-
eter settings and repeated over ten measurements) showed that there is no functional
dependency between the calculated pressure drop values and the initial pressure param-
eter. Furthermore, the experimental results underscore a limitation of our preprocessing
algorithm: it assumes a constant jet width, an assumption valid only for low n fluids.
Additional challenges associated with these approaches include:

• Velocity Variations: For fluids with higher n values, the jet is likely to experience
changes in velocity, making a reasonably precise calculation of the flow rate more
difficult.

• Advanced Image Processing Requirements: The complexities introduced by
these velocity changes demand the applicability of an optical flow algorithm to
accurately track and quantify the jet behavior.

Overall, while both analytical methods offer valuable insights into pressure drop estima-
tion, the findings indicate that further refinements—especially addressing the challenges of
velocity variations and the need for advanced optical flow techniques for high n fluids—are
necessary to improve the predictive accuracy of the models.
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5.3 Learning-Based Approach

We conducted experiments on the learning-based approach by measuring its performance
on Fluid Consistency Index Prediction (k), Fluid Behavior Index Prediction (n),
and Target Power-Law Viscosity Estimation. Additionally, we report performance
on Real Viscosity Estimation, which represents the primary task. The ground truth
parameters are obtained by fitting k and n values using Rheometer results, with the fitting
process described in Sec. 3. The target viscosity is computed using the power-law model,
whereas the real viscosity is directly measured by the Rheometer.
The dataset is split into training, validation, and test sets with a ratio of 0.8, 0.1, and
0.1, respectively. Product types are uniformly distributed across the splits to prevent bias
toward specific products. Additionally, certain products are entirely excluded from the
training set to evaluate out-of-domain performance.

5.3.1 Ablation Study

Table 5: Performance on Target Power-Law Viscosity Estimation

Model MAE (↓) RMSE (↓) Weighted MAE (↓) RMAE (↓) R2 (↑)

VisOF 25.7517 56.7659 3.8364 0.0902 0.9959
VisOF-L 26.4737 55.7240 3.5831 0.0843 0.9959

VisOF-FT-AutoE 24.1188 57.9488 4.1947 0.0986 0.9956
VisOF-FT-LAutoE 35.1624 90.1017 3.9588 0.0931 0.9873

Vis 5.2251 17.2681 0.7892 0.0186 0.9996
Vis-L 27.7798 57.8654 3.4414 0.0809 0.9957

Vis-FT-AutoE 37.7006 92.6426 4.6808 0.1101 0.9873
Vis-FT-LAutoE 38.9736 86.0386 7.0866 0.1666 0.9894
Vis-Freeze-AutoE 59.5921 153.6619 7.4546 0.1753 0.9640

Vis-FT-Classifier 13.0992 29.2855 1.9161 0.0451 0.9989

We conducted ablation studies to investigate the impact of:

• Usage of optical flow algorithm on performance,

• Different latent sizes for visual features,

• Pre-trained weights from the autoencoder and classifier, considering both freezing
and fine-tuning options.

Naming Conventions in Tables The following naming conventions are used in the
tables:

• VisOF: Visual and optical flow features. Details are explained in Sec. 4.4

• Vis: Only visual features. The same architecture with VisOF after dropping optical
flow calculation.
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• L: The latent dimension for visual features is 512 (default: 256).

• FT: Fine-tuning.

• AutoE: Using encoder weights from the autoencoder task.

• Classifier: Using encoder weights from the categorization task.

Summary of Findings As observed from the experiments in Tab. 5, increasing the
latent size does not yield better results in any setting. Fine-tuning weights instead of
freezing significantly improved performance.
While the mean error is lower for using autoencoder weights for VisOF, itsR2 and weighted
error metrics—which account for the disproportionate effect of larger viscosity values—are
worse compared to end-to-end training. Training architecture with visual features end-
to-end performed better than all pre-training settings. This suggests that direct training
is more effective for this task.
We also evaluated the effectiveness of using encoder weights from the categorization task.
It outperformed autoencoder-based pretraining, which suggests categorization training
led to learning more relevant features for primary down-stream tasks. However, it still
failed to match the performance of end-to-end training.
Lastly, we examined the impact of incorporating optical flow features in our model. Sur-
prisingly, results indicate that the model performs better when relying solely on visual
features. This may be attributed to the high variance in flow rates within our dataset,
which hurts the model’s ability to learn consistent patterns.
More detailed results from the experiments including the performance on the Fluid Con-
sistency Index Prediction k, Fluid Behavior Index Prediction n, and Real Viscosity Esti-
mation can be found in Appendix H

5.3.2 Model Performance on Seen and Unseen Products

We evaluated the models on both seen and unseen fluid types by holding out certain
product types from the training set. We present the final performance of models using
only visual features and those incorporating flow rate information in addition to visual
features. Although using only visual features fits the dataset better than incorporating
optical flow, we emphasize the contribution of flow rate, particularly in unseen data, which
is critical for the main objective.

Evaluation on Seen Products Fig. 10 presents viscosity predictions for two products,
showing strong agreement between model predictions (smooth blue line) and ground truth
(orange dots). This indicates a good model fit, effectively capturing the shear rate-
viscosity relationship, and a low residual error, with minimal discrepancies.
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(a) Shear Rate vs Target and Real Viscosity - Product A

(b) Shear Rate vs Target and Real Viscosity - Product G

Figure 10: Shear rate vs viscosity prediction performance across two different products.

The results align with shear-thinning behavior: viscosity decreases rapidly at low
shear rates before stabilizing at higher values. At low shear rates (< 20), high viscosity
is attributed to molecular interactions, while at high shear rates (> 100), it reaches a
limiting value. More plots are provided in Appendix H.

Table 6: Comparison of Visual Model and Visual with Optical Flow Model Performance
on Real vs Target Viscosity Estimation

Model Approach MAE (↓) Weighted MAE (↓) RMAE (↓) R2 (↑)

Target
Vis 5.2251 0.7892 0.0186 0.9996

VisOF 25.7517 3.8364 0.0902 0.9959

Real
Vis 24.7291 9.5911 0.2071 0.9977

VisOF 37.2969 11.5314 0.2490 0.9940

It is also worth noting that Fig. 10 (a) illustrates Product 1 aligns more closely with real
viscosity values compared to Product 2 as illustrated in Fig. 10 (b) . The difference in
real viscosity estimation performance, despite both models aligning strongly with target
viscosity, can be attributed to the limitations of the power-law model. Tab. 7 and Tab. 8
quantifies this discrepancy, showing the significant difference between estimating target
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viscosity (computed using the power-law model) and real viscosity (measured using the
Rheometer), especially for the visual model, which fits the dataset better.

Table 7: Visual Model

Product MAE RMAE
Product A 7.9753 0.0172
Product B 6.8101 0.0180
Product C 1.9959 0.0075
Product D 0.8284 0.0136
Product E 12.8468 0.0538
Product F 0.2782 0.0146
Product G 9.7161 0.0392
Product H 5.4929 0.0088

Table 8: Visual Model with Optical Flow

Product MAE RMAE
Product A 6.3942 0.0506
Product B 22.4934 0.0905
Product C 27.3991 0.1141
Product D 3.4914 0.0327
Product E 34.2064 0.1799
Product F 2.1450 0.1103
Product G 29.7146 0.0643
Product H 40.6927 0.0508

We also observed that performance varies depending on the product type, as shown
in Tab. 7 and Tab. 8. Additionally, we analyzed the model’s uncertainty by calculating
the standard deviation in the predictions of K and n parameters for the same fluid across
different experiments and sliding windows (Appendix H). Despite performance variations
across different products, the overall results are promising, suggesting that the proposed
architectures could be further refined for improved viscosity prediction.

Evaluation on Unseen Products We compared the performance of using only visual
features versus incorporating optical flow features to enhance visual feature representa-
tion. Fig. 11 shows that both approaches capture the viscosity-shear rate relationship,
exhibiting a well-defined plateau pattern. However, the precision of the predictions is
noticeably lower for unseen products compared to seen products.
Although the model using only visual features performed well on seen fluid types, it
struggled on unseen products, performing worse than the model that incorporated optical
flow information. This suggests that while visual features effectively capture patterns and
shapes of fluids within the dataset, integrating flow rate measurements enables a more
robust architecture, improving generalization to unseen fluids.

(a) Only visual features (b) Visual features with optical flow

Figure 11: Shear rate vs viscosity prediction performance on unseen fluid types
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6 Conclusions

In this study, we explored a computer vision-based approach for estimating the viscosity
of non-Newtonian fluids from video recordings of the dispensing process. While initial
investigations using analytical and semi-analytical models based on the Navier-Stokes
equations provided theoretical insights, they failed to match experimental measurements
due to uncertainties in flow rate estimation and the complex physics introduced by the
power-law model. Additionally, Computational Fluid Dynamics (CFD) tools were con-
sidered but ultimately disregarded due to their computational expense and complexity.
Our findings highlight the limitations of classical modeling approaches in practical vis-
cosity estimation, particularly for shear-thinning fluids. The observed discrepancies in jet
width and velocity distribution motivated us to shift toward deep learning techniques,
leveraging structured video data and dispensing parameters. We observed that learning
additional visual features with deep learning significantly improves the model’s perfor-
mance. The integration of an optical flow algorithm is particularly important for obtain-
ing a generalizable model for unseen products. This transition aligns with the need for a
fast, contactless, and scalable viscosity measurement method to seamlessly integrate into
Henkel’s automated laboratory workflow.
We would also like to highlight that our findings have been integrated into a user interface
that the chemistry team is ready to use. Our focus was on creating a functional and
easily implementable design, allowing for seamless adaptation of the interface based on
our findings from one sprint to the next.
Future work could focus on refining the deep learning approach, optimizing feature ex-
traction, and validating model performance across a broader range of adhesives. Better
performance and evaluation could be achieved by constructing a consistent dataset with
controlled velocity variations, diverse product types, and a standardized experimental
setup. Additionally, the integration of pressure and tip geometries as input could be
further explored with appropriately designed dataset settings. Additionally, simplifying
the geometry or capturing footage of the fluid interacting with the floor could enhance
the automation pipeline. By addressing these challenges, the aim is to develop a robust
system capable of accelerating viscosity characterization in high-throughput adhesive for-
mulation.
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A Data Analysis Pipeline Example

We provide here the outputs for one walkthrough of our experimental data analysis
pipeline:

Figure 12: Velocity and Flow Rates. Calculated velocities and flow rates for each
experiment.
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Figure 13: Comprehensive Report. Consolidated trajectory visualizations, last-frame
snapshots, and cropped flow images.

Figure 14: Grouped Experimental Data. Calculated metrics grouped by experiment
number.

B Optical Flow Algorithms

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and the scene [15]. It represents
the distribution of apparent velocities of movement of brightness patterns in an image.
Optical flow quantifies the motion of objects between consecutive frames captured by a
camera, attempting to capture the apparent motion of brightness patterns. This con-
cept was introduced by psychologist James J. Gibson in the 1940s to describe the visual
stimulus provided to animals moving through the world.
The optical flow can be mathematically expressed through the optical flow equation:

Ixvx + Iyvy + It = 0 (8)
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where Ix and Iy are spatial gradients, It is the temporal gradient, and vx and vy are flow
velocities in the x and y directions.
Optical flow estimation is broadly categorized into:

• Machine Learning-Based Models: Machine Learning-based optical flow models
learn motion patterns from data rather than relying on handcrafted constraints
like brightness constancy or smoothness. These models typically use deep neural
networks trained on large optical flow datasets such as FlyingChairs [6], Sintel [4],
and KITTI [8].

• Classical Models: These methods rely purely on mathematical formulations,
physics-based constraints, and variational principles without using machine learn-
ing. They typically solve an optimization problem based on brightness constancy
and spatial smoothness assumptions.

• Hybrid Models: Hybrid optical flow models combine classical techniques (e.g.,
Lucas-Kanade, Farneback) with machine learning to enhance flow estimation. These
models either precompute classical flow and use it as a feature for ML models or
refine classical flow estimates using deep learning. Additionally, they can incor-
porate physical constraints like brightness constancy and smoothness to stabilize
the predictions. Examples include DeepFlow [25], SpyNet [20], and learning-based
refinements for Horn-Schunck [22].

In this study, we investigated classical and hybrid models to analyze their distinct oper-
ational principles and explore how these insights could benefit our counterparts in devel-
oping a proof of concept for their applications.

B.1 Sparse Optical Flow

Sparse optical flow is a technique used to estimate motion between consecutive frames in
a video sequence by analyzing a limited number of feature points. This method focuses
on tracking the movement of specific, interesting pixels within an image, typically edges
or corners, rather than processing the entire frame.
In this section, we will conduct an in-depth exploration of sparse optical flow methods,
specifically the Lucas-Kanade and RLOF algorithms, as they are relevant to our work.

Lucas-Kanade Method The Lucas-Kanade method is one of the most widely used
classical optical flow algorithms, primarily for small-motion tracking in image sequences
[13]. It assumes that the optical flow is constant in a local window around each pixel, and
it estimates the flow by solving the optical flow equations over small regions (usually 3x3
or 5x5 pixel windows). The method works under the assumption that:

• Brightness constancy: The intensity of a pixel in one frame is the same as in the
next (i.e., no illumination changes).

• Small motion: The movement of objects between consecutive frames is small
enough for a linear approximation.
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Lucas-Kanade derives the optical flow by solving the following system of equations using
the least-squares method:

Ixu+ Iyv = −It (9)

Where:

• Ix, Iy, It are the image gradients in the x, y, and time directions, respectively.

• u, v are the components of the optical flow (motion) in the x and y directions.

This equation states that the rate of change in image intensity is zero when considering
the motion of an object between two frames.

RLOF Robust Local Optical Flow (RLOF) [21] is an extension of the classical Lucas-
Kanade method that enhances robustness and accuracy in computing optical flow locally.
It focuses on estimating motion in a sparse or dense manner while improving resilience to
noise, illumination changes, and occlusions.
RLOF is designed to address the limitations of traditional local methods by incorporating:

• Adaptive window selection

• Robust feature matching

• Error minimization strategies

• Multi-scale and pyramid-based refinements

Given an image sequence I(x, y, t), optical flow assumes that the intensity of pixels remains
constant over time:

I(x, y, t) = I(x+ u, y + v, t+∆t) (10)

where:

• (x, y) is the pixel position,

• (u, v) is the flow vector (velocity) at that pixel,

• t represents the time dimension.

Applying the Taylor Series Expansion and ignoring higher-order terms gives the Optical
Flow Constraint Equation (OFCE):

Ixu+ Iyv + It = 0

where:

• Ix, Iy are spatial gradients,
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• It is the temporal gradient,

• (u, v) is the unknown optical flow.

Since a single equation cannot solve for two unknowns (u, v), local optical flow methods
like Lucas-Kanade introduce additional constraints by assuming that motion is constant
in a small local window around each pixel.
The standard Lucas-Kanade method solves this by minimizing:

∑
i∈Ω

wi (Ixi
u+ Iyiv + Iti)

2 (11)

where wi is a weight function emphasizing central pixels.
RLOF builds on this approach by introducing robust statistical techniques and adaptive
windowing to improve flow estimation.

B.2 Dense Optical Flow

Dense optical flow is a computer vision technique that estimates the motion of every pixel
between two consecutive frames in a video sequence. Unlike sparse optical flow methods
that track only specific features, dense optical flow calculates motion vectors for all pixels,
providing a comprehensive representation of movement within an image.
In this section, we will conduct an in-depth exploration of dense optical flow methods,
specifically the Farnebaeck and Horn-Schunck algorithms, as they are relevant to our
work.

Farnebaeck Method Gunnar Farnebaeck introduced his method for two-frame motion
estimation based on polynomial expansion in 2003 [7]. The core idea of this algorithm
is to approximate the local neighborhoods of both frames using quadratic polynomials
and then estimate the displacement field by observing how these polynomials transform
between frames [7].
Each small image patch is represented as a quadratic polynomial using a Taylor series
expansion:

f(x) = xTAx+ bTx+ c (12)

where:

• A is a symmetric matrix that captures second-order variations (curvature).

• b is a vector representing first-order changes (gradient).

• c is a scalar constant term.

This method is particularly useful for estimating motion when there is no temporal con-
sistency between frames, such as in cases where a camera is affected by high-frequency
vibrations. The algorithm has found applications in various fields, including computer
vision, medical imaging, and video processing.
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Horn-Schunck Method The Horn-Schunck method is a foundational variational ap-
proach for optical flow estimation, introduced to address motion tracking between consecu-
tive image frames by combining brightness constancy with spatial smoothness constraints.
Given two consecutive frames I(x, y, t) and I(x, y, t + 1), the optical flow (u, v) can be
estimated by solving the following optimization problem:

min
u,v

∫ ∫ (
(Ixu+ Iyv + It)

2 + α2
(
(∇u)2 + (∇v)2

))
dx dy

Where:

• Ix, Iy, and It are the partial derivatives of the image I with respect to x, y, and t,
respectively.

• α is a regularization parameter that controls the smoothness term.

• ∇2 is the Laplacian operator applied to the flow components u and v.

The Horn-Schunck method is a key technique for estimating motion between video frames.
Combining the assumption that pixel brightness stays the same and the idea that motion
is smooth, it provides a reliable way to estimate how pixels move. While it has some
limitations, it has influenced many modern optical flow methods and is still widely used
in computer vision.

C Overview of involved Tensors

Before proceeding to the detailed analysis of the Navier-Stokes equations incorporating the
power-law model, we first provide a theoretical explanation of the fundamental quantities
involved in the formulation. In the following sections, we review the following topics:

• Background on the Stress Tensor: An explanation of the stress tensor, its
decomposition into hydrostatic and deviatoric components, and its role in describing
internal forces within the fluid.

• Background on the Strain Rate Tensor: Discuss the strain rate tensor, its
definition as the symmetric part of the velocity gradient, and its significance in
quantifying the deformation rate.

This theoretical framework lays the foundation for our subsequent analysis, where we rein-
troduce the Navier-Stokes equations and apply the appropriate rheological model (specif-
ically, the power-law formulation) to capture the non-Newtonian characteristics of the
fluid flow.
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C.1 Background on the Stress Tensor

In continuum mechanics, the stress state at a point within a material is described by the
stress tensor, σ. For a three-dimensional body, the stress tensor is a symmetric 3 × 3
matrix:

σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 .

The diagonal components σ11, σ22, and σ33 represent normal stresses acting perpendicular
to the coordinate surfaces, while the off-diagonal components represent shear stresses. In
many physical situations, especially when dealing with fluids or ductile solids, it is useful
to distinguish between the part of the stress that tends to change the volume of a material
(volumetric or hydrostatic stress) and the part that tends to distort its shape (deviatoric
stress).

C.1.1 Decomposition into Hydrostatic and Deviatoric Components

The total stress tensor σ can be split into two distinct parts:

σ = σhydrostatic + σdeviatoric.

Hydrostatic Stress. The hydrostatic (or spherical) component represents the isotropic
pressure acting uniformly in all directions. It is defined as:

σhydrostatic = −p I,

where:

• p is the pressure, defined in terms of the trace of the stress tensor by

p = −1

3
tr(σ) = −1

3
(σ11 + σ22 + σ33),

• I is the identity tensor.

Deviatoric Stress. The deviatoric stress tensor, denoted by τ , is obtained by subtract-
ing the hydrostatic part from the total stress:

τ = σ − σhydrostatic = σ + p I.

In component form, this is written as:

τij = σij −
1

3
σkkδij,

where δij is the Kronecker delta. An important property of the deviatoric stress tensor is
that its trace is zero:

tr(τ ) = τ11 + τ22 + τ33 = 0.

This confirms that τ represents only the distortional (shape-changing) aspects of the
stress state.
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C.1.2 Physical Interpretation of the Deviatoric Stress Tensor

The decomposition of the stress tensor into hydrostatic and deviatoric components allows
us to understand different aspects of the material’s response under load:

Volumetric Changes versus Distortional Effects.

• The hydrostatic stress (or pressure) is associated with changes in volume. When a
material is subjected solely to hydrostatic stress, it experiences uniform expansion
or compression without any change in shape.

• The deviatoric stress is responsible for shear and distortion. It drives the change
in the shape of a material element while keeping its volume constant. This is
particularly important in plasticity and yield criteria, where the material’s response
depends on its ability to undergo shear deformations.

Application to Low Reynolds Number Flows. In the context of the Navier-Stokes
equations discussed earlier, the deviatoric stress tensor τ encapsulates the viscous stresses
acting on the fluid. For flows characterized by low Reynolds numbers, inertial forces are
negligible compared to viscous forces, and the flow behavior is primarily governed by the
balance between pressure gradients and the divergence of the deviatoric stress tensor.

C.2 Background on the Strain Rate Tensor

In continuum mechanics, the strain rate tensor measures the rate at which a material
element deforms over time. While the stress tensor describes the internal forces acting
within a material, the strain rate tensor quantifies the material’s change in deformation
(or strain). This tensor is fundamental in fluid mechanics and the study of viscous flows,
where the deformation rate directly influences the fluid’s dissipative forces.

Definition. For a fluid with a velocity field v, the strain rate tensor, commonly denoted
as D, is defined as the symmetric part of the velocity gradient:

D =
1

2

(
∇v + (∇v)⊤

)
. (13)

Here, ∇v is the gradient of the velocity field and (∇v)⊤ is its transpose. This definition
ensures that D is symmetric, meaning that its off-diagonal elements are equal. The
symmetry of D guarantees that it represents only the rate of deformation (i.e., stretching
and shearing) and does not include contributions from rigid body rotations.

Physical Interpretation. The strain rate tensor captures two main types of deforma-
tion:

• Normal Deformation: The diagonal components of D represent the rates of
stretching or compression along the principal coordinate directions. These compo-
nents describe how the length of a material element changes over time.
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• Shear Deformation: The off-diagonal components of D represent the rates of
shear deformation, which change the shape of a material element without necessarily
changing its volume.

Because D is derived from the velocity gradients, it provides insight into the local flow
behavior. In viscous fluids, for instance, the magnitude of the strain rate tensor directly
influences the viscous stresses, as seen in constitutive equations that relate stress to strain
rate.

Mathematical Properties.

• Symmetry: By construction, D is symmetric. This property simplifies the defor-
mation analysis by decoupling pure deformation from rigid body rotation.

• Invariance: The strain rate tensor is invariant under coordinate transformations,
meaning its physical interpretation does not depend on the chosen coordinate sys-
tem.

• Relation to Material Behavior: In Newtonian fluids, the viscous (deviatoric)
stress is directly proportional to the strain rate tensor, reflecting that viscous forces
oppose the deformation rate. For non-Newtonian fluids, the relationship may be
more complex, often involving an effective viscosity that depends on the magnitude
of the strain rate.

In summary, the strain rate tensor is a fundamental quantity in both fluid and solid
mechanics that quantifies how the shape of a material changes over time. Its symmetric
nature allows for a clear distinction between deformation and rigid body motions, making
it essential for developing constitutive models and analyzing material behavior under flow.

D From Navier-Stokes Equations to a Boundary Value

Problem, Pressure Formulation, and Power-Law

Constants

In this section, we briefly outline the derivation of the boundary value problem governing
the axially symmetric, quasi-static radial flow of the Fluid and present the associated
pressure formulation and connection to power-law rheological constants [19]. Although
the complete derivation involves several technical steps, the key ideas are as follows:

1. Constitutive Model for the Fluid The Fluid is modeled by a power-law constitu-
tive relation that captures both the coaxiality between the stress and strain rate tensors
and strain rate hardening:

S =

√
2

3
σe

D√
D ·D

, σe = σ0

(
2

3
D · · ·D

) 1
2n

,

where:
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• S is the stress deviator tensor,

• σe =
(
3
2
S · S

)1/2
is the Mises effective stress,

• D is the Eulerian strain rate tensor (the symmetric part of the velocity gradient),

• σ0 and n are material parameters (with n = 1 corresponding to a Newtonian fluid
and n → ∞ to a perfectly plastic solid).

(Notice that the power index n here is the inverse of n0 often used in fluid mechanics
literature.)

2. Assumptions on the Flow Field The flow is assumed to be radially directed
toward a virtual apex O. Placing the origin of a spherical coordinate system (r, θ, φ) at
O with unit vectors er, eθ, and eφ, the velocity field is taken as

V = V er, with V = −Qf(θ)

r2
,

where Q is the steady-state volumetric flow rate and f(θ) is an unknown angular function
(normalized appropriately). In the following, the prime (e.g. f ′(θ)) denotes differentiation
with respect to θ.

3. Formulation of the Strain Rate Tensor Given the radial flow, the Eulerian
strain rate tensor is

D = Q

[
f(θ)

r3

(
2 erer − eθeθ − eφeφ

)
− f ′(θ)

2r3

(
ereθ + eθer

)]
.

4. Derivation of Normalized Stress Components Substituting D into the consti-
tutive relation and normalizing with respect to 21/n σ0√

3
leads to the scalar relations:

Σr − Σθ =
√
3Q1/n F r−3/n,

Σrθ = −β Q1/n r−3/n,

where the normalized stress components are Σr, Σθ, and Σrθ, and

F = f 1/n∆
1−n
n , ∆ =

√
1 + β2, β =

(√
3

6

)
f ′(θ)

f(θ)
.

The normalized Mises stress is then

Σ =
σe

21/n σ0√
3

=
√
3Q1/n∆F r−3/n.
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5. Equilibrium and Integration In the absence of inertia, the radial equilibrium
equation

r
∂Σr

∂r
+

∂Σrθ

∂θ
+ 2 (Σr − Σθ) + Σrθ cot θ = 0

(with a similar equation in the circumferential direction) leads—after integrating over
r—to the expressions

Σr = −Q1/n
(n
3

) [
(βF )′ + (βF ) cot θ − 2

√
3F
]
r−3/n +H(θ),

Σθ = −Q1/n

{(n
3

)
[(βF )′ + (βF ) cot θ]−

(
2n− 3√

3

)
F

}
r−3/n +H(θ),

where H(θ) is determined to be a constant C from the equilibrium conditions.

6. Final Boundary Value Problem and Pressure Formulation The derivation
reduces to the following boundary value problem for f(θ):{(n

3

)
[(βF )′ + (βF ) cot θ]−

(
2n− 3√

3

)
F

}′

+
3(n− 1)

n
(βF ) = 0,

with

β =

(√
3

6

)
f ′(θ)

f(θ)
, F = f 1/n∆

1−n
n , ∆ =

√
1 + β2.

The boundary conditions are:

• β = 0 at θ = 0 (ensuring vanishing shear stress on the axis),

• β = −m (1−m2)−1/2 at θ = α (incorporating wall slip with friction factor m),

• Normalization of the velocity profile:∫ α

0

f(θ) sin θ dθ =
1

2π
.

The integration constant H(θ) = C is determined from the inlet/outlet pressure data.
The normalized hydrostatic pressure (with Σp = Σθ) is given by

P = Q1/n

{
n

3
[(βF )′ + (βF ) cot θ]− 2(n− 1)√

3
F

}
r−3/n − C,

and its cross-sectional average over a spherical surface is

P̄ = −Q1/n p̄(α,m, n) r−3/n − C,

with

p̄(α,m, n) =
−n

3
(βF )θ=α sinα + 2(n−1)√

3

∫ α

0
F sin θ dθ

1− cosα
.

This concise formulation, which encompasses the boundary value problem and the pressure
equations, forms the basis for our numerical solution of the flow behavior.
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7. Mapping to Power-Law Parameters To ensure consistency with the experi-
mentally measured one-dimensional power-law behavior, we relate the exponents and the
stress scale as follows:

n =
1

n0

, σ0 = 3
n0+1

2 K

These relations convert the rheological parameters obtained from shear flow experiments
(using, for instance, cone-and-plate or parallel-plate geometries) into the parameters used
in our tensorial formulation. In this way, the three-dimensional constitutive model ac-
curately reflects the shear-thinning or shear-thickening behavior observed experimentally
and provides a robust basis for modeling the complex flow behavior of Fluids.
This framework forms the basis for our further investigations, where we will analyze the
flow behavior by solving the boundary value problem and incorporating the power-law
rheology into the Navier–Stokes equations.

E Clustering

Here, we present the clustering with the corresponding product.

Product K value n value Cluster
Product 1 1,592.74 -0.01 Cluster 1
Product 2 1,306.39 0.14 Cluster 1
Product 3 892.35 0.06 Cluster 1
Product 4 5,348.62 0.12 Cluster 1
Product 5 2,034.91 0.01 Cluster 1
Product 6 1,153.53 0.21 Cluster 2
Product 7 350.21 0.30 Cluster 2
Product 8 464.64 0.24 Cluster 2
Product 9 1,151.07 0.50 Cluster 3
Product 10 562.51 0.44 Cluster 3
Product 11 551.19 0.46 Cluster 3
Product 12 597.82 0.48 Cluster 3
Product 13 907.53 0.75 Cluster 4
Product 14 20.95 0.93 Cluster 4

Table 9: Clustering of Products by n value

The products are grouped into four clusters based on their n value:

• Cluster 1 (Very Low/Negative n value): Includes products with n value ≤ 0.14.

• Cluster 2 (Low n value): Includes products with n value between 0.21 and 0.30.

• Cluster 3 (Medium n value): Includes products with n value between 0.44 and
0.51.

• Cluster 4 (High n value): Includes products with n value ≥ 0.72.
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This clustering helps identify patterns in product performance based on the n value met-
ric.

F Technical Implementation

In this project, we developed a viscosity prediction interface with a backend written
in Python and a frontend built using Streamlit. The goal was to create an intuitive
and functional tool that would predict the viscosity of adhesives, focusing on delivering
an effective user experience for laboratory settings. Given the constraints of the lab
environment, where the computer is cut off from the internet and operates under strict
conditions, we had to carefully design the entire system to ensure its proper functionality
under these constraints.
Throughout the project, we utilized an iterative approach, breaking the development
process into multiple sprints, each focused on implementing a set of features. The entire
lifecycle spanned three different software versions, validated and refined in collaboration
with the team.

Frameworks and Tools Used

• Backend: Python
Python was chosen for the backend due to its extensive libraries and ease of inte-
gration with scientific tools and data processing algorithms. Libraries for numerical
and statistical analysis (e.g., NumPy, SciPy) were crucial in building the viscosity
prediction models.

• Frontend: Streamlit
Streamlit was selected for the frontend due to its simplicity and ability to create
interactive web interfaces quickly. Streamlit’s lightweight nature allowed us to de-
velop the interface without requiring extensive web development resources, making
it ideal for lab settings where simplicity and efficiency are paramount.

• Lab Computer Constraints
The lab computer being cut off from the internet required us to develop the solution
so that all necessary dependencies and functionalities were self-contained within the
system. This meant the application had to be fully offline, with all libraries pre-
installed and no external API calls or internet connections used. The operating
system and hardware were older, requiring extra attention to system compatibility,
ensuring that Python and Streamlit ran smoothly in the limited environment.

Development Approach: Agile Methodology with Iterative Sprints

Initial Version: Core Functionality (see Figure 20a, Figure 20b, and Fig-
ure 20c)

• Developed a Python-based backend for analytical viscosity predictions.
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• Created a basic Streamlit interface with input parameter fields, an export function,
and a prediction button.

• Validated the algorithm’s functionality in collaboration with the chemist team.

Feature Expansion: Enhanced UI (see Figure 21a)

• Refined the user interface, incorporating a learning-based approach and removing
unused adhesive parameter fields.

• Enhanced backend capabilities using advanced libraries for improved prediction ac-
curacy.

• Validated usability and performance through team feedback.

Final Version: Polished and Validated (see Figure 21b)

• Polished the interface based on feedback, optimized the prediction algorithm with
a trained learning-based approach, added a plot for better interpretability, and
finalized features for seamless data upload and fast predictions.

• Conducted rigorous validation tests to ensure accuracy and alignment with lab re-
quirements.

Software Environment The primary libraries used in our pipeline include:

• Optical Flow: OpenCV, providing Farneback and Lucas-Kanade algorithms.

• Deep Learning: PyTorch for CNN-based models and training routines.

• Data Processing: NumPy, SciPy, and other standard scientific computing li-
braries.

Every feature we developed got integrated through a CI/CD Azure pipelines in Azure
DevOps. The Azure Pipelines YAML defines a CI/CD pipeline to package a Python
application using Poetry and cxFreeze. The key steps are:

1. Trigger: Runs on the main branch.

2. Setup: Uses Windows-latest, installs Python 3.11, Poetry, and dependencies.

3. Build: Activates a virtual environment, installs dependencies, and locks versions.

4. Packaging: Uses cxFreeze to bundle the application and copies required files (app,
config, .streamlit).

5. Artifact Publishing: Uploads the packaged application as a build artifact for
deployment.
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G Autoencoder Hyperparameter Tuning

To ensure the quality of extracted visual features, we fine-tuned different autoencoder
configurations and evaluated their performance using the following metrics:

• Structural Similarity Index Measure (SSIM): Measures the similarity between
two images by considering luminance.

• Peak Signal-to-Noise Ratio (PSNR): Quantifies the ratio between the maxi-
mum possible power of a signal and the power of corrupting noise.

• Mean Squared Error (MSE): The average squared difference between the origi-
nal and reconstructed images.

We trained three models that differed in terms of network depth and latent feature di-
mensionality. The evaluation results are presented in Fig. 15. Based on these findings,
we selected the autoencoder with the following training settings for downstream tasks: a
batch size 16, a training time of 500 epochs, a learning rate of 0.001, a 256-dimensional
latent space, and 3 network layers.

H Viscosity Prediction Results

Table 10: Performance on Fluid Consistency Index Prediction k

Model MAE (↓) RMSE (↓) Weighted MAE (↓) RMAE (↓) R2 (↑)

VisOF 120.7428 166.8652 26.5374 0.0737 0.9921
VisOF-L 116.7576 156.6515 24.3545 0.0676 0.9928

VisOF-FT-AutoE 110.1824 164.9900 34.3255 0.0953 0.9919
VisOF-FT-LAutoE 156.8333 254.1645 27.5309 0.0765 0.9771

Vis 20.9847 48.4447 6.0065 0.0167 0.9993
Vis-L 126.2796 169.1786 25.1202 0.0698 0.9920

Vis-FT-AutoE 155.8631 251.4273 21.7197 0.0603 0.9787
Vis-FT-LAutoE 178.4680 258.2319 29.6797 0.0824 0.9785
Vis-Freeze-AutoE 299.2371 467.1099 56.3451 0.1565 0.9249

Vis-FT-Classifier 56.5229 82.0041 13.6864 0.0380 0.9980
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Figure 15: The fine-tune evaluation of the autoencoder. The model with 3 layers is
optimal across all metrics.
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(a) Measured real viscosity for product B (b) Measured target viscosity for product B

(c) Measured real viscosity for product C (d) Measured target viscosity for product C

(e) Measured real viscosity for product D (f) Measured target viscosity for product D

Figure 16: Visual Model Comparison of Shear Rate vs. Viscosity Part 1
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(a) Measured real viscosity for product E (b) Measured target viscosity for product E

(c) Measured real viscosity for product F (d) Measured target viscosity for product F

(e) Measured real viscosity for product G (f) Measured target viscosity for product G

Figure 17: Visual Model Comparison of Shear Rate vs. Viscosity - Part 2
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(a) Measured real viscosity for product B (b) Measured target viscosity for product B

(c) Measured real viscosity for product C (d) Measured target viscosity for product C

(e) Measured real viscosity for product D (f) Measured target viscosity for product D

Figure 18: Visual with Optical Flow Model Comparison of Shear Rate vs. Viscosity -
Part 1
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(a) Measured real viscosity for product E (b) Measured target viscosity for product E

(c) Measured real viscosity for product F (d) Measured target viscosity for product F

(e) Measured real viscosity for product G (f) Measured target viscosity for product G

Figure 19: Visual with Optical Flow Model Comparison of Shear Rate vs. Viscosity -
Part 2
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Table 11: Performance on Fluid Behaviour Index Prediction n

Model MAE (↓) RMSE (↓) Weighted MAE (↓) RMAE (↓) R2 (↑)

VisOF 0.0200 0.0275 0.0240 0.2902 0.9805
VisOF-L 0.0143 0.0204 0.0159 0.1917 0.9890

VisOF-FT-AutoE 0.0113 0.0144 0.0116 0.1407 0.9950
VisOF-FT-LAutoE 0.0128 0.0226 0.0133 0.1606 0.9872

Vis 0.0027 0.0042 0.0021 0.0254 0.9996
Vis-L 0.0208 0.0321 0.0173 0.2096 0.9730

Vis-FT-AutoE 0.0243 0.0348 0.0273 0.3298 0.9705
Vis-FT-LAutoE 0.0455 0.0739 0.0495 0.5979 0.8584
Vis-Freeze-AutoE 0.0316 0.0417 0.0335 0.4051 0.9588

Vis-FT-Classifier 0.0105 0.0156 0.0107 0.1295 0.9935

Table 12: Performance on Real Viscosity Estimation

Model MAE (↓) RMSE (↓) Weighted MAE (↓) RMAE (↓) R2 (↑)

VisOF 37.2969 68.7504 11.5314 0.2490 0.9940
VisOF-L 37.7963 70.9316 11.2892 0.2438 0.9933

VVisOF-FT-AutoE 34.8666 66.7378 12.5968 0.2720 0.9942
VisOF-FT-LAutoE 47.2416 101.1618 11.0760 0.2392 0.9840

Vis 24.7291 41.3181 9.5911 0.2071 0.9977
Vis-L 38.8037 70.8926 11.2105 0.2421 0.9936

Vis-FT-AutoE 48.2093 100.5171 12.7140 0.2746 0.9851
Vis-FT-LAutoE 48.0404 95.7139 16.9062 0.3651 0.9869
Vis-Freeze-AutoE 66.6220 156.4552 14.1836 0.3063 0.9627

Vis-FT-Classifier 25.7112 47.1944 10.0479 0.2170 0.9971
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Table 13: Visual model per-product performance metrics for k and n values

Product Parameter MAE RMAE Mean (Pred) STD (Pred)
Product A k 42.7772 0.0371 1196.3076 12.6652

n 0.0079 0.0376 0.2021 0.0009
Product B k 30.3008 0.0164 1829.8286 37.0505

n 0.0009 0.0186 0.0497 0.0009
Product C k 9.0289 0.0051 1771.7388 11.5210

n 0.0009 0.0180 0.0491 0.0003
Product D k 1.5477 0.0044 348.6952 1.0936

n 0.0036 0.0119 0.2964 0.0004
Product E k 62.9348 0.0703 956.0381 96.3198

n 0.0055 0.0793 0.0648 0.0062
Product F k 0.2313 0.0102 22.5087 0.0058

n 0.0019 0.0021 0.9281 0.0015
Product G k 8.9714 0.0077 1150.4581 8.5090

n 0.0063 0.0129 0.4850 0.0058
Product H k 17.5346 0.0033 5332.9660 22.0903

n 0.0020 0.0165 0.1180 0.0012

Table 14: Visual model with optical flow per-product performance metrics for k and n
values

Product Parameter MAE RMAE Mean (Pred) STD (Pred)
Product A k 30.4873 0.0264 1184.0177 5.4906

n 0.0258 0.1227 0.1842 0.0061
Product B k 78.2835 0.0425 1810.7653 97.4072

n 0.0235 0.4705 0.0320 0.0219
Product C k 144.4046 0.0811 1873.0692 145.0608

n 0.0363 0.7269 0.0474 0.0444
Product D k 13.9020 0.0397 356.0596 16.7518

n 0.0078 0.0261 0.2950 0.0068
Product E k 150.8897 0.1685 1039.9020 130.7430

n 0.0068 0.0970 0.0751 0.0064
Product F k 2.7846 0.1225 25.5246 1.5859

n 0.0126 0.0135 0.9174 0.0110
Product G k 111.7175 0.0964 1242.5641 93.6237

n 0.0260 0.0531 0.4776 0.0291
Product H k 202.6903 0.0379 5509.1406 176.8085

n 0.0163 0.1355 0.1061 0.0135
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Screenshots of the App

(a) Overview of viscosity prediction results for
version 1.0 (b) Frontend of version 1.0

(c) Export function of version 1.0
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(a) Frontend of version 2.0 (b) Frontend of version 3.0
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