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Abstract

Reinforcement Learning (RL) is a machine learning discipline that focuses on agents
solving specific tasks by learning through rewards and penalties. Lately, there have
been exciting improvements in this field. However, training new tasks has shown
to be sample inefficient. Meta-Reinforcement Learning (Meta-RL) tries to get rid of
this impairment by leveraging prior knowledge of different tasks to solve new unseen
problems. This approach has shown to be more sample efficient. Although many tasks
have natural symmetries underlying, there have only been a few trials of exploiting these
equivariances. Latest algorithms tackle the above, however, do not achieve continual and
stable performance.

In this thesis, we reproduce Symmetry-Aware Bayes-adaptive Meta-RL (STABLE), a
fully equivariant, inference-based Meta-RL algorithm that works for arbitrary finite group
symmetries. We enhance its performance and strengthen its convergence towards a stable
return. Thus, outperforming earlier work and, subsequently, the well-known baseline
PEARL. Further, we look into the impact of different hyperparameters on the overall
outcome. We demonstrate the algorithm’s ability to deal with changing objectives and its
capability of generalizing to out-of-distribution symmetric tasks.
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1. Introduction

Reinforcement Learning (RL) is one aspect of Machine Learning which got a lot of
attention lately. In 2016 the program AlphaGo, powered by RL, made headlines. It was
able to beat the leading World Champion in the Chinese strategy game Go. The great
complexity of the game made it impossible to beat an experienced player through brute
force algorithms. However, through a system of rewards and punishments, the program
learned to differentiate between a good and a bad move, thus mimicking the intuition of
a human player [1]. More recently, the viral chatbot ChatGPT (2022) drew much attention
to the discipline. Its language prediction model excited the world with its human-like
interactions. During the training of ChatGPT, a team of trainers asked the language
model a question with a correct output in mind. If the model answers incorrectly, the
trainers tweak it iteratively to teach it the right answer [2].

A different set of examples lies in the world of robotic control. For instance, the
supposedly simple task of opening a door. A human child can learn this with relatively
few trials by leveraging prior knowledge of grabbing, pushing and pulling. For a robot
arm, on the other hand, this is presented with a major challenge. Traditional concepts
rely on learning tasks through a lot of repetition. Even if the robot can already grip, push
and pull, opening a door remains a completely new obstacle to him. This requires a lot
of meticulous training, which is not desirable in real life due to time constraints, wear
and tear and computational complexity [3]. Following this challenge, Meta-RL methods
try to infer new unseen tasks (here: opening a door) from a set of related already seen
tasks (here: grip, push and pull a door) quickly to increase sample efficiency.

In traditional computer vision a way to increase sample efficiency is the creation of
slightly transformed copies of already existing data. If an input image is rotated, the
features extracted by the network should also be rotated by the same amount, resulting
in the same prediction as before the rotation. For example, classifying an image of a
cat. The model is invariant if the rotated version of the input image is still classified as
the cat. This equivariance allows the model to be robust to rotations in the input data
and generalize well to new unseen transformations of known data [4]. A transfer of this
concept to Meta-RL would help to collect experience for agents much faster and deem
hundreds of training iterations unnecessary, hence being sample efficient.

1.1. Problem Statement

In this paper, we focus on an Meta-RL algorithm which leverages equivariance in the
environment, named Symmetry-Aware Bayes-adaptive meta-reinforcement Learning
(STABLE) [5]. The algorithm is context-based as it only focuses on the last pieces of training,
which shows to deliver better generalization. The method is inference-based, as it uses an
encoder prior to the policy, to deduce a latent representation of the task and therefore
identify the task. This is subsequently propagated to the policy in addition to the current
state. The algorithm combines a Gaussian Mixture Model (GMM) and a discrete task
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representation. STABLE achieves state-of-the-art results and outperforms conventional
algorithms [6, 7]. However, after this peak in performance, the algorithm declines and
does not converge. We evaluate the cause of this behavior by identifying a subset of highly
influential parameters. We achieve our main goal, namely reproducing the state-of-the-
art. Furthermore, by hypertuning these parameters we slightly surpass state-of-the-art
performance. We aim to stabilize the performance and achieve approaching convergence
within the algorithm.

2. Background

2.1. Reinforcement Learning

In Supervised learning, a model is trained using labeled data, where the model receives
input and the corresponding output. In Unsupervised learning, a model is trained using
unlabeled data, where the model finds patterns or structure in the data without explicit
inputs and outputs. Reinforcement learning differs from both in that an agent interacts
with an environment. He receives feedback on his actions as rewards or penalties and
learns to make decisions that maximize the cumulative reward over time using the
concept of Markov Decision Process (MDP) [5].

2.1.1. The Markov Decision Process

The main learning paradigm in Reinforcement Learning (RL) describes an interaction
between the Environment and an Agent in that Environment at each timestep t 2 N [ {•}.
The main objective here is to maximize that reward as much as possible.

EnvironmentAgent

state 

reward 

action 

Figure 2.1.: Agent interaction with Environment.

As shown in Figure 2.1, for each t, the Agent fulfills an action with respect to a policy p.
This action is fed into the Environment, giving us the state st+1 and reward rt associated
to that action. This circular process is an instance of a MDP, defined by the tuple
M = (S ,A, p, p0, r, g) [5, 7], where:
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2. Background

S the space of possible states
A the space of actions the agent can take

p : S ⇥A⇥ S ! R

a function with p (st, at, st+1) being the probability density that
the next state is st+1, given the current state st and the agent’s
action at and p (st+1 | at, st)

p0 : S ! R
a function with p0(s) denoting the probability density that the
initial state is s

r : S ⇥A ! R
a function determining the reward r(s, a) the agent gets for
taking action a in state s

g 2 [0, 1] the discount factor described later

It is important to note that the definition of a certain variable or function may vary
in different literature. For example, in some sources, the variable p is replaced with a
transition function, represented by S ⇥A ! S , that maps states and actions to other
states. In this thesis, unless stated otherwise, the notation st, rt, and at refer to the state,
action, and reward at time step t, while St, At, and Rt refer to random variables for the
respective values. A single interaction between an agent and the environment, where
the agent takes action at in state st, receives reward rt, and reaches a new state st+1, is
referred to as a transition and represented by tt := (st, at, rt, st+1). For infinite sequences
of interactions, we call it trajectory (or paths and denote it by t = (s0, a0, r0, s1, a1, r1, . . .),
while finite interactions are called episodes (or rollouts). In this paper, we assume that
all trajectories are stored in a replay-buffer D from which we can sample.

The key assumption of a Markov Decision Process (MDP) is the Markov property,
which states that the probability distributions of the next states and rewards depend only
on the current state and action and not on any previous states or actions. As already
stated, the main goal is that the agent learns a policy distribution over states and actions
respectively p : S ⇥A ! R that yields actions at ⇠ p (at | st) maximizing the return (or
gain)

G :=
•

Â
t=0

gtrt

We define p⇤ as an optimal policy with:

p⇤ 2 arg max
p

Et⇠p(t|p)

"
•

Â
t=0

gtRt

#

When g = 1, the agent aims to maximize the total accumulated reward over the entire
time period. When g < 1, the agent is able to prioritize rewards that are closer in the
near future over those that are further away. The lower the value of g, the more emphasis
is placed on immediate rewards as opposed to future rewards.

As part of the key elements of an RL model, we further need to define the value
function

Vp : S ! R : s 7! Et⇠p(t|p)

"
•

Â
t=0

gtRt | S0 = s

#

which denotes the expected gain when starting from a state s and acting according to
policy p. Additionally, we define the action-value function or Q-function
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2. Background

Qp : S ⇥A ! R : (s, a) 7! Et⇠p(t|p)

"
•

Â
t=0

gtRt | S0 = s, A0 = a

#

as the expected gain when starting with state s and taking action a before acting according
to policy p.

Partially Observable and Belief MDPs The Partially Observable Markov Decision
Process (POMDP) is an extension of the traditional MDP framework that accounts for the
uncertainty and incompleteness of the observations made by the agent. In a POMDP, the
agent is not always able to fully observe the state of the system, and must make decisions
based on a belief state, which is a probability distribution over the set of possible states.
The agent’s goal is still to find a policy that maximizes some measure of performance,
such as expected reward, over time. POMDP are particularly useful in scenarios where
the agent has limited sensing capabilities or where the environment is highly dynamic.

2.1.2. The Soft Actor-Critic algorithm

The Soft Actor-Critic (SAC) algorithm is an off-policy reinforcement learning method that
prioritizes sample efficiency and high performance in continuous control tasks. A task
where the agent has to control a continuous set of actions rather than discrete ones to
achieve a goal. SAC utilizes a Q-function, referred to as the soft Q-function, which allows
for the efficient optimization of a stochastic policy by making use of the entropy of the
policy. This results in a more robust and stable learning process, as well as an improved
exploration of the state space. Additionally, SAC utilizes a separate value function for
the policy’s entropy, which encourages the exploration of diverse behaviors. Overall,
SAC is a sample efficient algorithm that has been shown to achieve high performance in
a wide range of continuous control tasks. [8]

The policy One of the major challenges in reinforcement learning is balancing explo-
ration and exploitation. Exploration involves taking actions that may not be immediately
rewarding in order to discover potentially more valuable behavior in the environment,
while exploitation involves taking actions that have previously led to high rewards. While
traditional Q-learning methods often use an e-greedy policy to address this challenge,
the SAC algorithm provides a more general approach. The SAC algorithm modifies
the objective function of RL to optimize both the expected reward and the entropy of
the policy’s action distribution. Hence, we extend the optimal policy of an MDP; we
want to maximize the expected reward and the target entropy H of the policy’s action
distribution:

Ea⇠p(a|s)
⇥
ay log p⇤

t (a | s; at) + ayH
⇤

where:

H(p(a | s)) = Ea⇠p(a|s)[� log p(a | s)]

The Soft Actor-Critic (SAC) algorithm uses a temperature parameter a to control the
balance between exploration and exploitation by determining the relative importance of
the entropy term in the objective function. When the value of a is high, the policy becomes
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2. Background

more stochastic, emphasizing exploration. On the other hand, when a approaches zero,
the objective function returns to its original form, performing pure exploitation. However,
in the original SAC algorithm, the temperature a is a fixed hyperparameter, but it has
been found that learning is highly sensitive to it. To address this issue, the method
proposed in [9] adapts the learned ay, which improves the performance of the algorithm
and increases its robustness.

In conclusion, the SAC algorithm’s objective function incentivizes learning diverse
good strategies, rather than a single deterministic action per state, by maximizing the
overall objective using random samples from the replay buffer D. To increase stability,
we train two Q-Networks and take their minimum, proposed by [9]:

E
s⇠D

a⇠p(a|s)

⇥
min

�
Qf1(s, a), Qf2(s, a)

 
+ ay log p(a | s)

⇤

The Q-Networks Unlike the Q � f unctioin for the MDP, the objective function of the
SAC algorithm not only takes into account the discounted reward from the policy p
starting with action a in state s, but also includes the entropy of the actions taken. This
results in a more robust and stable learning process, as well as improved exploration of
the state space; the concept that helps us realize this is done by training two Q-Networks
to stabilize the training by introducing the concept of lagged versions Qf1, targ , Qf2, targ

levered during the training objective. Details are in the Appendix 2.1.2 and yield that the
updated Q-Networks are trained by minimizing the mean squared error using samples
from the replay buffer:

E
(st,at,rt,st+1,dt)⇠D

at+1⇠p(a|st+1)


1
2
�
Qfi (st, at)� qtarget (rt, dt, st+1, at+1)

�2
�

On- vs. off-policy On-policy algorithms update the policy parameters using data from
the same policy that is being evaluated. This means that the policy parameters are
updated by data generated by the same policy. Off-policy algorithms, on the other hand,
update the policy parameters using data generated by a different policy. This allows the
policy parameters to be updated by data generated by a different policy, which can help
the algorithm learn more efficiently hereby being more sample efficient.

2.1.3. Multi-Task Reinforcement Learning

Multi-task Reinforcement Learning (Multi-RL) allows an agent to improve its overall
performance by learning multiple tasks simultaneously by sharing information across
tasks. For instance, a self-driving car that can navigate on a highway might be able to
learn city driving faster, as underlying dynamics such as recognizing traffic lights, signs,
and other vehicles remain the same. Thus, Multi-RL improves performance by training a
single policy for multiple tasks with a shared structure.

Following this idea, in Multi-RL, the agent’s goal is no longer to maximize the gain in
a specific MDP as described above, but to maximize the gain for all tasks Dtasks sampled
from a distribution p(T ) of MDPs:

5



2. Background

ET ⇠Dtasks

"
Et⇠pT (t|p)

"
•

Â
t=0

gtrt

##

where we denote the corresponding transition and reward function for a given task T
with pT and rT respectively. Here, the policy p (a, s, zT ) is provided with a task indicator
zT that uniquely identifies the task at hand. This task indicator plays a crucial role in
Multi-RL as it allows the agent to adapt to different tasks by sharing information across
tasks.

Parametric vs. Non-parametric variation The tasks in p(T ) can be classified into two
main categories. First, parametric tasks are those where the number of parameters of the
model are fixed and do not change as the amount of data increases. These tasks are mostly
the same, with the only difference being some (real-valued) goal specifications. One
example includes a robot arm that should pick up the same object at a different position
in each task. Secondly, non-parametric tasks are those where the tasks are qualitatively
distinct and vary by more than just a real-valued goal specification. An example is a
robot that has to throw a ball and open a door. A task distribution is considered broad if it
consists of multiple qualitatively distinct tasks, at least some of which contain parametric
variability.

2.1.4. Meta-Reinforcement Learning

Meta-Reinforcement Learning (Meta-RL) builds upon the concept of Multi-RL by intro-
ducing two distinct sets of tasks, Dtest and Dtrain, both drawn from p(T ). It’s important
to note that a substantial number of different training tasks are necessary to achieve a
level of policy generalization that is considered adequate.

In Meta-RL, the policy no longer receives a task identifier but must determine the
current task from the sequence of states, actions, and rewards. This distinction allows
for various forms of adaptation, with Meta-RL viewed as learning a Multi-RL policy
p(a|s, z) and also learning how to infer the task specification z from the set of training
tasks Dtrain , which requires some form of inference method. The overall objective is now
to maximize:

ET ⇠Dtest

"
Et⇠pT (t|p)

"
•

Â
t=0

gtrt

##

Zero-, one- vs. few-shot adaptation The term zero-shot adaptation refers to the agent’s
ability to perform a new task without any prior experience. The agent must infer the
task and maximize the expected gain from the first step. In contrast, few-shot adaptation
allows the agent to experience a limited number of rollouts in a task before being tested
and having the ability to identify the task from the transitions collected. A special case
of this is one-shot adaptation, where the agent only has one episode to identify the task
before being tested.

Stationary vs. non-stationary environments Until now the task usually stays the same
for each episode, which is known as a stationary environment. However, it can also happen
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2. Background

that the task changes during one episode, creating a non-stationary environment. This
requires the agent to adapt on the fly, known as online adaptation. Examples include
changes in reward or transition function, such as a scenario where the layout of a board
game changes mid-episode [10].

Bayes-Adaptive Markov Decision Processes As seen in section 2.1.1 of POMDP be-
ing an extension of the traditional MDP framework that accounts for uncertainty and
incompleteness in the observations made by the agent. A further extension is the Bayes-
Adaptive Markov Decision Processes (BAMDP). The main difference between the two
is that in POMDP, the agent’s observations of the environment are not complete. In
contrast, in BAMDP, the environment itself can change over time, leading to different
transition and reward functions. In other words, in a POMDP the environment model is
uncertain, while in a BAMDP, both the model and the parameters of the environment
are uncertain.

Formalizing this idea, BAMDP [11] is a tuple
�
S+,A, p+, p+0 , r+, g, H+

�
, where S+ =

S ⇥B is referred to as the space of hyper states which combine the state st 2 S of a MDP
with a belief bt 2 B over the current underlying MDP.

The belief state, representing uncertainty in the reward and transition functions, can
be represented by the distribution bt = p (p, r | t0:t) over possible reward and transition
functions, given the agent’s past experience. The set of all possible reward functions
and transition functions are represented by R and P , respectively, and can be sampled
from any belief b 2 B. By updating the new hyperstate p+

�
s+t+1 | s+t , at, rt

�
and reward

r+
�
s+t , at, s+t+1

�
with respect to the Appendix A.3 and defining p+(t | p) analogously to

p(t | p) with S+, r+, p+instead of S , r, p, the goal of the policy p
�
at | s+t

�
is maximizing

Et⇠p+(t|p)

"
H+�1

Â
t=0

gtr+
�
s+t , at, s+t+1

�
#

A policy that maximizes this objective is called Bayes-optimal. Note that the belief about
the current transition and reward function bt = p (p, r | t0:t) change with the agent
exploring the environment.

2.2. Variational Autoencoder

Vivid readers wonder how task encodings can be represented in a compact and interpre-
tative manner. Variational Autoencoder (VAE) [12] are used in RL to reduce a collection
of previous trajectories into a compact task description. They are generally unsupervised
machine learning methods that can handle non-linear transformations using neural
networks to encode high-dimensional data into a lower-dimensional, latent space. The
encoding is performed by an encoder network, and the decoded data is generated by a
decoder network (Figure 2.2). VAEs can be trained off-policy, making them useful in RL to
represent the task description and learn a task-conditioned policy.

VAEs assume a generative process for data points and use variational inference to
produce a deeper, stochastic encoding. The VAE consists of two parts, the encoder and
the decoder. First, we try to encode the data x into a latent space, by pf(z|x). For
the generating step, they work by first drawing a latent, unobserved random variable
z from a prior distribution p(z), then sampling the observed data from a conditional
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2. Background

distribution pq(x|z) that represents the generating transformation from z to the data (also
called decoding). The parameters of the model and the actual values of z are unknown.
The goal of using a VAE for dimensionality reduction is to find the optimal compact
representation z based on the data, so mathematically speaking x ⇠ pq(x | z), x 2 D is a
sample of the data (e.g. a picture of a robot) and z ⇠ p(z), z 2 Rn is the corresponding
embedding (e.g. a vector of features like metal type etc.).

Input

Encoder

For AE

Decoder

For VAE

Output

Figure 2.2.: The architecture of a Variational Autoencoder; but in the decoding-step we
pick a z ⇠ p(z) corresponding to a change of metal type

Next to the fact that a VAE is comprised of two parts, it is important to make the jump
from a traditional Autoencoder (AE) to an Varational Autoencoder (see Figure 2.2). This
is done by sampling to z ⇠ p(z). This sampling step makes it impossible to do proper
backpropagation for learning, so we use the parametrization trick, which introduces a
noise e sampled from a normal distribution, so that we define z as

z = E [qq(z | x)] + diag�1 (Var [qq(z | x)])� # where # ⇠ N
⇣�!

0 n, In

⌘

For more details, see Appendix A.2.

2.3. Inference-Based Meta RL algorithm

2.3.1. Recurrent-, Gradient- vs. Inference-based Methods

Recurrent-based methods in Meta-RL use a Recurrent Neural Network (RNN) to maintain
a hidden state throughout the learning process, which captures the agent’s past experiences
and allows it to adapt to new tasks. These methods are typically trained using a form
of unrolling, where the RNNs hidden state is updated at each time step. They are often
used for tasks that involve sequential decision-making or have temporal dependencies.

Gradient-based methods, on the other hand, use the gradients of the parameters of
the agent’s policy with respect to the task’s reward. These methods are typically trained
using Backpropagation Through Time (BPTT) or a related technique, where the gradients
are computed over the entire task episode. They are often used for tasks that have a
simple and well-defined structure.

8



2. Background

Inference-based methods are based on the idea of learning a model of the task that
can be used to infer the agent’s latent state aka. task encoding. These methods typically
use a VAE or a related model to learn a compact task representation. Inference-based
methods have the advantage of being able to handle high-dimensional state spaces, and
they are more sample efficient. Additionally, they can also handle non-stationary tasks
and are more robust to changes in task distribution [5].

2.3.2. PEARL

Probabilistic Embeddings for Actor-Critic RL (PEARL) [6] is developed for fast few-shot
meta-RL and sample-efficient training. It is an off-policy algorithm and achieves state-
of-the-art asymptotic performance as well as sample efficiency. Figure 2.3 shows the
training setup as provided in the paper.

Figure 2.3.: PEARL meta-training procedure [6]

PEARL combines a VAE for task inference with Soft Actor-Critic [8] for policy learning,
using task encoding z as the augmented state. The VAE encoder takes context tuples
cTn = (sn, an, rn, s0n) as input, which includes data for each transition in an MDP, and
outputs independent Gaussian factors Yf (z | cn) for task encoding. The encoder network
is implemented as vanilla Multilayer Perceptron (MLP). To obtain the overall posterior
estimate qf (z | c1:N), the Gaussian factors are multiplied:

qf (z | c1:N) µ
N

’
n=1

Yf (z | cn)

Hence, the encoder is permutation-invariant and can incorporate arbitrary amounts of
sampled context from a task. For reconstruction and decoding, PEARL uses the Bellman
error LQ of the critic from SAC as reconstruction loss. Thereby the encoder receives
gradients from the Q-function. The corresponding ELBO for the VAE hence writes

ET
h
Ez⇠qf(z|cT )

⇥
LQ

�
s, a, r, s0, z

�⇤
+ bKL

⇣
qf

⇣
z | cT

⌘
kp(z)

⌘i
,

with p(z) ⇠ N (0, I), a unit Gaussian prior over tasks and b, a hyperparameter to weight
the KL-divergence.
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2. Background

2.3.3. CEMRL

Lerch’s Continuous Environment Meta-RL (CEMRL) algorithm [7] builds on PEARL and
is suitable for non-stationary environments. The training process is divided into four
phases:

1. Experience collection: CEMRL samples from the policy and encoder like PEARL
and adds the data to the replay buffer.

2. Encoder training: The encoder is trained by sampling individual transitions tT
t

along with a fixed number of previous time steps tT
t�T:t�1 from the replay buffer.

By only considering this recent experience, the algorithm adapts to non-stationary
environments.

3. Decoding: Instead of using the critic loss LQ from the SAC, two separate decoders
are used to predict the next state st+1 and reward rt from the current state st, action
at, and encoding z ⇠ qf

�
z | tT

t�T:t�1
�
. This ensures the encoding has sufficient

information about the current task’s transition and reward functions. The encoder
and decoders are trained jointly using an Evidence Lower Bound (ELBO) similar to
the VAE.

4. Network update: The encodings stored in the replay buffer are updated, and the
networks of the SAC are trained with data from the buffer before the next epoch
begins.

CEMRL enhances the performance on diverse task distributions by using a Gaussian
Mixture Model (GMM) for task encoding, instead of a single Gaussian. To achieve this,
CEMRL has multiple neural networks in its encoder. For each transition x = (si, ai, ri, si+1)
in the task history tT

t�T:t�1, it generates a shared encoding m and a categorical random
variable y representing the respective cluster through a neural network y ⇠ qf(y | x)
with one output neuron per category. Each category then has its own neural network that
generates the mean and variance of the Gaussian distribution for the transition x. The
overall distribution q (z | tt�T:t�1) is the combination of Gaussians from each transition,
similar to PEARL. Instead of sampling y for each transition separately, the distributions
over y can be combined, resulting in one y for all transitions, which is then used to
generate the Gaussian distribution qf(z | y, x) for each transition x.

To calculate the ELBO, the prior p(z | y) is necessary. Lerch [7] compares two options
for the prior. The first option is to fix it as p(z | y) = N (y · �!1 n, sz2 · �!1 n), where
�!
1 n 2 Rn is a vector of ones and s2

z is a fixed variance hyperparameter. This enforces
that the clusters are formed around positions of the K individual clusters. The alternative
is to learn these positions through another neural network that takes a one-hot encoding
of y as input and outputs the mean and variance of p(z | y). This network is trained
through the gradients from the ELBO loss.

2.4. Equivariance

The real work is full of symmetries; interacting with them is multifaceted. On our robot
on a 2D board game, where the optimal action for our agent is to go up, the optimal
corresponding action in the same board game rotated by 90 degrees to the right will be

10



2. Background

Transition

 

Figure 2.4.: The encoder setup of CEMRL as introduced in the thesis [7].

to go right. This means that the output, such as going to the right, should be the same
whether the input is transformed first and then the action is generated, or the action is
generated first and then transformed. The transformation itself can be different between
the input and output. For instance, the input may be a 2D image, while the output
may be one of four discrete actions (moving the image up, right, down or left). While a
90-degree rotation of the image corresponds to a permutation of the actions (up ! right,
right ! down, down ! left, left ! up), they are not the same mappings.

2.4.1. Formal Definition

Formally, this can be expressed as follows: Recall, that a mathematical group is defined
as a pair (G, ⇤) of a set G and an operation ⇤ : G ⇥ G ! G with the following properties:

8a, b, c 2 G : (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c) associativity
9e 2 G, 8a 2 G : a ⇤ e = e ⇤ a = a existence of a neutral element

8a 2 G, 9a�1 2 G : a ⇤ a�1 = a�1 ⇤ a = e existence of an inverse element

It is easy to observe that the rotation to the right ({id, rot 90 , rot180, rot 270}, ⇤) with
⇤ being the subsequent execution of rotations (e.g. rot 270 ⇤ rot 180 = rot 90) indeed
form a group. In fact, the rotation group defined here is called cyclic, since there exists
one element rot90 that can generate all others. Given a group (G, ⇤) [13], a mapping
f : X ! Y is now called equivariant to a transformation Lg : X ! X if there exists a
transformation Kg : Y ! Y with:

8g 2 G, x 2 X : Kg[ f (x)] = f
�

Lg[x]
�

In the special case where Kg[y] is the identity function
�
8g 2 G : Lg[y] = y

�
, f is called

invariant to Lg. Intuitively, this means that applying a transformation Lg to the input
does not change the output. In 2.5, the robot (our agent) wants to hover to this optimal
action of the fullest battery (grey arrow). If we rotate the whole board game (aka. rotation
of state), so the optimal action is rotated. Another commonly used example would be
Convolutional Neural Networks (CNN) that detects whether an object is contained in
the image or not. It does not matter where e.g. a cat is in the image. Thus, the output
should be invariant to shifts in the image.

11
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90°

90°

90°

90°

Figure 2.5.: Equivariant transformations in a board game environment.

2.4.2. MDP Homomorphic Networks

Pol et al. [13] propose an algorithm to exploit equivariance in reinforcement learning.
They define a MDP with symmetries as a MDP (S ,A, p, p0, r, g, H) where a group (G, ⇤)
exists along with transformations Lg : S ! S , Ks

g : A ! A such that:

8g 2 G, s 2 S , a 2 A : r(s, a) = r
⇣

Lg[s], Ks
g[a]

⌘

8g 2 G, s, s0 2 S , a 2 A : p (s0 | s, a) = p
⇣

Lg [s0] | Lg[s], Ks
g[a]

⌘

Assuming a finite group G and the same action transformation Kg for all states, they then
design an equivariant layer: RDin ! RDout : y 7! Wy + b with W 2 RDout ⇥Din , b 2 RDout .
For convenience, the bias is moved into the weights by adding it as a column vector of W
and appending a 1 to y, which yields:

RDin +1 ! RDout : y 7! Wy where W 2 RDout ⇥Din +1

Assuming the transformations Lg, Kg to be linear (8g 2 G), we get

8g 2 G, y 2 RDin +1 : KgWy !
= WLgy

Since y is independent the space of all equivariance-preserving weight matrices depics:

W :=
�

W 2 Wtotal | 8g 2 G : KgW = WLg
 

where Wtotal ✓ RDout ⇥Din +1 denotes the space of all possible weights. This might be
RDout ⇥Din +1 to obtain a fully connected layer but also a subset like the weight space of a
CNN, thus allowing to build further equivariances on top of the network structure like
CNNs.
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3. Methodology

The chapter overviews the proposed methods, which extend Symmetry-Aware Bayes-
adaptive Meta-RL STABLE [5]. First, we show how the algorithm achieves equivariance in
the generative model, encoder, prior and decoder. Then we illustrate the actions with re-
spect to the policy taken. Lastly, we dive into the Hyperparameter adjustments conducted.

3.1. Algorithm Overview

The algorithm displayed in Figure 3.1 involves an encoder neural network, which takes
the recent trajectory as input and generates a distribution over encodings. Two separate
networks that make up the decoder, utilize these encodings to predict the next state and
reward given the encoding, current state, and action.

The Gated Recurrent Unit (GRU) encoder utilized in the algorithm takes the entire
collected experience in the current episode, enabling it to learn Bayesian optimal behavior
in arbitrary tasks. To enhance stability in stationary environments, the algorithm recon-
structs the next states and rewards using the latent variable from one time step for each
of the H+ time steps in the current task [14]. The components are made equivariant with
automatically derived, equivariant layers as proposed by [13], allowing the algorithm to
be robust and stable even in non-stationary environments.

recent trajectory
 

SAC

State Decoder ...

Reward Decoder ...

sample

Figure 3.1.: Components of the algorithm. Depicted is the flow of a context window to
the Decoders 3.5) and SAC 3.6. Dashed arrows denote gradients.

The training procedure of the algorithm involves four repeating steps. First, the current
policy and encoder are utilized to gather data in randomly sampled tasks, which are
then added to the replay buffer. Second, the encoder and decoder are jointly trained with
data from the replay buffer through a VAE framework. Third, the encodings in the replay
buffer are updated using the current encoder, by this process enhancing the encoding
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3. Methodology

and decoding process. Finally, the SAC networks are updated with data from the replay
buffer. The algorithm uses a fixed time frame of experience, tT

t�T�1:t�1, to learn optimal
behavior in environments with dense reward, handling non-stationarity.

3.2. Generative Model

The algorithm models the distribution p
�
z | c, tT

t�T�1:t�1
�

as a GMM. To identify qualita-
tively distinct tasks, the algorithm introduces the additional categorical latent variable c.
This incorporates the key assumption that reward and transition functions are equivariant
to z. Crucially, c is observed by the decoders and thus is part of the latent representation,
whereas k solely serves as an auxiliary variable to model z as a mixture of Gaussians.
In this case, using a GMM for z improves the capability to represent uncertainty over
different specifications of the same qualitatively distinct task.

For instance, an environment with sparse rewards where the agent should navigate
to a goal that is either on the right or the left-hand side from the starting position, but
never close to the starting position itself. A single, normally distributed random variable
cannot model the two zones, whereas a mixture of two Gaussians could lead to a better
approximation. In general, the algorithm relies on the fact that the mixture of a sufficient
amount of (multivariate) normal distributions with a diagonal covariance matrix can
approximate any distribution [15, 16]. We assume the following generative model:

c ⇠ p(c) = Unif({0, . . . , C � 1}) qualitative task
k ⇠ p(k | c) = Unif({0, . . . , K � 1}) cluster
z ⇠ p(z | c, k) = N (E[p(z | c, k)], Var[p(z | c, k)]) task parameter

r, s0 ⇠ p (r, s0 | c, z, s, a) environment interaction

where p denotes the underlying probability density and is unrelated to the transition
function of a MDP.

Analogously to section 2.2, the algorithm uses a decoder neural network pq(x | c, z)
along with an encoder neural network qf(c, z | x). Given a single time step x := (s, a, r, s0),
the ELBO derives as follows (Full derivation in Appendix A.4)

KL(q(c, k, z | x)kp(c, k, z | x))

, log p(x) =KL(q(c, k, z | x)kp(c, k, z | x)) + Ec,k⇠q(c,k|x)

h
Ez⇠q(z|x,c,k)[log p(x | c, z)]

� KL(q(z | x, c, k)kp(z | c, k))]� KL(q(c, k | x)kp(c, k))

As q(c) and q(k | c) are discrete probability density functions, so is q(c, k | x) = q(c |
x)q(k | x, c). Consequently, the algorithm computes the outer expectation explicitly,
whereas the inner is approximated expectation using a single Monte Carlo sample
z(c,k) ⇠ q(z | x, c = c, k = k). Adding hyperparameters aKL, bKL for scaling like [17], the
algorithm arrives at the ELBO loss:
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3. Methodology

Ec,k⇠q(c,k|x)

h
Ez⇠q(z|x,c,k)[log p(x | c, z)]� KL(q(z | x, c, k)kp(z | c, k))

i

� KL(q(c, k | x)kp(c, k))

⇡
C�1

Â
c=0

K�1

Â
k=0

q(c = c, k = k | x)[

Iz }| {
log p

⇣
x | c, z(c,k)

⌘

� aKL

IIz }| {
KL(q(z | x, c = c, k = kkp(z | c = c, k = k))]� bKL KL(q(c, k | x)kp(c, k))| {z }

III

The goal of maximizing (I) is to improve the accuracy of a model in correctly classifying
inputs into their respective categories. Minimizing (II) ensures that training points are
not arbitrarily assigned to values in z 2 Rn (see section 2.2). By minimizing (III), the
model is prevented from relying solely on one cluster k or channel c. The utilization
of c and k facilitates information transfer. To distinguish tasks with identical k and
c, it is necessary for the encoding p(z | x, c, k) to deviate from the prior p(z | c, k),
which will result in an increase in loss (II). Tasks with different z can still be differen-
tiated even when the priors are the same, as long as the decoders take c into consideration.

3.3. The Encoder

The algorithm models qf(z, c | x) = qf(z | x, c, k)qf(c, k | x) as a neural network with
parameters f as depicted in Figure 3.2. To reconstruct a goal position from a dense
reward, at least two state-reward pairs are necessary for a 1D setting and three for 2D. In
line with the methodology employed in Task-Inference-based Meta-RL algorithm using
GMM and GRU (TIGR) [18, 19], the algorithm encodes the recent trajectory tT

t�T�1:t�1 as
a whole using a GRU. To make this setup equivariant, the input transformation is used:

Ig :
�
s, a, r, s0

�
7!

�
Lg[s], Kg[a], r, Lg

⇥
s0
⇤�

for each time step of the GRU. The shared encoding thus is permuted as described in
subsection 2.4.2.

recent trajectory
 

NN Layer

GRU
shared encoding (m)

...

Figure 3.2.: Architecture of our encoder.
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3. Methodology

To ensure that the predicted distribution over qualitatively distinct tasks remains un-
changed in the transformed setting, the number of clusters (denoted by K) must be
divisible by the group size (denoted by |G|). The clusters are then grouped in a specific
manner, such that clusters 0 to |G|� 1 form one group, |G| to 2|G|� 1 form another
group, and so on. The distribution over the parametric specifications z 2 Rnt needs to be
transformed according to the function Jg.

In the experiments, we focus on cyclic groups (see subsection 2.4.1) where n(g) defines
as how often a fixed generating element needs to be repeated to get to g (with 0 for
the neutral element). An example would be n( id ) = 0, n(rot 90) = 1, n(rot 180) =
2, n(rot 270) = 3 (see section 2.4). Thus, the equation for the output transformation is:

qf

⇣
c = i, k = j | tT

t�T�1:t�1

⌘

= qf

✓
c = i, k =

�
j

|G|

⌫
|G|+ ((j + n(g)) mod |G|) | I(traj )

g

h
tT

t�T�1:t�1

i◆

For instance, in Figure 3.3 the cluster k = 0 is in the upper half. By the equation above,
it is ensured that after rotating right by 90°, the cluster k = 1 has the probability that
k = 0 had before [5]. The probabilities of the classes 0 to |G|� 1 = 3 rotate as well. To
make sure that the distribution over z rotates accordingly the neural network f j,i is used

for each channel i 2 {0, . . . , C � 1} and each set of related classes j 2
n

0, . . . , K
|G|

o
. The

network outputs the means
�

fj,i(·)
�(µ)

l and variances
�

f j,i(·)
�(s2)

l of each class j|G|+ l for
l 2 {0, . . . , |G|� 1} and ensures that the distribution over z remains consistent after a
rotation.

Figure 3.3.: An example of discretizing a 2D latent space.

The goal is to maintain the integrity of the distribution over z following a rotation,
such as a 90� rotation in this case. To accomplish this, we use a neural network f j,i

for each channel i 2 {0, . . . , C � 1} and set of related classes j 2
n

0, . . . , K
|G|

o
[5]. The

network calculates the means
�

f j,i(·)
�(µ)

l and variances
�

f j,i(·)
�(s2)

l of each class j|G|+ l
for l 2 {0, . . . , |G|� 1} and ensures that the distribution over z remains consistent after a
rotation. All of these neural networks utilize the equivariance:

f j,i

⇣
f (shared)

⇣
Ig

h
tT

t�T�1:t�1

i⌘⌘(s2)

l
=

����Jg


f j,i

⇣
f (shared)

⇣
tT

t�T�1:t�1

⌘⌘(s2)

((l�n(g)) mod |G|)

�����
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where f (shared) denotes the shared encoder and | · | denotes the element-wise absolute
value.

3.4. The Prior

To achieve equivariance in p(z | c, k) earlier literature ensures [5]:

p(z | c, k = j) = Jn�1(j mod |G|)


p
✓

z | c, k =

�
j

|G| ||G |
◆�

As we assumed a normal distribution for p(z | c, k) this is accomplished by only choosing
p(z | c, k) for k 2 {0, |G|, 2|G|, . . . , |K|} and defining:

8i 2 {1, . . . |G|� 1}, j 2
⇢

0, . . . ,
K
|G| � 1

�
:

E[p(z|c, k = j|G | +i)] := Jn�1(i)[E[p(z | c, k = j)]]

Var[p(z|c, k = j|G | +i)] :=
���Jn�1(i)[Var[p(z | c, k = j)]]

���

where Jg is applied along the diagonal in the last Equation (recall that all other entries of
the covariance matrix are zero). | · | is used to denote the element-wise absolute value.
Means and variances of the remaining priors p(z | c, k) for k 2 {0, |G|, 2|G|, . . . , |K|} can
now be chosen arbitrarily, providing another way to incorporate domain knowledge.
In the experiments we use a fixed variance (e.g. S := Ine ) and distribute the means
over some grid in a minimal subset of the latent space that allows covering the desired
area using Jg. For instance, for a rotation-equivariant 2D latent space, one could evenly
distribute a quarter of the means in some area of one quadrant (e.g. in [0, 5]⇥ [0, 5]). By
definition of the expectation, the area [�5, 5]⇥ [�5, 5] would thus be covered in total.

3.5. The Decoders

The algorithm uses two separate decoder neural networks to reconstruct s0 and r. The
probability of observing x given z and c factorizes as:

log pq(x | c, z) = log pq

�
s0, r | s, a, c, z

�

= log pq

�
s0 | s, a, c, z

�
+ log pq(r | s, a, c, z)

The output of the decoder networks can be interpreted as being distributed according
to r ⇠ N ( frew ,q(s, a, c, z), S) and s0 ⇠ N ( fstate ,q(s, a, c, z), S) where frew ,q , fstate ,q are the
mappings induced by the decoder networks and S is some fixed, non-negative diagonal
matrix. The log-likelihood of the normal distribution thus yields:

Ldecoder := � log pq(x | c, z)=
1
2
k fstate, q(s, a, c, z)� s0k2

2
| {z }

=: Lstate dec

+
1
2
k frew, q(s, a, c, z)� rk2

| {z }
=:Lrew dec

Equivariance can be attained by choosing:

(s, a, c, z) 7!
�

Lg[s], Kg[a], c, Jg[z]
�
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3. Methodology

as the input transformation along with Kg and the identity function as output transfor-
mation for state and reward decoder, respectively.

3.6. Soft-Actor-Critic

To make the actions taken by the SAC (see subsection 2.1.2) equivariant, the algorithm
chooses the identity as the output transformation of the Q-networks and

(µ, S) 7!
�
Kg[µ],

��Kg[S]
���

for the policy (where | · | is applied element-wise and Kg along the diagonal again). The
input transformation Lg for the state (for all networks) and Kg for the action (only for the
Q-networks). Independent of the encoder and decoder, there are now multiple choices
for the representation of the task encoding that is passed to policy and Q-networks.

Sampled latent variables The simplest option is just sampling c, z ⇠ qf
�
c, z | tT

t�T�1:t�1
�

from the distribution generated by the encoder. Equivariance can then be achieved by
using the same input transformation for the decoders as in subsection 3.5.

Distribution parameters We employ another version of informing the agent of the
passing the parameters of the distribution qf

�
c, z | tT

t�T�1:t�1
�

similar to [20, 21]. In
our case, those would be the probabilities, along with the means and variances for all
i 2 {0, . . . , C � 1}, j 2 {0, . . . , K � 1}. To make this setup equivariant, we arrange those
values into vectors q 2 RC·K, µ, s2 2 RC·K·n. We define the input transformation as
follows:

8l 2 {0, . . . , CK � 1} :

ql 7! q
����

l
|G|

���� |G|+ n
⇣

n�1 ⇤ g�1(l mod |G|)
⌘

µl 7! Jg


µ��� l

|G|

���|G|+n(n�1⇤g�1(l mod |G|))

�

s2
l 7!

����Jg


s2

l
|G| ||G|+n(n�1⇤g�1(l mod |G|))

�����

where | · | denotes the element-wise absolute value again.

3.7. Hyperparameters

The insufficient performance of previous experiments could be caused by missing hyper-
parameter tuning [5]. Due to computational complexity, earlier experiments could not
conduct this training. They applied conventional hyperparameters from other methods.
However, these methods ran in different environments and did not account for symmetry,
which poses a substantial difference. Finetuning hyperparameters is a crucial step in
Meta-RL since many variables influence each other. In this thesis, we employ two strate-
gies of hyperparameter optimization. First, a random search and then a grid search; we
decided on these variants since they are relatively inexpensive computational-wise [22].
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Grid search specifies a grid of hyperparameters to search over and exhaustively
try out every possible combination. This simple and straightforward method can be
computationally expensive and may not always find the optimal solution, especially for
large search spaces. It runs at complexity O(n2).

The random search involves randomly sampling hyperparameters from a specified
distribution for each iteration. This method can be more efficient than grid search and
has been shown to perform well in practice, but it still has the risk of getting stuck in
sub-optimal regions of the search space.

As a consequence of high computational workload and the lack of resources of them, the
project had to be focused upon a subset of all possible parameters. We have identified
the following parameters, which by small changes showed high activity in performance:

SAC Layer Size The SAC Layer Size determines the capacity of the model to learn from
the data and represent the underlying distribution of the task. A larger layer size allows
the model to fit complex meta-tasks, but simultaneously increases the risk of overfitting.
On the other hand, a smaller layer size restricts the model’s capacity, limiting its ability
to learn from the data and generalize to newly inferred tasks [23].

Learning Rate Encoder The encoder learning rate determines by how much its weights
are updated in response to changes in the incoming data [24].

Target Entropy Factor The entropy regularization term helps to encourage exploration
in the policy by promoting entropy in the action distribution. By setting a target entropy
value, the algorithm aims to maintain a certain level of entropy in the policy over the
course of training. This helps to ensure that the policy explores a diverse range of states
and actions, leading to a more robust and generalizable policy[25].

Evaluation Interval The evaluation interval determines how often the algorithm re-
ceives feedback on its performance and can adjust its parameters accordingly. A larger
evaluation interval can lead to slower convergence, as the meta-policy has less opportu-
nity to receive feedback and improve [26].

Prior Sigma The prior sigma is important because it determines the degree of regular-
ization applied to the encoder, which produces a compact representation of the inputs to
the agent. It controls the trade-off between preserving the information in the inputs and
producing a compact representation that is robust to variations in the them [26].

It is worth noting that the influence of these parameters can not be exactly pinned down.
They impact each other in multiple ways, which vary from situation to situation.
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4.1. The one-sided Toy1D environment

To reproduce the state-of-the-art and to evaluate the performance of our contribution,
we use a 1D-toy environment in which the agent chooses its actions. This environment
was also used in the previous papers that built the foundation of our work. The 1D-toy
environment as seen in Figure 4.1, consists of an agent (represented by the robot) that
can choose whether to move 0.2 to the left or 0.2 to the right. The agent receives the
state as its current position on the x-axis. Here the objective is to reach the goal position
xgoal 2 [�25, 25]. The negative distance to the goal gives the dense reward. For training,
the agent will receive all goal positions only on one site.

 accepted

possible goal
positions

Goal position

start

reward

Figure 4.1.: Illustration of one-sided Toy1D environment.

To reproduce the state-of-the-art we set up an environment and trained the networks
of the algorithms’ different components over various amounts of epochs. We used the
trained model to evaluate the performance without making any modifications. The
orange graph in Figure 4.2 shows that our reproduced results are similar to the results
gathered in [5]. The algorithm does not converge and it decreases strongly after it
achieves decent results within the first few epochs.

As stated in section 3.7, we focused on tuning the hyperparameters with a strategy
that classifies the importance of parameters and subsequently iterates through different
combinations of the important parameters with a grid search. Because of the number
of hyperparameters influencing the model, a clear separation between more- and less-
important hyperparameters is hard to achieve. However, finetuning on a small selection of
hyperparameters leads to performance increases and better convergence of the algorithm.
The blue graph in Figure 4.2 shows the performance of the algorithm after we improved
the selected hyperparameters.

A possible cause for the strong decrease in the early epochs could be a bad encoding
propagated to the agent. Since the latent space is interpretable in this setting, comparing
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Figure 4.2.: Average deterministic test reward achieved by hyperparameter-tuned STA-
BLE vs. normal STABLE run

the encoding and goal distributions immediately before and after the decrease makes
sense. Figure 4.4 displays our agent’s behavior before- and Figure 4.5 displays the
behavior after the decrease in performance. If we compare the encoding charts, Figure
4.4 shows an almost perfect encoding except for the goal position at 0. All task encodings
approach a unique value after the first few time steps (Figure 4.4b). This leads to a great
performance as the agent nearly finds all goal positions, displayed in 4.4a. In subsequent
epochs, the encoding quality drastically decreases and alternates between positive and
negative values of the same magnitude, as shown in 4.5b. Ultimately, this leads to an
agent, that can not find the desired goal positions (4.5a) since the received encoding gives

0 1 2 3 4 5 6 7Task

achieved_spec_0
goal_spec_0

Is Goal
Position

latent_mean_0
Is Goal
Encoder

Figure 4.3.: Legend to colors and line style in subsequent figures
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Figure 4.5.: Encoding and respective x-position of the agent that led to decline in perfor-
mance

unclear instructions about the task at hand. Even though not all encodings are bad, the
agent cannot reach the desired goal positions with decent performance. For instance,
shown by the pink task in Figure 4.5.

4.1.1. Hyperparameter

As stated in section 3.7, it is impossible to perfectly distinguish between different hyper-
parameters and their direct impact on the overall performance. This led us to experiment
with multiple hyperparameters and variations of their values in one run. Figure 4.6
shows an example of such a grid search, of which we always picked upon the most stable
and best-performing combinations.
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Figure 4.6.: Results of one hyperparameter tuning run

4.1.2. Generalization to out-of-distribution tasks

The algorithm introduced by [5] distinguishes itself from previous work, by using
networks that leverage equivariance. This is an advantage to previous implementations
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4. Experiments

because the algorithm can generalize well to out-of-distribution tasks that fall into the
category of the in section 2.4 specified equivariant transformations. Figure 4.7 displays
the generalizations of the equivariance-based algorithm to goal positions on the opposite
side of the trained tasks. In contrast, Figure 4.8 displays the generalization of non-
equivariance-based algorithms in the specific setting. The equivariance-based algorithm
clearly shows better performance and generalization ability by leveraging equivariant
transformations. Since our results show better performance, as stated in subsection 4.1,
we suggest that the generalization of our hyperparamter tuned version achieves similar
to slightly better results than the algorithm in Figure 4.7.

Note that all additional experiments conducted in previous works can be reproduced
with our trained policy but would be out of the scope for this project since time and
computing resources were a great limitation.
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Figure 4.7.: Positive example for generalization of unseen tasks [5]
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Figure 4.8.: Negative example for generalization of unseen tasks [5]
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5. Discussion

Stabilization We encountered many runs where the agent fell into a state of producing
alternating patterns in subsequent epochs or great decreases in performance. We were
not able to fully eradicate this behavior. By using different combinations of adjustments,
we were able to stabilize the algorithm in between the great increase leaps and decrease
drops. As an experimental measurement taken to eradicate the drops and leaps, we
drastically decreased the encoder’s learning rate and decreased the evaluation window.
The measure taken positively impacted the stability and convergence of the algorithm
but could not yield average returns as high as in runs with a higher learning rate.

Hyperparameters We chose the specific run in Figure 4.2 as an example because it
approaches convergence and is mostly stable throughout the chosen epoch window. The
reduction of the target entropy factor was one of the hyperparameters that influenced
this performance. A possible explanation for this is the trade-off between exploration
and exploitation that it affects. We figured that a lower target entropy factor and the
associated increase in exploitation leads to a more stable performance since the agent
chooses the actions that it knows lead to a higher reward, instead of exploring new
trajectories. Important to note is that the parameters we used for the best-performing
run were only a fraction of the hyperparameter runs we conducted. We had multiple
other runs that performed well, even more, stable and without any signs of a decrease
in performance. Those, however, were part of a broad hyperparameter-tuning and thus
were conducted with fewer epochs. Our infrastructure posed constraints on the duration
of hyperparameter optimization and the computational resources that could be utilized.

Generalization to out-of-distribution tasks Even if we were able to show a decent
performance increase through hyperparameter tuning, the question remains whether
these results would still be reproducible to tasks that do not fall into the in section 2.4
described tasks. This is in line with concerns previous researchers had about general-
ization qualities. In this case, the forced equivariance means we rely on the channel to
distinguish between qualitatively distinct tasks. If an unseen task is correctly classified
into a channel that has not been used during training, there is no way for the policy to
know how to behave. Nonetheless, the linear relationship between the magnitude of the
encoding and the magnitude of the associated goal position preserves. This relationship
enables the agent to react to similar unseen tasks that fall in between known tasks. Recall
section 2.2, the new unseen task would receive an encoding in between the two known
tasks in the latent space.
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6. Conclusion

6.1. Conclusion

Our primary goal in this thesis was to reproduce the state-of-the-art performance. We
reached this goal and were even able to enhance the performance in some cases. We
examined which hyperparameters we have to tweak to achieve a better performance than
previous experiments. We focused on the version of the algorithm which samples from
the latent task representations. Our enhanced version outperforms other state-of-the-art
Meta-RL algorithms in this environment. We compared it to the best-performing version
of STABLE so far, an approach known to outperform the prominent baseline PEARL or
CEMRL architecture. However, these findings do not generalize well to versions where
the latent representation is passed as a parameter or as the latent grid. Thus, it does not
improve the method which achieves Bayes-Optimal Behaviour under uncertainty.

6.2. Future Work

There are several possible ideas future work may improve upon. First, we had to restrict
the hyperparameter search to only five hyperparameters for this report. These have
already reached the limits of the computational possibilities we had. Also, it would be
possible to try different parameters or different searches, for example, the Bayes search.

Second, the search also needs to be extended to the other versions, which differ in
passing on the latent encodings. This could be done with a relatively small effort. Since
little differences can already have a huge impact here, this is also one of the most efficient
improvements we recommend.

Prior work has already shown that the algorithm can generalize to non-stationary
environments in a suboptimal manner. If the encoder only receives the last T time steps,
even when trained in a stationary setting, it could be directly trained with changing tasks.
Future work could pick this up and show experiments with a stable performance.

Finally, as proposed in [13], the networks used in this thesis are convenient due to their
ease of use and versatility. However, they are not the only way to design equivariant
networks. According to Pol et al. [13], even without using equivariance, these networks
are not equivalent to dense neural network layers, which can negatively impact training
due to unwanted inductive biases. Our approach focuses on the presence of the desired
equivariance in the layer, regardless of how it is achieved. It can be replaced with any of
the numerous equivariant networks designed for specific tasks. If optimized on this, one
could maybe even try the algorithm in the 2D environment.
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A. General Addenda

A.1. Detail of lagged Q-Networks

Unlike the Q � f unctioin for the MDP, the objective function of the SAC algorithm not
only takes into account the discounted reward from the policy p starting with action
a in state s, but also includes the entropy of the actions taken. This results in a more
robust and stable learning process, as well as improved exploration of the state space;
the concept that helps us realize this is done by training two Q-Networks to stabilize the
training by introducing the concept of lagged versions Qf1, targ , Qf2, targ lavered during the
training objective. Details in [5].

Besides training two Q-Networks to stabilize the training, we also introduce the concept
of lagged versions Qf1, targ , Qf2, targ lavered during the training objective. Here are the
weights updated as fi, targ := t · fi + (1 � t)fi, targ for i 2 [2] and some hyperparameter
t 2 (0, 1]. Unlike the Q � f unctioin for the MDP, the objective function of the Soft
Actor-Critic (SAC) algorithm not only takes into account the discounted reward from
following policy p starting with action a in state s, but also includes the entropy of
the actions taken. This results in a more robust and stable learning process, as well as
improved exploration of the state space and we get the target value of

qtarget (rt, dt, st+1, at+1) := rt +(1 � dt) ·g ·min
i2[2]

n
Qfi, targ (st+1, at+1)

o
� ay · log p (at+1 | st+1)

where dt is 1 if st was a terminal state (e.g. because t = H ) and 0 otherwise. To
converge to this value, Qf1 , Qf2 are trained by minimizing the mean squared error using
samples from the replay buffer:

E
(st,at,rt,st+1,dt)⇠D

at+1⇠p(a|st+1)


1
2
�
Qfi (st, at)� qtarget (rt, dt, st+1, at+1)

�2
�

A.2. Varational Autoencoder

Varational Autoencoder motivated in [7, 5]. For:

z ⇠ p(z) = N
⇣�!

0 ne , Ine

⌘

x ⇠ pq(x | z) = N (E [pq(x | z)] , Var [pq(x | z)])

where In 2 Rn⇥n denotes the n ⇥ n identity matrix and
�!
0 n 2 Rn is a vector of zeros.

To make it possible for p(x | z) to be learned by a neural network, we approximate it
by a multivariate normal distribution (with diagonal covariance matrix). Thus it can be
learned by a neural network pq with parameters q by learning mean and variance for
each dimension.
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A. General Addenda

However, to enable learning given only data from D, the posterior distribution p(z | x)
is required, too. In fact, this is the distribution we mainly care about if the goal is to
extract structure from the given data. Using Bayes’ theorem, we obtain:

p(z | x)
Bayes
=

p(x | z)p(z)
p(x)

Nevertheless, calculating pq(x) =
R

Rne p(x | z)p(z)dz is intractable in general. There-
fore, the assumptions about the (multivariate normal) distribution of p(x | z) are also
made for the posterior and it is learned by a separate neural network qf with parameters
f. The goal is to find optimal parameters q⇤, such that the distance between the true
posterior qf(z | x) and its approximate posterior pq(z | x) is minimized in terms of the
Kullback-Leibler divergence (KL-divergence).

q⇤ = arg min
q

KL
�
qq(z | x)kpf(z | x)

�

Inserting the posterior and doing some algebra gives:

KL
�
qq(z | x)kpf(z | x)

�
= Eqq(z|x)


log

qq(z | x)
pf(z | x)

�

= Eqq(z|x)
⇥
log qq(z | x)� log pf(z | x)

⇤

= Eqq(z|x)
⇥
log qq(z | x)� log pf(x | z)� log pf(z) + log pf(x)

⇤

= Eqq(z|x)
⇥
� log pf(x | z)

⇤
+ KL

�
qq(z | x)kpf(z)

�
+ log pf(x)

As usual in variational inference, this is rewritten to find an evidence lower bound
(ELBO) LELBO:

log pf(x) = KL
�
qq(z | x)kpf(z | x)

�
+ LELBO

� LELBO = Eqq(z|x)
⇥
log pf(x | z)

⇤
� KL

�
qq(z | x)kpf(z)

�

Revisting this Equation, to get the optimal parameters q⇤ that minimize the distance
between the true and approximate posterior, the ELBO needs to be maximized. Further,
for optimal reconstruction the log-likelihood of the data log pf(X) is maximized. Com-
bined, this leads to the following objective, optimizing parameters for the encoder and
decoder jointly:

q⇤, f⇤ = arg max
q,f

LELBO(q, f)

LELBO(q, f) =
N

Â
n
(Ez⇠qq(z|xn)

⇥
log pf (xn | z)

⇤
| {z }

reconstruction error

�KL
�
qq (z | xn) ||pf(z)

�
| {z }

regulariser

)

where the first part of the equation can be interpreted as reconstruction error, calculated
as the log-likelihood of the decoded data estimated via Monte Carlo sampling. A separate
latent encoding is sampled for each data point from the approximate posterior. The
regularization term helps keep the approximate posterior close to the prior, encoding
only essential information for reconstruction in the latent variable z. This regularization
results in a natural form of regularization and is known as an "information bottleneck".

The so-called reparametrization trick of rewriting z ⇠ N (E [qq(z | x)] , Var [qq(z | x)])
as
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A. General Addenda

z = E [qq(z | x)] + diag�1 (Var [qq(z | x)])� # where # ⇠ N
⇣�!

0 ne , Ine

⌘

enables backpropagation through qq and makes this goal feasible. Here, diag�1 denotes
the function that maps a diagonal matrix A 2 Rn⇥n to the vector diag�1(A) 2 Rn of its
diagonal entries.

A.3. BAMDP

Hyperstate and reward then change according to:

p+
�
s+t+1 | s+t , at, rt

�
= p+ (st+1 | st, bt, at) p+ (bt+1 | st, bt, at, rt, st+1)

= Ep⇠bt(p|t0:t) [p (st+1 | st, at)] d (bt+1 = p (r, p | t0:t+1))

r+
�
s+t , at, s+t+1

�
= Er⇠bt+1 [r (st, at)]

where d(x) denotes the Dirac delta distribution. Intuitively, that means that the new
MDP state st+1 is sampled from the expected transition function for the given experience
t0:t and the new belief bt+1 is just p (r, p | t0:t+1) deterministically by definition.

Defining p+(t | p) analogously to p(t | p) with S+, r+, p+instead of S , r, p, the goal
of the policy p

�
at | s+t

�
is maximizing

Et⇠p+(t|p)

"
H+�1

Â
t=0

gtr+
�
s+t , at, s+t+1

�
#

A policy maximizing this objective is called Bayes-optimal. Whereas the belief about
the current transition and reward function bt = p (p, r | t0:t) changes with the agent
exploring the environment. [5]
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A.4. Generative Model
KL(q(c, k, z | x)kp(c, k, z | x))

=Ec,k,z⇠q(c,k,z|x)


log

q(c, k, z | x)
p(c, k, z | x)

�

=Ec,k,z⇠q(c,k,z|x)[log q(c, k, z | x)� log p(c, k, z | x)]

=Ec,k,z⇠q(c,k,z|x)[log q(z | x, c, k) + log q(c, k | x)

� log p(x | c, k, z)� log p(z | c, k)� log p(c, k)] + p(x)

=Ec,k,z⇠q(c,k,z|x)


� log p(x | c, z) + log

q(z | x, c, k)
p(z | c, k)

+ log
q(c, k | x)

p(c, k)

�
+ log p(x)

=Ec,k⇠q(c,k|x)

h
Ez⇠q(z|x,c,k)[� log p(x | c, z)]

+Ez⇠q(z|x,c,k)


log

q(z | x, c, k)
p(z | c, k)

�
+ log

q(c, k | x)
p(c, k)

�
+ log p(x)

=Ec,k⇠q(c,k|x)

h
Ez⇠q(z|x,c,k)[� log p(x | c, z)] + KL(q(z | x, c, k)kp(z | c, k))

i

+ KL(q(c, k | x)kp(c, k)) + log p(x)

, log p(x) =KL(q(c, k, z | x)kp(c, k, z | x)) + Ec,k⇠q(c,k|x)

h
Ez⇠q(z|x,c,k)[log p(x | c, z)]

� KL(q(z | x, c, k)kp(z | c, k))]� KL(q(c, k | x)kp(c, k))

B. Figures
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Figure B.1.: Left: Encoding tasks in a regular fashon without the use of stochastic distri-
butions; Middle: Using a Gaussian Disstribution for different Task Encodings
and picking task T5 for action; Right: Using a combination of learned task
encodings with help of the gradient over them
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