

Electric Vehicle Charging Pattern Prediction

Mariana Martins – Computational Science and Engineering

Weile Weng – Mathematics

Simon Klotz – Data Engineering and Analytics

Technical University of Munich, 25.07.2018

Agenda

sonnenCharger

• Launched: April 2018

Smartphone app integration

• Two modes: Power and Smart

sonnenCharger

Data

Methods

Evaluation

Conclusion

Power Mode

Conclusion

sonnenCharger modes

Power Mode

Power Mode: Charge as fast as possible

sonnenCharger

5

Smart Mode

Data

sonnenCharger modes

Smart Mode

Conclusion

Data

Smart Mode

Methods

- Power Mode: Charge as fast as possible
- Smart Mode: Maximize use of solar power -- how?

Goal: Estimate required energy

• In order to create a smart charging profile, we must know how much energy the car needs when it is plugged in

required energy = battery capacity – current amount of charge

Methods

sonnenCharger

Goal: Estimate required energy

 In order to create a smart charging profile, we must know how much energy the car needs when it is plugged in

required energy = battery capacity - current amount of charge

- Not enough input data for a physics-based model of the battery
- No interface to get data from the car

sonnenCharger

Our approach: Estimate based on data from past charging events (usage habits)

Data source

Dataport

- Dataset: Pecan Street's residential electricity use research
 - Anonymized data from over 1300 volunteers back to 2016
 - Circuit-level (disaggregated) and whole-home electricity use data
 - In particular: electricity usage data for home EV charging
 - Drawback: only power data (no car model information, data on interrupted charging, ...)

→ Which aspects of the time series could be relevant for our prediction?

Charging Features

4 Stages

Full Charge

Previous Charges

Data cleaning

Exclude

- noisy charging events, with threshold=0.1kW
- charging events that have not reached expected steady state
- only full charges
- users with less than 50 full charges
- users with irregular EV charging profiles

sonnenCharger

Dataport

Data Description

Distribution of start state of charge (SoCs)

19

Autocorrelation of required energy

Low autocorrelation of required energy over the time series:

- Diverse pattern among different users
- Slightly higher value in same day of week
- → Linear regression would not fit well, with charged energy in the past as input → Provide intuition for conditional probabilistic approach

20

Error Function

Failure Mode Analysis

Predicted >> Actual

Suboptimal use of clean energy

Predicted << Actual

Not fully charged at departure time

Error Function

Asymmetric Quadratic Error (AQE)

- Normalize required energy
- Underestimation is penalized more than overestimation

Advantage:

→ Accommodate user needs

Further improvement:

→ customize coefficients conditioned on battery capacity

22

General Approach

- Data of current charge
 - Start time
 - Time since last charge
 - O ...
- Past data of last X charges
 - Start time
 - Energy charged
 - 0 ...

Methods

Machine Learning Models

- Mean Model
 - Baseline

- Ridge Regression
 - Simple model
- XGBoost
 - Good performance on structured datasets
 - Custom objective function

Conditional Probability Approach

- Goal: Estimate whole distribution instead of point predictions
- Only discrete features

Predictions using Distribution

Different ways to make predictions based on distribution:

Predictions using Distribution

We use value that minimizes our error function with regard to distribution:

Value that minimzes AQE

Different Granularities

sonnenCharger

- Too few conditions: Distribution not specific enough
- Too many conditions: Not enough data points available
- → Sequentially drop conditions until threshold of datapoints is reached
- → hour divided by eight/four, hour, number of previous charges during week, month, day of week, season, number of previous charges during day

Evaluation

28

Rolling-origin-update evaluation

- Train separate model for each user
- Nature of data invalidates cross-validation assumptions
 - → Rolling-origin update evaluation:

29

Evaluation

Results for methods trained on single users

Evaluation

Results for methods trained on single users

Evaluation

Scenario 3

New User

Train on all available data

- Use data from all users for training
- However: great discrepancy in amount of energy charged:

→ Cluster users based on their (estimated) battery size

Evaluation

33

Evaluation

Results for methods trained on similar users

Evaluation

Evaluation

Results for methods trained on similar users

Scenario 4

Recent User

Rolling-window evaluation

Evaluate performance of models on different amount of training data:

→ Rolling-window evaluation

Evaluation

Results for different methods

Different user behaviors

Evaluation

Results for different users using XGBoost

Prediction quality differs highly among different users:

Evaluation

Correlations with AQE

Feature	Correlation with AQE
Battery Size	-0.349
Charging Frequency	0.131
#Events	-0.369

Pearson Correlation Coefficients

Evaluation

Results of tests on different users

→ Methods are only applicable to some users:

Conclusion

Final Approach

Evaluation

Final Approach

Extension using convex combination of predictions and battery capacity:

$$y_{final} = \alpha \cdot y_{pred} + (1 - \alpha) \cdot capacity_{est}$$

- Choice of α:
 - Inversely proportional to AQE
 - Based on user preferences

Q&A

TUM Data Innovation Lab

- Projects proposed by companies
- Interdisciplinary student teams
- Data-driven solutions

https://www.di-lab.tum.de/

Conclusion

48

Train only on similar users

Cluster users based on their (estimated) battery size:

Delay between charges

How often do users charge?

→ Very regular timespan in between charges

Data

Conclusion

50

New User

Recent User

Random User

son Aenbatterie.de

Data description

Data collected from 2016.01.06 to 2018.05.01

- 38580 charging events to 63 regular users
- 28730 fully charged
- 612 number of charging event per regular user

A regular user would

- charge EV 69% of the times to full,
- demand 7.85 kwh,
- 27% charging events occurs on weekend
- Of fully charged events, a regular user starts with 53% SOC

