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Abstract

For the domestic user with solar energy production capability and an electric vehicle,
it’s advantageous to maximize the use of solar energy for vehicle charging. Sonnen
GmbH wants to accomplish this with its new sonnenCharger. However, implementing
such a feature poses a challenge given the lack of information on how much energy is
required to charge the battery from its current level to full. This project is set out
to create a model that can predict the required energy from charging timeseries. Our
dataset comes from Dataport, and consists of electric vehicle charging profiles collected
by a charger. After preprocessing, 28287 full charges corresponding to 51 regular EV
users were included in the analysis, as well as their extracted features. Several methods
such as Ridge regression, XGBoost, and a Conditional Probability model were tested.
As a final result an universal approach was derived that allows to predict the required
energy as soon as a user signs up for the sonnenCharger, with improving accuracy as
more data on a user’s behavior is accumulated.
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1 Introduction

The growing adoption of electric vehicles (EVs) around the globe is expected to bring a
significant contribution in reducing CO2 emissions (Quirós-Tortós et al., 2015; Franke and
Krems, 2013; Xydas et al., 2016; Robinson et al., 2013). However, it also brings challenges
and opportunities to power distribution infrastructures. On one hand, it increases the power
demand, and poses potential dangers for peak demand when EVs are charged during current
peak hours (Daina et al., 2017; Quirós-Tortós et al., 2015; Robinson et al., 2013). On the
other hand, EV batteries can be used as flexible loads providing load balancing services to
grids with a large share of renewable energy sources (Daina et al., 2017; Quirós-Tortós et al.,
2015).

Smart charging strategies are needed for utilizing renewable energy to the greatest extent
while accommodating the current power demand for households as well as the power demand
for EV transportation. One important question for the roll-out of smart EV charging services
for households equipped with photovoltaic panels is: How to create a charging plan that
maximizes the use of solar energy, while still ensuring the vehicle will be charged when the
the user needs it?

This question was brought by sonnen GmbH to TUM Data Innovation Lab1 as the
general interest of their student project in the summer semester 2018. Headquartered in
Wildpoldsried, Germany, sonnen holds the mission of promoting clean energy by providing
intelligent home energy storage systems for private households and small businesses2. A
predictive model for required energy is needed for the smart charging scheduling function of
the sonnenCharger, a smart EV charger launched in February 2018 and introduced to the
market in April. The required energy prediction is eventually established as the goal of our
project.

This report records our exploratory journey to approach this goal, constituting of ac-
quiring accessible datasets, understanding the nature of the data from interdisciplinary
perspectives (engineering, behavioral, business), preprocessing the data and visualizing de-
scriptive statistics, and finally, based on the nature and amount of information embedded
in the data, searching for the best predictive model that would accommodate user needs in
real business scenarios.

1.1 Overview of sonnen

Sonnen GmbH was founded in 2010 in Wildpolsried, a village in the district of Oberalgäu,
Germany, which is marked by its exceptional achievement in renewable energy production
and in reducing its carbon footprint. From 2010 to 2015, sonnen focused on developing a
solar battery, the sonnenBatterie. Starting from 2016, the company establishes the sonnen-
Community, an energy sharing platform. sonnenCharger, just launched at the beginning of
this project, is a smart charger for electric vehicles. Some details of those products relevant
to the development of this project are:

sonnenBatterie sonnen’s flagship product, a battery for storage of energy produced by
home photovoltaic panels, offered in different models with capacity ranging from 2 to
16kWh. The battery features a smart control, which optimizes energy storage based
on predicted household usage and electricity production.

1https://www.di-lab.tum.de
2https://sonnen.de
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sonnenCommunity This service allows clients who aren’t currently producing enough
power (for instance due to bad weather) to receive it from other sonnen households
in their region who currently have a surplus. Aside from maximizing the use of clean
energy across the community, this also minimizes the purchasing of power from non-
solar sources, and consequently the cost.

sonnenCharger The main object of this project is sonnen’s newly launched EV charger.
It’s proposal is to extend the use of clean, free energy from household appliances to
electric cars.

1.2 sonnenCharger

While there are available solutions that allow plugging in an electric vehicle directly into a
standard residential outlet for charging, they come with drawbacks: since the current and
voltage are limited by the capacity of the outlet, full charges often take several hours, even
in vehicles with smaller battery capacities. Due to this, a dedicated charging station is the
preferred solution for residential households, providing a 230V single-phase, or, if available,
400V three-phase dedicated charging circuit (Morrow et al., 2008).

The sonnenCharger belongs to the latter specification, and beyond providing standard
residential EV charger functionality, it also integrates with other sonnen products, providing
synergy opportunities to fine-tune functionality of not just the charger, but the home energy
environment as a whole, to customer needs.

1.2.1 Charging Modes

The sonnenCharger provides two operation modes, selected by the user through a smart-
phone app:

Power Charging Mode: This is the default operation mode, where the charger does
not impose any restrictions on the charging power aside from those that are safety-related,
e.g. cutting off power when the plug is disconnected (for more details on charger operation
see Section 1.2.2). As a result, the charging process will be completed in the fastest time
possible, as determined by the maximum rated power for the charger and by the vehicle’s
charge control (including any smart charging features from the EV).

It’s important to note that while Power Mode implements the functionality most com-
monly found in electric vehicle chargers, a fast charge may be undesirable from the user’s
standpoint. Consider a typical use case where the vehicle is plugged in the evening for
overnight charging. A timeline for this use case using Power Mode is illustrated in Figure 2.
In this scenario, the charging process will utilize free solar power while it’s available from the
PV panels or sonnenBatterie, but once these sources are exhausted, it will draw from the
power grid at a cost for the user. At a larger scale, electric vehicles charged in this manner
place added demand on the power grid, coinciding with peak demand time for domestic use,
which can trigger the use of more expensive, and generally less environmentally-friendly
power plants at a grid level (Kasten et al., 2016).

Smart Charging Mode: When the user enables Smart Charging Mode, they are prompted
through the app for their desired departure time for the vehicle. The sonnen back-end will
then determine and send to the charger a charging plan (a time series of charging power
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Figure 2: Power drawn vs. solar power availability in an overnight charging event using power mode

limits to be imposed by the charger) that maximizes the use of solar power for the charging
process, while still completing the charge before the departure time set by the user. The
charger will then limit the charging power according to this profile. Figure 3 illustrates the
use of Smart Mode in the previously described scenario.

Figure 3: Power drawn vs. solar power availability in an overnight charging event using smart and power
modes

1.2.2 Charger-Car Communication and Data Collection

Communication between the charger and vehicle is done through a pilot signal as described
by the EN62196-2 standard. Through changing the duty cycle of this signal, the charger
communicates to the car the maximum current available for charging (including any ad-
ditional restrictions from charging profiles in Smart Mode). Meanwhile, the car changes
the resistance in the circuit, lowering the signal voltage to specific levels representing the
statuses listed below (Toepfer, 2009; Commission et al., 2016):

1. Standby: the charger is not connected to a vehicle;

2. Vehicle detected: the charger is connected to a vehicle, the vehicle does not require
charging;

3. Request charging: the charger is connected to a vehicle, the vehicle requires charging;

4. Request charging with ventilation: the charger is connected to a vehicle, the vehicle
requires charging, but the battery type is such that the charger should only provide it
if it’s installed in a well-ventilated location
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5. No power and error: Unexpected voltages on the pilot signal indicate a fault in the
circuit or a short with a different contact (possibly due to manipulation of the cable).

It’s important to note here that while the vehicle can be expected to have extensive
instrumentation used by the onboard computer for accurately determining the battery’s
state of charge, the extremely limited nature of the communication between charger and
car means that data available to the charger is limited to it’s own instrumentation. The
sonnenCharger collects the following data:

• Voltage for each of the three phases

• Current for each of the three phases

• Grid frequency

• Charger temperature

1.2.3 Features of charging process

The power profile of a complete charging event, as measured by the charger, can be seen in
Figure 4.
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Figure 4: Typical complete charging event, as measured by the charger.

After going over different charging event data collected during development of the son-
nenCharger, the following main characteristics were identified:

• Steady state charging power: this is the power drawn during most of the charging pro-
cess, typically ranging from around 3kW for plug-in hybrid vehicles to 20kW for some
pure electric vehicles. This number is determined by the EV’s battery management
system design, and is constant for a given model.

• Ramp-down: as the battery state of charge approaches 100%, the EV’s battery man-
agement system will ramp-down the charging rate in order to prevent overcharging,
which can impact battery life (Dhameja, 2001) or even cause some types of batteries
to ignite (Stuart et al., 2002). Due to this, the presence of this feature in a charg-
ing process is an indicator that the battery charged to full, while an abrupt drop in
charging power to zero points towards it being interrupted by the user, as illustrated
in Figure 5.
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(a) Full Charge
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(b) Aborted Charge

Figure 5: Comparison of power profiles for a charging event where the EV charged to full capacity and one
that was prematurely aborted by the user.

It should be noted that while this behavior seems to be the standard, it is possible that
some vehicle models could have different profiles for a full charge, and, if available,
the status determined from the pilot line signal described in Section 1.2.2 is a simpler
and more reliable indicator of how a charge process was ended.

• Intermittent charging: characterized by short low-power intervals after a full-charge,
whose purpose we were unable to determine, though we theorize they might be top-up
charges to bring the battery all the way to 100% SoC after the ramp-down reaches
the minimum charging power. These are not always present in charging events, and
we were unable to identify a correlation of their presence with car models from the
development test data.

1.3 Project Objectives

The original DI-LAB project proposal by sonnen was a general one: utilize the data gathered
by the charger to optimize the use of solar power in Smart Mode. However, before defining
a plan for the charging rates, it’s necessary to know how much energy must be charged until
full. This is the required energy, defined as:

Required energy = Battery capacity− Current charge

We originally made the assumption that it would be possible to estimate the SoC using
the physical quantities measured by the charger and one of the approaches documented in
literature. However, upon learning Type 2 chargers such as the sonnenCharger are limited
to measuring the AC side of the charging circuit (when most relevant metrics for SoC
determination are on the DC side), and about the lack of an interface for obtaining the
SoC directly from the vehicle’s battery manager, it became clear that the estimation of
the required energy alone posed a significant challenge. So, in agreement with sonnen, the
project scope was narrowed down to providing a reliable method for this estimation through
modeling user charging habits based on the data. With this in mind, we formulated the
following questions to be answered by this project:

1. Which are the best methods to predict the required energy?
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2. How much data is needed to accurately predict the required energy?

3. How to deal with cases where required energy cannot be reliably predicted?

1.4 Literature Review

To determine the start state of charge (SoC) a priori, the most straightforward way is to
collect measurements from sensors directly connected to the battery. If this approach is
not available, and no information about SoC is provided by the user, a second information
source is the charging profile, i.e. the time series indicating energy inflow. If the time series
does not provide any information on the start SoC either, i.e. no matter what the start SoC
is, when a user plugs in the charger, the charging profile is indistinguishable except for the
amount of time required to charge to full, then the problem is transformed from a problem
of engineering science into a problem of behavioral science. A third information source is
the charging behavior of the EV user. In the following part, we will review some literature
on charging behavior and related results.

Several large scale experiments have been conducted in recent years in different countries
to study charging behavior. However, most of them focus on the aggregated impact instead
of individual patterns.

Quirós-Tortós et al. (2015) analyzed the data collected from the ‘My Electric Avenue’
project3 in the UK which includes more than 68,000 charging events from more than 200
Nissan LEAFs (24 kWh battery capacity, 3.6 kW demand) used by residential UK cus-
tomers. Each EV was equipped with an inboard monitoring system which registered the
start time, end time, initial SoC, and final SoC for each charging event. Probability distri-
bution functions (PDFs) were created as intermediate measures to model the EV demand
on the electricity network. Their analysis provides some valuable implications. They found
that the charging behaviors showed a more predictable pattern after one week when EV
users familiarize with the interaction of the battery level and their driving requirements.
Also, charging patterns were different between the first connection and the second connec-
tion on the same day. The first EV connection may occur at any time during the day, and a
second connection is more likely to occur after midday with higher SoC. During weekends,
disconnections before EVs are fully charged are more frequent.

Robinson et al. (2013) quantified the recharging behaviour of a sample of EV users.
Their data was records from in-vehicle loggers as part of the SwitchEV trials started in April
2011 in north east of England, including 31,765 EV trips and 70704 EV recharging events
(23,805h of recharging), over a 6 month trial period, from 12 private users, 21 organization
individuals and 32 organization pool vehicles. It was found that user types and locations
affect charging profiles. For instance, private users mainly charged at recharging points at
home in the evening, vehicles from organization individuals were primarily recharged upon
arrival at work, and organization pool users recharged at work and public recharging points
throughout the working day.

Franke and Krems (2013) addressed the individual difference in charging behavior by
examining the psychological dynamics underlying EV users. Their data came from 79 EV
users in a 6-month field study in the metropolitan area of Berlin. The EV was a converted
MINI Cooper. Test drivers had access to a network of 50 public charging points in the
metropolitan area as well as private home-based charging points. In addition to logger
data, data from interviews, questionnaires, and travel and charging diaries at three stages

3see http://myelectricavenue.info
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of the trial were collected. They conceptualized user-battery interaction style (UBIS) and
developed a measure to assess it. Users with lower UBIS would charge their EV regularly
based on contextual triggers regardless of charge level, while users with a higher UBIS
only charge when their subjectively preferred charge level is reached. Franke and Krems
(2013) showed that the comfortable range (i.e. user’s preferred range buffer) together with
UBIS (i.e. the tendency of whether a user orients to this level or not), explain when people
typically charge their EV. Specifically, users with high scores on these two variables, typically
recharge their EV at a lower battery level.

Other research addresses the charging behavior from a theoretical point of view. For
instance, considering charging behavior as a consequence of charging choices made for the
scheduling of activities and travels, Daina et al. (2017) defines charging choice as the decision
made by a driver, at a given charging opportunity, to charge their vehicle to a specific charge
level. They assume that individuals make their charging decision once when they arrive at
a charging point, having in mind their next travel requirements; and a charging decision
is evaluated on utilities of two components, i.e. the utility of charging alternative, and
the utility of activity travel timing alternative at a given charging opportunity. The first
utility component is affected by the target energy, effective charging time and charging costs;
the second utility component is determined by schedule delays and activity participation
penalties, as well as total travel time and total travel cost.

Different habits of recharging at a certain time or times of the day would interfere with
the amount of time till the end of last charge being a good predictor for the start SoC (or
required energy) of current charge. Wang et al. (2011) considered four theoretical recharging
scenarios: (1) unconstrained recharging of EVs as soon as a user arrives at home, (2)
recharging 3 hours later after arrival, (3) smart charging, (4) smart recharging with demand
response. For all users, the source of interference could come from the heterogeneity in
charging scenarios among different users, that is, users respond to peak/off-peak hours of
the power grid differently. For a single user, such correlation could be interfered when he
interchanges charging scenarios constantly.

Accessibility of recharging points outside home could influence the start SoC as well.
Weiller (2011) predicted that energy demand from recharging at home will increase by
25.0% to 29.4% if that is the only recharging point available to a driver. If workplace
recharging infrastructure is provided, 24.6% and 28.7% of recharging would be expected to
occur at work.

In short, to fully capture an individual’s charging behaviour, besides records of charging
events occurred at a fixed location such as home, additional information is needed, e.g.
charging events that occurred outside home with connection to the current charge count
for the day (Quirós-Tortós et al., 2015), the user type (e.g. one single user, multiple users)
(Robinson et al., 2013), user’s UBIS and comfortable range (Franke and Krems, 2013),
activity-travel plans, options of other charging points and costs (Daina et al., 2017), home
infrastructure of smart charging or preference for charging off-peak hours (Wang et al., 2011),
and whether a user only charges at home (Weiller, 2011). Without further information, the
predictability of start SoC of full charging events at one location based on the history of
charging events at this location, depends strongly on the regularity of an EV users’ daily
schedule.

As one side note, analysis in Quirós-Tortós et al. (2015) Franke and Krems (2013) only
involves one car model. It implies that the heterogeneity of car or battery models could
influence the generality of prediction from one user or a group of users to another, besides
above discussed differences in charging behaviors.
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2 Data Preprocessing

The sonnenCharger was introduced in April 2018 and, prior to that date, only data from
sonnen’s development tests is available. Therefore, we had to rely on the openly available
dataset of Dataport first, and propose the application of our methods to the data from the
sonnenCharger as soon as enough data is available.

2.1 Datasets

The Dataport4 dataset provided by Pecan Street Inc., a non-profit research institute, con-
tains appliance and home-level energy consumption data from volunteers in Austin, Texas.
The data can be downloaded as CSV files from the original website or directly from the
PostgreSQL database itself. The dataset contains individually measured (disaggregated)
power use data of home appliances such as fridges, air-conditioners, and dishwashers from
about 722 homes, whereas for 103 of these households the energy consumption for charging
an electric vehicle is available.

Two types of EV related datasets are provided by Dataport: (1) metadata of the house-
holds with EV data available, uniquely identifiable by a dataid. It includes the date enrolled
or withdrawn (if provided) to the program; (2) time series of consumed power (in kW) by
EV, for each dataid. The resolution of the time series is one minute intervals. Available
data starts from the beginning of 2011 up until now.

Each dataid with EV data available corresponds to one or multiple EV users of the
household. From now on we will use the term user synonymously to dataid in our report.

2.2 Feature Extraction

From the metadata, a meta table for all users is created by keeping only the relevant
information. Additional features of the EV or user behavior are added after preprocessing
each time series.

From each time series, a event table is generated where valid charging events are ex-
tracted, and related features are identified or calculated. Precisely, the time series is pre-
processed in the following steps:

(1) Extract valid charging event: a charging event is the part of a time series when
the EV power consumption (in kW) stays above a predefined baseline tolerance level, with
the start time the first time point when the power exceeds that level, and the end time
the first time point when it drops below that level after the start time. A charging event
is valid if there exists a time point within the charging period when the power is within a
given tolerance of the expected steady value. The steady state power a car model uses
for charging is determined by its EV battery and onboard charger characteristics. All the
valid charging events are extracted from a single time series and each of them is given an
unique event number. In our implementation, we define the baseline tolerance level to
be 0.1kW and the steady state tolerance to be 1kW. To simplify the problem, we only
show interest in the car model of the maximum steady power for a single user, if the user
is known to charge different EV models at the same site. For this purpose, at first, we
estimate the expected steady state power to be the maximum power of the whole time series.
However, it is proven to be not a good estimator for non-typical charging profile, where the

4see https://dataport.cloud
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charging profile oscillates with peaks high above the steady state power as depicted in
Figure 6. We speculate that the occurrence of this pattern might be due to the car heater
being used during the charging process. Since those cases are not rare, we decide to include
them. Upon the observation that in those oscillation cases, the peak value does not persist,
only the steady value (plus some low-amplitude noise) does, we decide on the following
estimation approach: given the time series of a single event, first digitize it into bins with
bin size of 0.2kW, define a bound variable to be 10 bins, and return the highest value in
bins in range of [bound, mode+bound] with the mode the bin that appear most frequently
with the first 10 bins out of consideration.
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Figure 6: Charging profile with oscillation

(2) Decompose event into charging stages: Each valid charging event is further de-
composed into at most four stages as depicted in Figure 7.

02.01.2016 15:22

02.01.2016 15:52

02.01.2016 16:22

02.01.2016 16:52

02.01.2016 17:22

Time

0

2

4

6

kW

Figure 7: Four-stage-decomposition of the charging profile of a typical charging event
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Stage 1 (or ramp-up stage) is the sub-period from the start time to the first time the
power mounts above a lower bound, e.g. 90% of the estimated steady state power. Stage 2

(or steady-state) is the subsequent sub-period where the power stays close to the expected
(steady state power) until it’s rolling mean drops by a large step away from the steady

state power by a threshold. We choose rolling mean of window size 5 (minutes) instead of
the single input since we don’t want to exclude the oscillation cases. We choose both step
size and threshold to be 5%. Stage 3 (or ramp-down stage) is the following sub-period until
the power starts to rise with big step from a low level (e.g. 20%), if such case exists. Stage
4 (or intermittent stage) is the rest sub-period till the end of the whole valid charging event.
In case the power does not rise again after the second stage, the rest sub-period is marked
as the stage 3. The period after the end of such an event and before the begin of the
next event is identified as stage 5 (i.e. the resting stage). The duration, amount of energy
charged, and mean energy charged at each stage is calculated5. In practice, for some valid
charging events, the power ramps up quickly to the steady state such that the first stage is
skipped by the decomposition algorithm.

(3) Identify fully charged events: A valid charging event is considered fully charged
when the stage 3 lasts more than a certain amount of time (e.g. 2 minutes) or its stage

4 exists, in accordance with the characteristics mentioned in Section 1.2.3. This step is
important because it allows us to evaluate start SoC at the same time with (estimated)
battery capacity, since start SoC can only inferred a posteriori when EV is fully charged.

(4) Quantify stage 3: Some parameters are developed to describe the dropping curve in
stage 3, including L1 distance to the mean point, L1 distance to a decreasing linear line,
L2 distance to a decreasing linear line, and variance and variation of the power profile in
stage 3. We assume the dropping curve provides some information about the EV charging
system, possibly allowing inference of the vehicle model. Whether this theory is plausible
or not awaits further analysis of a larger data pool with cars where the model is known and
consultation with experts. On the other hand, the stage 4 might also be an information
source about the battery model or usage status. Those questions are however not within
the scope of our project.

(5) Estimate other car or user specific features: The maximum power value in the
time series serves as a feature of the EV model. The maximum amount of energy charged
in a single charging event is estimated as the battery capacity of the EV, since Data-
port does not provide such information. Furthermore, features describing a user’s charging
behavior are generated from the times series, such as the total number of valid charging
events, number of active days6, charging frequency7, the percentage of fully charged events,
average amount of energy charged in a single event, vectors approximating the distribution
of the amount of energy charged, of number of valid charging events over days of week and
over hours of the day, and entropy of normalized distribution vectors that quantify the
uncertainty in corresponding charging behavior patterns.

(6) Extract time-related features: Timestamps are preserved in local time format. From
timestamps that records the begin of a charging event, we extracted the hour, month, day,

5Two important features for the time series are generated during the decomposition: the variable
charging timestamps encodes the critical start point of each stage, with values from {1, 2, 3, 4} and
charging status encodes which stage does a time point belong to, with values from {0, 1, 2, 3, 4},
where 0 represents the default resting stage.

6It is calculated as the time difference between the start of first charge and the end of last charge in days.
7Charging frequency = Number of active days/Number of valid charging events.
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day of week, weekend8, and season. In addition, we also classify hour of start time into
clusters of hour with 4-hour interval and 8-hour interval. For each charging event, which
connection it counts for the current day or week is also calculated.

We use the total amount of energy of each (full) charging event instead of the energy of single
stages in our main analysis. However, in ideal situations when the information provided is
sufficient to identify each stage correctly, we would recommend using the energy consumed
in stage 2 and its related charging time to characterize the charging behavior pattern.
Since the time span of a valid charging event is dominated by the duration of its steady
state, where its rolling mean of power stays high compared to other stages. This results in a
leading contribution to the total amount of energy charged during that event. In fact, stage
1 and stage 3 are auxiliary stages which are relatively constant for all events, and stage

4 is reducible, while stage 2 is the purpose, in other words the heart. Therefore, energy
charged at stage 2 is more representative than the total energy charged in analyzing the EV
charging behavior. The physical properties of EV batteries determine the expected steady
charging power, the length and shape of stage 1 and 3, as well as the shape of bumps in
stage 4. In contrast, the length of stage 2 (and stage 4, if applicable) is determined by
the user who initiates and monitors the charging event.

2.3 Data Cleaning

As mentioned before, we exclude noise events, remove noise from charging profiles, with
noise level set to 0.1kW, as well as events that have not reached the expected steady state.
Besides, we exclude irregular users, i.e. users with less than 50 fully charged events that
have reached the steady state, and users with irregular charging profiles. Figures 8, 9 and
10 respectively show examples of a noisy charging event, a charging event with a noise peak
at stage 1, and a charging event with an unusual charging profile.

Essentially, we only include full charges in our training and prediction, since our focus
is to predict the required energy for a full charge.
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Figure 8: A noisy charging event

Although times series data is available from 2011, we sub-sampled the dataids which are
registered before 01.01.2016 and withdrawn after 01.05.2018 and their charging timeseries
of this period, since we are interested in charging behavior of recent years, and earlier data
is unlikely to reflect the current habits. In total, we collected 33712 valid charging events

8A boolean variable.
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Figure 9: A charging event with a noise peak at stage 1
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Figure 10: A charging event with unusual profile at stage 1 and stage 3

from 77 dataids, where 27608 of them were charged to full. After cleaning, 51 dataids are
identified as regular users, from whom, 27287 of 32328 valid charging events are full-charge,
and thus were included in the data analysis. On average, each regular user had 535 full
charge events. They were likely to charge to full 84% of the time, with start SoC of 55%,
and 28% fully charged events occurred on the weekends. A full charge of a regular user
required 6.0037 kWh on average. 50 regular users have EVs with capacity greater than
10kWh, and mostly between 10 and 15kWh (see Figure 15).

2.4 Preliminary Analysis

In this part, we examine three types of questions related to charging behavior, and present
the results as preliminary analysis.

(A) Would the amount of time until the end of last charge be a good predictor
for the required energy of current charge? The answer is no. As observed in Figure
11, the required energy of current charge is relatively invariant to pre-resting minutes,
exhibiting a horizontal band of points. A linear regressing including pre-resting minutes as
variable would be unsuitable, since the correlation coefficient’s value would be steered by
sparse points outside the dense range, and the p-value would show false significance. The
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reason for the false significance is that the range of bounded energy is inherently bounded by
battery capacity, while the range of pre-resting minutes is unbounded, which produces very
low standard error. One interesting observation is that points are more dense around the
range [1200, 1450] , and within this area, a clear line is formed showing negative correlation
between required energy and pre-resting minutes. Note that those minutes signify the time
point close to 24 hours. And the negative slop of the line is due to that a larger capacity
would require more to charge than a small capacity would. If users usually charge at
frequency of an integer multiple of 24 hours, then the pre-resting minutes between a current
charge to the end of previous charge would correlates negatively to the amount required
energy.
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Figure 11: Scatter plot exaiming the correlation between pre-resting minutes and required energy. The plot
is cut off for charging events with pre-resting minutes less than 2000, and required energy less than 30 kWh.

(B) Is there a common pattern in charging behaviors, in terms of start SoC
level? An overview the start SoC distributions of fully charged events for each regular user
reveals mixture of three types of users (see Figure 12): (a) users prefer to charge at one
level of SoC (low, middle, or high), (b) users have multiple preferences, (c) users have near
indifferent preference among most of the start SoC levels.
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Figure 12: Distribution of start SoCs in fully charged events for regular users. Each row corresponds to
a dataid. The darker the color in a cell, the often the user charges at this level. One can observe several
types of users: (a) users with preference to charge at one level of start SoC (e.g. low: 1629, 2470 and 4526;
middle: 3036, and 5109; or high: 796, 8156, and 9934), (b) users with multiple such preferences (e.g. 547,
661, and 4373), and (c) users with near indifferent preference among most of the start SoC levels (e.g. 1169,
3482, and 7940).

(C) Does the required energy a user charge on current day depend linearly
on the energy charged on previous days? Does the current charged amount
depend on the value of previous charges? To answer these questions, as suggested
by Box et al. (2015), we evaluated autocorrelation and partial autocorrelation of required
energy in time series (1-day-resolution) for each user, with lag 30 days. We did not find
significant correlation: correlations are in general below 0.2 in both cases, which do not
differentiate from correlation one would observe from noises. In addition, no systematic
pattern were found for all users, besides slightly higher (positive) autocorrelation among
same day of week (i.e. in frequency of 7 days) compare to other days (see Figure 13). Same
observation apply to autocorrelations with hourly resolution.

Together with the fact that we did not find correlation between pre-resting minutes and
required energy, it left only time related categorical features as predictors. This suggests
linear regression might not be suitable for the prediction task, and a conditional probabilistic
approach might be worth a try.
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Figure 13: Autocorrelation of required energy for fully charged events of regular users, with lag 30 days.
We observe that the correlations are low in general, do not show systematic pattern among all users, and
slightly higher autocorrelation among same day of week compared to other days.
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3 Methods

This section describes the models used to predict the required energy and how we evaluate
them to address our three project objectives.

3.1 Models

As part of our project we employ two different kinds of methods: machine learning models
that give point estimation, and conditional probability model (precisely, conditional distri-
bution based model) that would provide a point estimation with definable confidence level.
The latter model has access to the conditional distribution, and the freedom to control the
range of the confidence interval.

3.1.1 Machine Learning Models

We selected the following common machine learning methods to simply make point predic-
tions of the required energy based on our extracted features.

(1) Mean Model: As a performance baseline for our experiments we include a model
that always predicts the mean of all past observations without taking into account any
additional information:

ypred =
1

n

n∑
i=1

ytrain,i ,

where n is the number of charging events in the training set and y is the required
energy.

(2) Ridge Regression: As a second model we apply ridge regression to our problem since
it is a very simple method that works well if the data has a strong linear component.
Compared to linear regression it is less likely to overfit the training data because of
an additional weight regularization term (usually L2 regularization). However, if the
relationship between input variables and target is not linear, ridge regression is not
able to find a good fit. The cost function of ridge regression cannot be customized,
except for the strength of the regularization term.

(3) XGBoost: Furthermore, we use the XGBoost implementation by Chen and Guestrin
(2016) of Boosted Gradient Trees because it has shown superior performance on struc-
tured datasets compared to other models which is proven by many data science com-
petitions where it significantly outperformed other models (Chen and Guestrin, 2016).
We specifically choose the XGBoost implementation because of its efficiency and sup-
port of user-defined objective functions.

(4) Other Models: Apart from the previous models we also applied other common ma-
chine learning models such as decision trees, k-nearest-neighbors, and random forests.
However, preliminary experiments showed that they do not have any significant ad-
vantage on our prediction task and result in similar or worse results. Therefore, we
exclude them from the rest of our report.

After processing the raw time series data as described in Section 2.2 we have a set of
input features X extracted from the time series and the target feature y which is the required
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energy. It is very likely that the amount of energy charged at a certain event does not only
depend on input features of that event but also on features of previous events as a user will
likely charge more energy if the last charge happened one week ago compared to a person
that already charged the car the same day. Therefore, we use a sliding window of events as
input to the machine learning models to include temporal dependencies between charging
events. A sliding window includes the input features of the past T events where T is the
size of the window. It also includes features of the current event that are available at the
time a user plugs in his car such as the date and time of the start of the charging event or
the number of previous charges on the same day. Our objective here is then to approximate
the relationship:

f(Xt, (Xt−1, yt−1), ..., (Xt−T , yt−T )) = yt .

3.1.2 Conditional Probability Model

As discussed at the end of Section 2.4, the most promising predictors of our prediction are
categorical features extracted from timestamps, e.g. hour, day and dayofweek etc, as well
as engineered features such as 4-hour-cluster and 8-hour-cluster, and possibly accumulative
connection counts of the current day or week. Together with the assumption that the target
variable, i.e. required energy, is a random variable taking values from 0 to its capacity by the
law of some unknown probability measure, previous analysis allows us to consider following
statistical framework, outlined in Wolf (2018).

Let X and Y be the space of input and output, P the corresponding probability measure
over the product space X ×Y, and A : ∪n∈N(X ×Y)n → YX : S 7→ hS , a learning algorithm.
S represents the training data, the input of a learning algorithm, and its corresponding
output, Borel measurable function hS : X → Y is a hypothesis that aims at predicting
y ∈ Y from an arbitrary x ∈ X . Given a loss function L : Y × Y → R, we are looking for
a learning algorithm A, precisely a set of hypothesis {ĥS ∈ YX : S ∈ ∪n∈N(X × Y)n} such

that for any S, ĥS(X) minimizes the expected loss, called risk, i.e.

ĥS := min
hS

E[L(Y, hS(X))] ,

where (X,Y ) a random variable of X × Y by the law P .
We use minimum instead infimum, because in practice, only finite number of elements

in Y are considered, thus there exists a minimizer.
For discrete X, one can construct the minimizer point-wise, by defining

ĥS(x) := min
hS(x)∈Y

E[L(Y, hS(X))|X = x] .

Clearly this construction is well-defined.
Since the P is unknown, the risk cannot be evaluated directly, a common approach is to

use empirical risk as an approximation, which leads to the following prediction,

ypred(x) = min
hS(x)∈Y

1

m

m∑
i=1

L(yi, hS(x)) .

where {(x, yi) : i ∈ [m]} is the set of pairs of data points in training data that have the
same input value.

Depending on the loss function, one could have different forms of predictions:
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• L2-loss, i.e. L(y, y′) := (y − y′)2, this is equivalent to the mean model, which leads
the estimator to provide the mean as prediction.

• Quantile Regression Loss (also known as Pinball loss), i.e. L(y, y′) := ρτ (y − y′) =
(y−y′)(τ −1(y−y′<0)) where τ ∈ [0, 1] is the desired percentile form given distribution
function FY of Y (Koenker, 2005). The minimizer of its empirical expected loss is the
τ -th quantile of the FY .

This approach gives the freedom of using customized loss functions, possibly even an
ensemble of them, keeping the confidence of predictions in control, by comparing them with
different quantiles. In our case, we designed a loss function that reflects the user needs
better in business scenarios, which will be introduced in the subsequent section.

Beyond that, during the training, we use all available past events to predict a new event.
We do not use the sliding window approach, as the conditions would become two specific
and we would not have enough data points that match the given conditions for a new event.
Considering cases when there is not enough data points (few, or none) from the past to meet
the levels of all conditions, we drop conditions one by one from a predefined list, which is
arranged by their feature importance coefficients produced by XGBoost with a sample pool,
starting with a least important condition in the remaining list, until a threshold θ on the
size number is passed.

Similar to the previous section we want to approximate the relationship between in-
put features X and required energy y. For the conditional probability model we only use
categorical features as predictors, because, as discussed in Section 2.4, the metric features
are not good predictors for our case. Furthermore, we do not apply sliding window on the
filtered past events with conditions, as we might not have enough data points that match
the given conditions. And the data time span of 2 year and 5 months should be long enough
to capture the charging behavior, but not too long to overlook recent significant behaviour
changes.

Therefore, the objective in this approach to approximate the relationship:

f(Xt, (Xt−1, yt−1), ..., (X1, y1)) = yt .

3.2 Evaluation

In order to address our three project objectives we defined multiple evaluation strategies
and metrics in Section 3 to test and compare our different methods.

3.2.1 Error Function

First, it is important to define how the error between prediction and target variables should
be measured. Predicting the amount of energy needed for a full charge of an EV is a
regression problem. We have several requirements that need to be incorporated into our
error function in order to accurately reflect the real-life consequences of a wrong prediction:

• Too low predictions should be penalized more than too high predictions, as the most
important objective is that a user has a fully charged car at the specified time. Thus,
too low predictions would lead to an insufficiently charged battery whereas too high
predictions would merely cause a suboptimal charging plan.
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• The error should be in relation to the battery size of the EV, as for an EV with a
small battery size a difference between prediction and target of 2kWh already has an
impact whereas for a car with a battery size of 40kWh that difference will be hardly
noticed.

• Greater differences between target and prediction should be penalized significantly
higher than small differences.

Common evaluation metrics for regression problems such as mean squared error (MSE)
or mean absolute error (MAE) are only suited up to a certain degree for our problem as
they equally penalize too low and too high predictions.

Therefore, we propose a customized error function called asymmetric quadratic error
(AQE) which is inspired Saxena et al. (2008), who predict the occurrence of engine failures.
In their case late predictions are significantly worse than early predictions as they could
lead to severe engine damages which is why they used an asymmetric exponential error
function. However, an exponential error function has the significant drawback that one
wrong prediction may dominate the whole error score. Therefore, we propose an adopted
version that is only quadratic in the difference between prediction and target:

AQE =

{
( da )2 for d < 0

(db )2 for d ≥ 0 ,

where d is the difference between predictions and targets normalized by the estimated
battery size of the corresponding car:

d =
ytarget − ypred

capacityest
,

and a and b control the asymmetry. We choose following values for a and b so that too low
predictions are penalized significantly more:

a = 0.03, b = 0.07 .

Figure 14 depicts the error as a function of the normalized difference between prediction
and target.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Normalized Difference between Prediction and Target

0

200

400

600

800

1000

Er
ro

r

Figure 14: Asymmetric quadratic error function

The AQE fulfills all our requirements as it penalizes too low predictions more than too
high predictions and also normalizes the difference by the estimated battery size of the
tested car. Furthermore, differences are quadratically penalized.

19



3.2.2 Training Strategies

There are multiple possibilities to train a model on the given dataset depending on what
data is used for training. We introduce three different training strategies using a different
amount of data:

(1) Single User: The first method uses one separate model for every user and trains
it only on past data of that user. This strategy has the benefit that the model only
learns the charging patterns of one specific user and the corresponding EV. However,
it has the drawback that it can only be applied once enough data for a certain user
is gathered. This is a significant drawback as for a user who just signed up for the
sonnenCharger, no past data is available. Furthermore, it does not incorporate data
from other users with possibly similar charging patterns.

(2) All Users: The second method is to train one single model on the whole dataset and
then do predictions for all users using this model. This approach has the advantage
that the model can do predictions as soon as a new user signs up for the sonnenCharger.
Furthermore, more training data is available which could improve the generalization
error of the model. This approach has the drawback that the model is trained on both
data from cars with small batteries and cars with bigger batteries which might imply
different charging behaviors as cars with smaller batteries would be charged more
frequently. In addition, different users habits also lead to different charging patterns.

(3) Similar Users: We propose a new training method where users are divided into
clusters based on the estimated battery size of the corresponding EV. We manually
set the thresholds to 10, 15, 18, 22, and 40 grouping cars with similar battery sizes
together as depicted in Figure 15. This method combines the advantages of both
previous approaches as it can be used as soon as a user signs up for the sonnenCharger
and the model is only trained on cars with similar battery sizes.

10 20 30 40 50 60
Estimated Battery Size (kWh)

0

2

4

6

8

10

Fr
eq

ue
nc

y

Figure 15: Cluster thresholds based on estimated battery size

3.2.3 Experiments

We designed several experiments to address our initial project objectives.

(1) Which are the best methods to predict the required energy?
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In general, machine learning models can be evaluated using methods such as last block
evaluation or k-fold cross-validation. However, a train-test set split only makes use of a
limited part of the data and the time series data invalidates one of the main assumptions of
cross-validation, namely that the train and test sets are sampled from the same distribution
which is not the case for non-stationary time series.

Therefore, we use an approach called rolling-origin-update evaluation where the test set
has a fixed size and the origin of the test set moves forward in time throughout the evaluation
as described by Bergmeir and Beńıtez (2012) and depicted in Figure 16. This evaluation
method better reflects how the algorithm will be used in production since models can be
periodically retrained as more data becomes available. We evaluate all models and training
strategy combinations using that approach.

Whole Dataset

Train Data Test Data

Figure 16: Rolling-origin-update evaluation

(2) How much data is needed to accurately predict the required energy?

It is important to evaluate how each model performs if only a certain amount of data
is available. If one model performs better with less data it may be feasible to apply that
model once a user signs up for the sonnenCharger and switch to a different model which
performs better as more data becomes available.

Therefore, we propose a second evaluation method which uses rolling-window evaluation
where the size of the training set is kept constant for all evaluations. This evaluation is
then repeated for different training set sizes as depicted in Figure 17. Again we apply that
evaluation method on all methods and training strategy combinations.

Whole Dataset

Train Data Test Data

T

𝐹𝑜𝑟 𝑇 = {2 weeks, 3 weeks, …, 104 weeks}:

Figure 17: Rolling-window evaluation

(3) How to deal with cases where the required energy cannot be reliably pre-
dicted?
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Lastly, we also want to take a look at how the prediction quality differs among different
users to see if our approaches work for all users or whether there are users that are not
easily predictable using our methods.

Therefore, we calculate the error using rolling-origin-update evaluation for each user
separately and compute the correlations between the AQE and several user specific metrics
to investigate for which users our methods are applicable.

3.3 Hyperparameter Tuning

An important part of improving the performance of both machine learning models and the
conditional probability model is to tune the involved hyperparameters. Therefore, we ran a
preliminary hyperparameter search on the most important hyperparameters of our methods
using the training strategy with single users as described in Section 3.2.2. We tune the
following hyperparameters:

(1) Number of past events to include as input to machine learning models: For
the number of past events to include as input to the model we tested windows with
a size T ∈ {1, ..20} using XGBoost and a fixed set of input features. While using a
greater window may lead to higher accuracy because more information of past charges
is available it may also lead to overfitting since more features are used.
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Figure 18: Impact of window size T on AQE

The results depicted in Figure 18 show that with increasing window size the error
goes down until it reaches its minimum at T = 14. Overall, the difference in error
of different window sizes is comparably small which indicates that past events do not
have a significant impact on the required energy.

(2) Features used for machine learning models and the conditional probability
model: The hyperparameter tuning for feature selection is run separately for machine
learning models and the conditional probability approach as the conditional probability
model only supports discrete features. We use random search to find the best feature
combination as it is more efficient than grid search and often leads to similar results
as shown by Bergstra and Bengio (2012). In both cases we run the search for 10000
iterations to find the best feature combination. For the conditional probability model
we also test different permutations as the order of features specifies which feature is
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dropped first in case there are less datapoints than the given threshold. The best
found feature combinations for the respective models are:

Machine Learning models: month, hour, day of week, day of year, mean power of stage
2 and 4, duration of stage 1 and 2, energy charged in stage 2 and 4, time difference
to last charge, full charge, required energy ;

Conditional Probability model: hour divided by eight/four, hour, number of previous
charges during week, month, day of week, season, number of previous charges during
day.

(3) Thresholds for Conditional Probability model: Lastly, we test the threshold
θ for the minimum number of datapoints needed to make predictions using the con-
ditional probability model and a fixed set of discrete features. As training only on
single users has much less datapoints available than training on similar users or all
users, we run the hyperparameter search for all training strategies separately with
θ ∈ {0, .., 300}.
The results for all training methods are depicted in Figure 19. The AQE decreases
drastically for all strategies at first and then slowly converges. At some point the error
starts to increase again. The best results are θ = 15 for single users, θ = 40 for similar
users and θ = 185 for all users.

0 50 100 150 200 250 300 350 400
Threshold

25

30

35

40

45

50

AQ
E

Single Household
Similar Households
All Households

Figure 19: Impact of threshold θ on AQE using different training strategies

Based on our hyperparameter search, all future experiments are evaluated using the best
combination of window size and features for machine learning models, and thresholds and
features for the conditional probability model respectively.
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4 Results

This section presents the results of the experiments described in Section 3. First, the general
performance of each method was evaluated. Afterwards, we tested how much data is needed
for each approach and lastly we tested whether there are significant differences in prediction
accuracy between different users.

4.1 Which are the best methods to predict the required energy?

We evaluated every method using the rolling-origin-update evaluation on every training
strategy described in Section 3.2.2. First, the models were trained on single users. Table
1 shows the results from all test runs using different models. XGBoost obtained the best
results for both MAE and MSE and the second best AQE. The conditional probability
model achieved the best AQE although it has the worst MSE and MAE errors which is
most likely due to its optimization for AQE. Ridge regression achieved worse error scores
than the baseline mean model.

Table 1: Results of all methods trained on single users

Method MSE MAE AQE

Mean Model 9.97 2.55 39.79
Ridge Regression 12.99 2.65 51.45
XGBoost 9.46 2.43 26.57
Conditional Probability Model 14.24 2.98 23.99

Afterwards, the models were trained on all users. The results are listed in Table 2.
XGBoost achieved the best AQE, whereas ridge regression obtained the best results for
MAE and MSE. This is most likely due to ridge regression using MSE as objective function
while XGBoost is trained on AQE. The conditional probability model obtains significantly
worse results compared to training it only on a single user. Although, MSE and MAE of
the conditional probability model are worse than the mean model it still achieves the second
best AQE.

Table 2: Results of applied methods trained on all users

Method MSE MAE AQE

Mean Model 13.11 3.08 45.17
Ridge Regression 9.60 2.47 40.87
XGBoost 12.94 3.03 23.69
Conditional Probability Model 20.04 3.71 33.33

Lastly, the models were trained on data of similar users. The results are shown in Table
3. Most of the results are slightly better than training the methods on all users. Again, ridge
regression obtained the best results using MAE and MSE whereas XGBoost has the best
AQE. Compared to all other models, the conditional probability model obtained significantly
better results if it is trained on similar users in comparison to training it on all users.
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Table 3: Results of applied methods trained on similar users

Method MSE MAE AQE

Mean Model 12.88 3.05 45.47
Ridge Regression 9.56 2.47 41.27
XGBoost 12.34 2.95 23.35
Conditional Probability Model 18.17 3.51 28.23

Ultimately, the conditional probability model performs best on our error measure if it
is trained on single users. The second best results are obtained by XGBoost trained on
similar users. Ridge regression and the baseline model perform significantly worse on any
training strategy using the AQE as evaluation metric. Also, it becomes apparent that good
MAE and MSE results do not necessarily indicate that the model also performs well on our
customized error metric.

4.2 How much data is needed to accurately predict the required
energy?

After evaluating the general performance of all methods, we evaluated how every model
performs if only a certain amount of data is available. We evaluated it with models that
are trained on data of the same user, data of similar users, and data of all users using the
rolling-window evaluation.

The results of models trained on a single user are depicted in Figure 20. The conditional
probability model performs best until 100 weeks of training data are used where it is out-
performed by XGBoost. XGBoost performs worse than the mean model if only a few weeks
of training data are available. However, as more data becomes available its performance
gets closer to the results of the conditional probability model. It is also interesting to note
that the performance of the conditonal probability model starts to decrease after around 60
weeks of available training data. This may be due to changing user habits after a certain
amount of time. Ridge regression performs significantly worse than all other methods.
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Figure 20: AQE of predictions of models trained on a single user

Figure 21 depicts the results for models trained on all available users. XGBoost out-
performs the conditional probability model with a great margin in error. Furthermore,
the performance of XGBoost takes less time to converge compared to the case where it is
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only trained on single users. Also, compared to training on single users, the conditional
probability model generally obtains worse scores whereas XGBoost obtains better scores.
Furthermore, the results clearly show that at some point the performance becomes worse
for XGBoost and the conditional probability model if more data is used for training which
indicates that the time series is non-stationary and that a users charging patterns change.
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Figure 21: AQE of predictions of models trained on all users

Lastly, Figure 22 depicts the results of models trained on similar users. Except for
the case where only a few weeks of training data are available, XGBoost outperforms the
conditional probability model significantly. As already visible in previous results, the per-
formance of both XGBoost and the conditional probability model gets worse at some point.
Furthermore, the AQE is slightly better than the model trained on all clusters for XGBoost
but convergence is slightly slower. As for training on all users, ridge regression performs
slightly better than the mean model if enough data is available but still significantly worse
than the other tested methods.
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Figure 22: AQE of predictions of models trained on similar users

In conclusion, the conditional probability model performs best if trained only on single
users irrespective of the amount of available data. Furthermore, XGBoost obtains signifi-
cantly better results if trained on similar users which are however slightly worse then the
results obtained by the conditional probability model trained on single users.
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4.3 How to deal with cases where the required energy cannot be
reliably predicted?

As a last step, we evaluated how prediction accuracy differs between different users. Figure
23 depicts the distribution of AQE errors of different users using XGBoost trained only on
past data of the respective user.
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Figure 23: Distribution of AQE of different users

The error scores range between 10 and 70 which indicates that the prediction quality
varies a lot across different user and which is why we further investigated what influences
the accuracy of our predictions and which users are easier and harder to make predictions
for. Figure 24 shows the targets and predictions using XGBoost of a user with high AQE.
The red line indicates accurate predictions. The model does a poor job in predicting the
required energy and mostly predicts values between 3 and 5 irrespective of the actual target
value which indicates that the model can not infer how much energy is required for the next
charge.
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Figure 24: Predictions and targets of required energy of user 26

Figure 25 shows the same plot for a user with low AQE. Most points lie either on or near
the red line which indicates perfect predictions. Also, the linear regression model fitted to
the data points (indicated by the blue line) is almost the same as the red line. It is also
important to note that most predictions are slightly above the red line as this leads to a
better error because of the asymmetry in the error function. The main difference between
these two users is that user 26 has an estimated battery size of 6.2kWh and user 114 of
13.1kWh.
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Figure 25: Predictions and targets of required energy of user 114

To further investigate which factors have an impact on the prediction accuracy we cal-
culated several user specific features and their correlations with the AQE. The correlations
in Table 4 indicate that the predictions are best if a user has a car with greater battery,
but does charge less energy at each charge. Furthermore, charging more frequently has
a negative impact on the overall error and it is of high importance that enough charging
events for that user are available for training of the model.

Table 4: Pearson correlation coefficients between AQE and user specific features

Feature Correlation with AQE

Charging frequency 0.132
Battery capacity -0.349
Average amount of energy charged at each charge 0.191
Number of valid charging events -0.359

The negative correlation between battery capacity and AQE might be due to the nor-
malization in AQE. The larger the battery size is, the more time the EV would need to
charge to full. Since full charges occur most likely during night, and the span of night hours
is fixed, when only normalized required energy is evaluated, there would be less range vari-
ation for larger battery size than for small battery size. The negative correlation between
average charged energy and AQE is probably due to that the more a user charges at home,
the more information we have about this user’s charging behavior, thus less prediction error
occurs.

Although, the correlation coefficients indicate for which users our predictions work well,
the coefficients are still only moderate. Therefore, we have to conclude that without further
research they can only serve as an indication whether our predictions work well and not
definite proof.

4.4 Resulting Approach

Based on these results we designed an algorithm for the prediction of the required energy
once a new user signs up for the sonnenCharger. First, we always use the estimated battery
size of that user as our prediction as it is the least risky prediction and always leads to a
full charge. As our prediction accuracy differs significantly among different users, we first
test our predictions before actually applying them. Thus, we evaluate the predictions of
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XGBoost trained on similar users on that user for a certain amount of time since XGBoost
obtained the best results with that training strategy and it is directly applicable. If the
AQE is low we apply the predictions of XGBoost on that user instead of using the battery
size. If the AQE is high we continue to use the battery size. After a certain amount of
time as more data for that user becomes available we evaluate the conditional probability
model trained on that single user as it has a better AQE than XGBoost trained on similar
users, if enough data is available. If the AQE is lower than using XGBoost we switch to the
conditional probability model. If it is higher we continue to use XGBoost or the battery
size.

We extend this approach by introducing a confidence parameter α that controls how
much our predictions influence the final prediction for the required energy:

yfinal = α · ypred + (1− α) · capacityest

where yfinal is our final prediction, ypred is the prediction using our models and capacityest
is the estimated battery size. Low α implies that we mainly rely on our estimate of the
battery size whereas high α implies that we mainly use our predictions. There are several
ways to set α:

1. Based on AQE: One way to set α is to choose it anti-proportional to the resulting
AQE for a single user since a worse error indicates inaccurate predictions so that it is
safer to rely on the battery size estimate instead.

2. Based on user preferences: Another way is to either let a user specify his confi-
dence level, or develop algorithm to determine the confidence level for user based on
standardized preference survey. If a user prefer absolute confidence, α is set to 0. If
he is fine with lower confidence α can be set higher.

This approach allows us to incorporate our predictions depending on their quality or a
users preferences which overall leads to more reliable predictions.
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5 Conclusion & Outlook

The goal of our project at sonnen was to predict the required energy once a user plugs in
his car to the sonnenCharger in order to optimize the charging plan for the use of solar
energy. To reach this goal we investigated three project objectives: which models work well
on our problem, how much data is needed, and how the performance differs among different
users. As a result we found out that the conditional probability model performs best if
trained on a single user and XGBoost obtains the best results if trained on similar users.
Furthermore, the performance of our models is different depending on the user and we could
find indicators for which users our models work well but no definite proof.

Since the sonnenCharger only started shipping in April 2018, we did not have enough
data to apply our approach on data from sonnen. However, we implemented an adapter
that transforms the data from sonnen to the same format we used for Dataport. Therefore,
one can just switch the adapter for Dataport with our adapter for sonnen and evaluate our
algorithms as soon as enough data becomes available. As the Dataport dataset contains
recent data from normal users, we expect that our models achieve comparable results on
the sonnen data.

Additionally, during development, we identified future research directions and a few
points where the current model might be improved using additional data only available for
the sonnen dataset:

• Clustering: As described in Section 3.2.2, we divided the batteries into clusters
based on estimated battery capacity. This is optimal for our investigation given the
limited nature of the dataset used, but for sonnen’s implementation other clustering
variables could prove more effective, such as actual battery capacity, EV model, or
user demographics data.

• Feature extraction: As mentioned in Section 1.2.3, the distinction between prema-
turely ended and complete charges can be made in a more simple and robust way
through the use of the charger pilot signal. Actual battery capacity will replace the
estimated capacity. Also, EV model would give precise information about its steady
state power. Furthermore, features of first-hand collected user preferences could be
included as predictors.

• Customized error function: Similar to the confidence parameter α described in
Section 4.4 that can be set using confidence collected from user preferences, one can
also include this preference in the training of our models by updating the steepness
parameters of the AQE separately for each user and the corresponding preference.
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