
TUM Data Innovation Lab
Munich Data Science Institute

Technical University of Munich

&

SigOpt (intel)

&

Leibniz-Rechenzentrum (LRZ)

Final report of project:

How To Train the Best Deep Learning Models

for The Edge?

Authors Rayen Dhahri, Nicolas Gehring, Grigor Nalbandyan The-

jeshwar Sai, Juergen Wallner

Mentor(s) Maja Piskac (M.Sc) LRZ, Tobias S Andreasen (M.Sc)

SigOpt

Project Lead Dr. Ricardo Acevedo Cabra

Supervisor Prof. Dr. Massimo Fornasier

Aug 2022

1

Abstract

Artificial Intelligence (AI) applications and computations on limited endpoint resources,
referred to as edge devices, play a crucial role in the massively growing domain of edge
computing. Due to the limited hardware environment of edge devices, it requires special
techniques and methods to e�ciently run or even fit models on such devices. Therefore, a
thorough literature research on specific techniques like sparsification and quantization as
well as a detailed explanation about hardware limitations is presented. This knowledge
is further used to design and implement an experimentation pipeline to study the impact
of the sparsification and quantization methods on the model’s performance, as well as
hardware extension e↵ect on inference speed. We show the e↵ect of hyperparameters
on multiple training metrics as well as showcase how di↵erent input sizes, batch sizes,
and CPU cores influence the inference speed. The pipeline was developed on the AI in-
frastructure hosted and operated by the ”Leibniz-Rechenzentrum (LRZ) der Bayerischen
Akademie der Wissenschaften (BAdW)” using the Neural Magic Ecosystem, a widely used
open-source sparsification framework. To make our results comparable to current publi-
cations, in all experiments, a ResNet-50 architecture on the image classification dataset
CIFAR-100 was used. Overall, we were able to obtain a four times more compact and five
times quicker model with above baseline accuracy, thanks to fine-tuned sparsification and
quantization approaches. We deploy the top performing models on several Edge devices.

Keywords: Edge devices, sparsification, quantization, hyperparameter tuning, deep
learning models

CONTENTS 2

Contents

Abstract 1

1 Introduction 4
1.1 Motivation . 5
1.2 Challenges . 6
1.3 Approach and Contribution of this Work 6

2 Theoretical Background 8
2.1 Sparsification . 8

2.1.1 What to Sparsify? . 9
2.1.2 When to Sparsify? . 9
2.1.3 How to Sparsify? . 10

2.2 Quantization . 11
2.3 Reduced Peak Memory Consumption . 11
2.4 Hardware Limitations . 13

3 Experiment Architecture and Implementation 14
3.1 Conceptualization Phase . 14
3.2 Planning and Implementation Phase . 16

3.2.1 Model Modification . 17
3.2.2 Benchmarking . 18
3.2.3 Metric Collection . 18
3.2.4 Optimization . 18

4 Experiments 20

5 Results 21
5.1 E↵ect of Sparsity Level on Accuracy and Inference Speed 21
5.2 E↵ect of Batch Size and Number of Cores on Inference Speed 21
5.3 E↵ect of the Input Size on Inference Speed 22
5.4 E↵ect of Quantization on Inference Speed 23
5.5 E↵ect of Recipe Hyperparameters on Train Metrics 24
5.6 Model Deployment on di↵erent Edge Devices 26
5.7 System Resources Usage . 27

6 Conclusion and Further Research 29

References 30

LIST OF FIGURES 3

List of Figures

1 Edge Devices and Nodes in Relation to the Cloud 4
2 Edge Computing Interest (Google Trends) 5
3 Edge Computing Interest per Region and Ranking (Google Trends) 5
4 Typical Test Error vs. Sparsity showing Occam’s Hill (network: ResNet-50

on Top-1 ImageNet) . 8
5 Peak Memory Usage before Operators Reordering in a simple CNN Model

[15] . 12
6 Peak Memory Usage after Operators Reordering in a simple CNN Model

[15] . 12
7 Overview of our System Architecture . 17
8 E↵ect of Sparsity on Inference Speed . 21
9 E↵ect of Batch Size and Number of Cores on Inference Speed 22
10 Input Size and Latency (Batch Size 1) . 22
11 Input Size and Latency (Batch Size 16) . 23
12 Quantization E↵ect (Batch Size 1) . 23
13 Quantization E↵ect (Batch Size 16) . 24
14 Pruning Fraction and Pruning Frequency E↵ect on the Validation Accuracy 25
15 SigOpt Parallel Coordinates of Recipe Parameters on Validation Accuracy 25
16 Comparison of Models Deployed on Edge Device 26
17 Comparison of Models’ Memory Footprint on Edge Devices 27
18 GPU Power Usage (left)/ GPU Memory Usage (right) for only Sparsifica-

tion and Sparsification with Subsequent Quantization 28

List of Tables

1 Hardware Limitations. 13
2 DeepSparse CPU Hardware Support . 16
3 Used Edge Devices Specifications . 26

1 INTRODUCTION 4

1 Introduction

With the breakthrough of Artificial Intelligence (AI), there is an ever-increasing boom
of applications and services. Benefiting from this technology, our lifestyles have been
dramatically changed accordingly. [26] Logically, it is estimated that by 2025 more than
75 billion devices [12], such as smartphones, tablets, wearables, and gadgets, we refer to
as edge devices (classification of terms in Figure 1), will interact with their surrounding
environment and user. The world is entering the age of hyperconnectivity, where data
and information systems share data between and among them constantly. [23]

Figure 1: Edge Devices and Nodes in Relation to the Cloud
Taken from OCTO Technology

This high level of connected things will lead to network congestion eventually. According
to Cisco’s forecast, there were 850 ZB of data generated by mobile users and Internet of
Things (IoT) devices in 2021 [26], [3], making cloud computing insu�cient, since it su↵ers
from delayed data transfer, coherent communication costs and exposed private informa-
tion.

As preventive measurement, understanding the complex analysis of sensors data for
decision-making as close to the source as possible is inevitable. Therefore, edge com-
puting is a rapidly growing and developing field as reflected in Figure 2 and 3.

1 INTRODUCTION 5

Figure 2: Edge Computing Interest (Google Trends)

Figure 3: Edge Computing Interest per Region and Ranking (Google Trends)

Emphasizing figures from Gartner, a tech research and advisory firm, show that approx-
imately 10% of enterprise-generated data was created and processed outside traditional
centralized data centers and the cloud in 2018. But it predicted that 75% of data will
be processed at the edge by 2025. [25] The sole usage of IoT devices, however, face also
several challenges in order of this accomplishment. Necessarily, the subject and compre-
hensive approaches must be motivated particularly.

1.1 Motivation

Varghese et. al. [24] identified a list of needs that motivate computing on edge devices.
Edge computing takes the computation out of a data center and places it closer to endpoint
devices where data is being generated, which brings several benefits to approach such needs
[23]:

1. Improved speed / reduced latency: Computation closer to the source improves the
services by solving the latency challenge of current cloud infrastructures connected
to edge devices, because it eliminates the need to move data from endpoints to the
cloud and back again. This is especially helpful in autonomous vehicles and medical
use cases, which all require analysis and instructions nearly instantaneously in order
to function safely.

2. Improved security and privacy protections: Edge devices capture confidential sen-
sory input like text, audio, video, touch, or motion. Without the need of data
transfer also comes the benefit that data is kept close to the edge, which provides
enhanced security and more privacy protection to the end users.

1 INTRODUCTION 6

3. Savings / reduced costs: In the next decade, data centers will most likely consume
more than three times as much energy as today due to the ever-rising amount of
data. Hence, there is an unavoidable need for adopting energy e�cient strategies
in the form of performing analytical approaches on edge devices that can minimize
this energy usage. Moreover, users need more bandwidth to cope with this amount,
further driving up the prices. Without or limited data movement, edge computing
can help to keep the costs moderately.

4. Reliability and resiliency: One of the biggest advantages of operating edge devices is,
that they continue to function when communication channels are slow or temporarily
down. Additionally, it helps to reduce central point of failures, since a failure at one
edge device will not a↵ect the performance of other ones in the ecosystem.

5. Scalability: Business-wise, companies can benefit from the deployment of edge de-
vices in di↵erent fields of application.

1.2 Challenges

However, existing intelligent applications are computation intensive, which present strict
requirements on resources, e.g., CPU, GPU, memory, and network [26]. This makes it
especially hard to deploy deep learning models on edge devices. Additionally, tasks rely
heavily on their domain. Di↵erent metrics are required for particular cases, which makes
the optimization even more complex [20]. Below are some essential metrics to consider
when planning to run software on edge devices.

1. Latency: The goal is to finish a given workload in the nearest layer which has enough
computation capability. Since edge devices are very limited in their resources (see
also 2.4) it is naturally challenging.

2. Energy: User services rely on functional devices, which means that any unnecessary
battery drainage is problematic. Hence, it can be considered as the most precious
resource for edge devices.

3. Cost: Respective analysis needs to be done in runtime, but should also consider
inference and resource usage of concurrent workloads.

1.3 Approach and Contribution of this Work

With all these considerations in mind, our work on this project was guided by the follow-
ing three research questions:

RQ1: How to deploy Deep Learning models e�ciently on edge devices from the literature
standpoint?

This research question is intended to build the theoretical foundation about hardware
limitations of edge devices and methods to overcome them. By structurally organizing
and evaluating related literature, an overview of relevant approaches is created.

1 INTRODUCTION 7

RQ2: How can the impact of those approaches be tested, optimized and visualized?

This research question derives requirements for an experimentation pipeline, which can
be used to test the methods from RQ1. Further, the pipeline must allow the optimization
and the visualization of the impact of di↵erent methods. The creation of such a pipeline
is delivered as an artifact in the context of this question.

RQ3: How do di↵erent methods and their hyperparameter settings perform with respect
to di↵erent metrics in the training and inference stages of a computer vision model?

This research question focuses on performing actual experiments using the pipeline from
RQ2. The aim is to understand the influence of di↵erent factors, such as hyperparameters,
chosen method or hardware infrastructure on various train or inference metrics.

This report follows the three above-mentioned research questions while presenting and
explaining all steps taken by the authors to answer them.

Section 2 gives detailed insight into the approaches to transform or train deep learning
models for edge devices, as well as an overview of current edge device hardware products
and their limitations.

Section 3 describes the development of the experiment pipeline. The conceptual work,
and all used frameworks, are explained. Further, a technical description of the software
architecture is provided and the implemented features and design choices are explained
in detail.

Section 4 explains the actual conducted experiments. It motivates the individual runs
by explaining the underlying questions we wanted to answer and shows how they were
mapped to specific configurations for particular experiments.

Section 5 presents the results of the experiments. Qualitative and quantitative results
are shown and discussed.

Section 6 closes with a conclusion and discusses limitations of the work as well as pro-
viding possible further research directions.

2 THEORETICAL BACKGROUND 8

2 Theoretical Background

In order to utilize the previously mentioned advantages of edge computing and in par-
ticular AI models on edge devices, new and innovative approaches are essential. These
methods aim to modify deep learning models in such a way that they can be used e�-
ciently despite the restrictions of the limited hardware environment. For example, existing
models can be reduced in size or small models can be trained from the beginning to fit
on a particular device. As size is a big issue, most methods focus on the reduction of
model size and latency. Therefore, in the next two subchapters, promising approaches to
reduce model size called sparsification and quantization will be presented. Because not all
methods deal with the reduction of model size, we also present an approach that reduces
peak memory consumption by intelligently reordering the individual instructions. In or-
der to clarify the more challenging hardware environment of edge devices, an additional
chapter follows, which explains more precisely why it is di�cult to deploy models on edge
devices. Di↵erent hardware types are presented and useful hardware extensions for the
deep learning context are discussed.

2.1 Sparsification

Sparsification describes the selective pruning of neural network components with the goal
of improving generalization and robustness, as well as improving performance for infer-
ence and/or training while reducing model size. It builds on the assumption that not
all features/components of a network are equally relevant and aims to represent dense
vectors/networks in sparse subspaces. Today’s sparsification methods can lead to a 10-
100x reduction in model size, and to corresponding theoretical gains in computational,
storage, and energy e�ciency, all without significant loss of accuracy [11]. In most cases,
the accuracy follows Occam’s hill [18] , which can be seen as the green line in Figure 4.

Figure 4: Typical Test Error vs. Sparsity showing Occam’s Hill (network: ResNet-50 on
Top-1 ImageNet)

Taken from [11]

2 THEORETICAL BACKGROUND 9

The picture shows three main stages of the behavior of a sparsified model in terms of
accuracy and performance. In low sparsification regimes (A) the accuracy initially in-
creases because smaller models form a stronger regularizer, which enforces the model to
focus on more important and general aspects and therefore decreases learned noise. The
performance on the other hand grows slowly due to overhead introduced by additional
data structures to store the sparsified model and control sparse computations. In the
second regime, with higher sparsity levels (B) the model performance remains stable and
perhaps slightly decreases, while performance increases faster. Finally, at high levels of
sparsity (C), quality drops rapidly while performance levels o↵ due to storage and control
overhead dominating performance.

The concept of sparsification can be applied to di↵erent elements of a network, at di↵erent
points in time, by using a huge variety of criteria to select the elements for removal. The
three aforementioned aspects (what to sparsify, when to sparsify and how to sparsify) are
important considerations which will be further described in the next paragraphs.

2.1.1 What to Sparsify?

When considering which elements to sparsify one distinguishes between model and ephemeral
sparsity. The first one introduces sparsity for a whole model targeting weights, neurons or
neuron-like elements like filter, channels or heads in other architecture types. The latter
is a second class of sparsification approaches, which are only applied to and relevant for
single examples. These techniques include structural sparsity introduced by well-known
activation functions like the ReLu or Softmax which naturally push values to zero and
thereby introduce sparsity. One can also consider random activation dropouts [21] as a
way of introducing ephemeral sparsity. Sparsification applied to gradients and/or errors,
as well as routing each example through a di↵erent sparse subnetwork, are other examples.

A way dropout is used to achieve a high compression ratio is described in the DeepIoT
[27] method. The main approach of DeepIoT can be summarized as a set of dropout op-
erations between the layers with an optimal dropout probability for each hidden element
in the network. The dropout probabilities are determined through a compression neural
network that is jointly optimized with the original network through the compressor-critic
framework, where we minimize the same loss function based on the original network pa-
rameter and the weights that are given to the compression network as an input. This
joint simulation allows the original neural network to be optimized to achieve a better
performance and allows the compression network to produce better dropout probability.

2.1.2 When to Sparsify?

After deciding what to sparsify it is also important to consider when to sparsify the re-
spective components. One can categorize the di↵erent methods into three main schedules.
The most common choice is to first train a model and then sparsify it. This means to
train a dense model until convergence and sparsify it afterwards. One can distinguish
between methods which try a one-shot approach and others which include retraining and
iterative sparsification processes. Those methods usually consist of several stages (e.g.
warm-up, iterative sparsification, retraining or fine-tuning) as explained in [22, 11].

2 THEORETICAL BACKGROUND 10

Another option is to sparsify a model during the training process. This option is usually
cheaper as the first schedule because a sparse model is less computationally expensive.
Furthermore, it could prevent dense models which have been trained to convergence from
overfitting, which would be hard to recover from with pruning alone. Yi [22] showed
that with their dense-sparse-dense training scheme they reach significantly higher gener-
alization performance for their computer vision task. The schedules usually also include
multiple iterations consisting of di↵erent training phases. The main challenge with those
approaches is to decide how fast to prune how many elements. These problems and the
fact that they are more brittle to hyperparameter configurations and could potentially
lead to less e�cient convergence [9] makes this approach harder in practice.

The last schedule of fully sparse training starts with a sparse model and trains it in the
sparse domain. One can di↵erentiate between static and dynamic sparsity. Dynamic spar-
sity combines pruning and regrowth of elements during the training process, while static
sparsity removes elements once before the training starts and does not update them again
[11]. Although these methods require complex schedulers and hyperparameter settings,
they enable the training of models which would normally just not fit into the machine.
Further, they require less resources and therefore save costs for training. This raises the
question on how to pick the initial sparse model, as show in [13, 5, 6], where randomly
initialized sparse networks perform much worse than their dense counterparts. There
exist multiple actively researched approaches for finding those initial sparse subnetworks
which can reach baseline accuracy. An interesting example is the research around the
Lottery Ticket Hypotheses [6] which claims that ”A randomly-initialized, dense neural
network contains a subnetwork that is initialized such that - when trained in isolation
- it can match the test accuracy of the original network after training for at most the
same number of iterations.” These hypotheses have led to many further developments
and proves that those subnetworks exist in transformer models [1], large computer vision
models [2] and that they can be used for reinforcement learning [28] too.

2.1.3 How to Sparsify?

After it is clear what and when to prune elements of the networks, one needs to con-
sider how the elements for removal are actually determined. For this purpose there exists
numerous methods as shown in the overview of [11]. The most important takeaway is
that comparative studies failed to identify a clearly winning method as the e�ciency of a
method depends on the exact setting of network architecture, hyperparameters, learning
rate schedule, learning task etc. [7]. However, all methods aim to derive an importance
measurement for the objects which are considered for removal. The first class of methods
are data-free approaches. Those sparsify without considering training examples or evalu-
ating the network. An example would be to prune weights by magnitude [4]. The second
class of data-driven approaches contains methods which use a set of examples (potentially
all the training data) to determine directly which elements should be removed to maintain
or improve prediction accuracy while sparsifying the network. The last class of training-
aware approaches consider the training loss function itself in the pruning process and use
it to improve the model accuracy of the pruned network as much as possible. Examples
would be methods which are using the first or second order Taylor expansion of the Loss

2 THEORETICAL BACKGROUND 11

function to derive weight importance, or include sparsification goals in the Loss function
as a regularization term.

2.2 Quantization

Quantization is another method for addressing the issues of latency, memory footprint
and energy consumption in neural networks [8]. With its roots in Shannon’s mathemat-
ical theory of communication [19], currently quantization is a widespread and e�cient
approach used both in theoretical works, and also in practical applications. Quantiza-
tion reduces the precision of neural network weights, input, and output activations from
32-bit floating-point representation to lower precision, usually 8 bits. This results in
faster inference, memory footprint reduction of four times, smaller parameter updates,
higher cache utilization, etc. Recent advances of modern hardware architectures enable
us to experience the theoretical gains in practice. The main downside of quantization is
the possible degradation of accuracy metrics, which can be fixed by Quantization-Aware
Training (QAT) or Post-Training Quantization (PTQ). In QAT, a model is quantized and
fine-tuned on training data, which allows the model to restore its accuracy by adjusting
the parameters. PTQ uses a calibration data to gather statistics about model’s layers’
input and output distributions and perform Int8 conversion accordingly. Although PTQ
does not require additional retraining, it can produce lower accuracy compared to QAT
[8].

2.3 Reduced Peak Memory Consumption

We have discussed in detail the techniques like sparsification and quantization that are
used for deploying a neural network model on edge devices. Though they focus on reduc-
ing the complexity of the network, we should also look out at the memory limitations of
an edge device and how it a↵ects neural network deployment. This section discusses on
one such technique to minimize the peak memory usage of a neural network by making
inference to follow a particular execution order of its operations reducing the memory
footprint enough to make it fit within the on-chip memory of our edge platform, which
would otherwise not have been possible using the default provided operator execution
order.

Modern deep learning frameworks optimize the network’s computation graph for infer-
ence in advance by fusing adjacent operators and folding batch normalization layers into
preceding linear operations. An operator requires bu↵ers for its inputs and output to be
present in memory before its execution can commence. This comprises input and output
tensors of a pending operator and other tensors that were already produced and need to
be held back in memory for subsequent operators. However, more recent architectures,
such as ResNet, Inception, NasNet, introduce divergent processing paths where the same
tensor can be processed by several layers, i.e. their computation graph is no longer linear
and has branches. Neural networks whose computation graphs comprise branches permit
little freedom over the order of assessment in their operators. When execution reaches a
branching point, the inference software program has to pick which department to begin
comparing next. This desire can have an e↵ect on which tensors want to be stored in rem-

2 THEORETICAL BACKGROUND 12

iniscence (running set), so we are able to assemble an execution timetable that minimizes
the overall length of the running set at its peak (reminiscence bottleneck) [15]. In a nut-
shell, changing the evaluation order of a model’s operators minimizes peak memory usage
of a neural network during inference. Figure 5 and Figure 6 showcases the di↵erences in
the memory footprint of a simple CNN model before and after reordering.The model’s
peak memory consumption is reduced by 256 bytes [15]. Though this doesn’t change the
inference speed, but the model is optimised in terms of memory. Results based on this
approach is discussed later part in this report. Employing a di↵erent operator execution
order for neural network inference can make previously non-deployable models fit within
the memory constraints of an edge hardware. Unlike mobile and server platforms, edge
hardware often does not have enough memory to statically pre-allocate all tensor bu↵ers
of the network, which requires the inference to support dynamic memory allocation. Edge
devices like microprocessors and microcontrollers are a viable platform for running deep
learning applications if the model designer can overcome constraints imposed by limited
memory and storage.

Figure 5: Peak Memory Usage before Operators Reordering in a simple CNN Model [15]

Figure 6: Peak Memory Usage after Operators Reordering in a simple CNN Model [15]

2 THEORETICAL BACKGROUND 13

2.4 Hardware Limitations

Using deep learning models directly on edge devices allows for greater cost-e�ciency, scal-
ability and privacy for end users, compared to relying on a remote server to carry out the
processing. However, an edge unit typically consists of a low-frequency processor and only
several hundred kilobytes of on-chip memory, and thus are severely under powered com-
pared to mobile devices. Specially designed network architectures and inference software
are required to cope with hardware constraints of edge devices. The below table 1 show-
cases the di↵erent edge devices and their respective support to Tensorflow lite (Tflite).
We could see that most of the devices don’t support the Tflite software.

End Device DNN Model Application TFlite Support Key Metric
STM32F401RE CNN Image Recognition no fast inference
Raspberry Pi model 4 SVM Image Recognition no fast inference
Raspberry Pi model 4 DNN Distributed Computing no hierarchical
Raspberry Pi model 4 SVM, CNN Video Analysis no fast inference
Raspberry Pi model 4 SVM Video Analysis no fast inference
SPHERE SVM Battery Lifetime Estimation no energy
Motorola 68HC11 CNN Image Recognition, Sensor Fusion no fast inference

ARMÂ R� v7 SVM Code execution no accuracy
Sparkfun Edge LR Speech Recognition yes accuracy
Arduino Nano 33 BLE Sense - - yes -
Adafruit EdgeBadge - - yes -
ESP32 CNN Human Activity Recognition yes accuracy
Espressif ESP32-DevKitC - - yes -
Espressif ESP-EYE - - yes -
Wio Terminal: ATSAMD51 - - yes -
Sony Spresense - - yes -
Google Edge TPU CNN - yes, with limits fast inference

Table 1: Hardware Limitations.
Taken and extended from [16].

Edge computers are great for collecting, storing, processing, and analyzing data at the
edge; however, for some complex workloads, edge computers should be equipped with
performance accelerators for real-time processing decision-making. New computing and
storage designs maximize performance as close to the data as possible. These add-in hard-
ware solutions through PCIe architecture provide added value for specific edge computing
workloads that require performance for real-time processing. Nevertheless, power source
and utilization must be managed in such a way that the edge device is up all the time.

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 14

3 Experiment Architecture and Implementation

After establishing a solid theoretical foundation around the challenges and approaches to
bring deep learning models onto edge devices, our goal was to practically explore some of
them. We decided to try some of the most promising sparsification and quantization ap-
proaches and do experiments around their performance and optimization before deploying
them on real edge devices and benchmarking their performance.

Our aim was to build a pipeline which allows a user to test di↵erent sparsification and
quantization approaches on a specific model and dataset. Further, the pipeline should
collect metrics of the whole training/sparsification process, as well as the inference of
the altered models for later analysis. In order to compare and optimize hyperparameter
settings, the option to apply multiple configurations automatically as well as use multiple
approaches for their optimization must be included. The development of the experimen-
tation architecture proceeded in four phases. First, there was a conceptual phase. Based
on the above-mentioned requirements, we examined which open source software as well
as hardware provider could we use for the creation of our experimentation architecture.
This was followed by the planning phase, in which the architecture was outlined using the
before determined software and resources.

Subsequently, the actual implementation and setup followed and by the end we bench-
marked and deployed these models on real edge devices. In the next section, the con-
ceptual phase is described first. Afterwards, planning and implementation are described
together. The conduction of the actual experiments using this system is explained in 4.

3.1 Conceptualization Phase

In the conceptual phase, we derived the most important requirements for our system and
searched for the most promising open source software and tools to fulfill them. In the
following, our four main requirements are shown and the tools chosen to address them
are presented.

Requirement 1: The pipeline can apply di↵erent methods for sparsification
and quantization to a given deep learning model and dataset.

After researching and evaluating several open source sparsification frameworks, we decided
to use the Neural Magic Ecosystem 1. Founded by a team of award-winning MIT computer
scientists, Neural Magic is the creator and maintainer of the DeepSparse Platform. It has
several components, including the DeepSparse Engine, a CPU runtime that runs sparse
models at GPU speeds, as well as three other products called Sparsify, SparseML, and
the SparseZoo. We used all of their o↵ered software solutions except Sparsify. SparseML
is a toolkit that includes APIs, CLIs, scripts and libraries to apply state-of-the-art spar-
sification algorithms to any neural network.

1https://neuralmagic.com/

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 15

The configuration of SparseML is done in the form of a recipe. A recipe is a YAML
file which describes the so called modifiers which should be applied to the model. There
exist multiple modifiers for tasks such as pruning, learning rate adaption or quantization.
Those modifiers can be configured as well to further optimize the performance. An exam-
ple of such a recipe depicting some hyperparameters and modifiers can be seen in Listing 1.

To create custom recipes, we made wide use of SparseZoo, which is Neural Magics
constantly-growing repository of sparsified models with matching sparsification recipes.
In order to run and benchmark our sparsified models, we decided to use the DeepSparse
Engine.

Listing 1: Example Recipe

1 version: 0.1.0

2 final_sparsity = 0.95

3 modifiers:

4 - !EpochRangeModifier

5 start_epoch: 0.0

6 end_epoch: 70.0

7
8 - !LearningRateModifier

9 start_epoch: 0

10 end_epoch: -1.0

11 update_frequency: -1.0

12 init_lr: 0.005

13 lr_class: MultiStepLR

14 lr_kwargs: { milestones : [43, 60], gamma : 0.1}
15
16 - !GMPruningModifier

17 start_epoch: 0

18 end_epoch: 40

19 update_frequency: 1.0

20 init_sparsity: 0.05

21 final_sparsity: eval(final_sparsity)

22 mask_type: unstructured

23 params: [sections.0.0.conv1.weight ,

24 sections.0.0.conv2.weight ,

25 sections.0.0.conv3.weight]

Requirement 2: The pipeline can create and report meaningful metrics for the
training/sparsification process as well as the inference of the optimized models.

As our main source of metrics collection for both training and inference, we decided
to use Weights & Biases (wandb)2. Wandb is an experiment tracking tool for machine
learning with a quite flexible and customizable API. We used it to track all our exper-
iments due to its functionality to report custom metrics and log parameters as well as
their great visualization capabilities.

2https://wandb.ai/

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 16

Requirement 3: The model modification process can be tuned via hyperparam-
eters and includes optimization software to derive an optimal configuration.

To meet this requirement, we have decided that our software must be able to accept
multiple di↵erent recipe configurations for a single run and automatically apply them one
after another without manual intervention. Further, for each of these di↵erent configu-
rations, the metrics must be automatically reported in a way that we can later analyze
the e↵ect of the individual changes. Only in this way, we can test hundreds of di↵erent
configurations. In addition, we tried SigOpt 3, a hyperparameter optimization tool, as an
alternative approach to derive an optimal configuration besides manual grid search.

Requirement 4: A powerful and versatile hardware infrastructure supports
training and inference.

As most of the sparsification and quantization approaches provided by SparseML re-
quire retraining, fine-tuning and further computations, we need a hardware infrastructure
to train and modify our models. For this purpose we got granted access to the Leibniz-
Rechenzentrum (LRZ) AI Systems4 which is one of the LRZs5 services primarily oriented
towards big data and AI communities with a focus on GPU resources. The AI systems
consist of a total of 6 di↵erent partitions with di↵erent hardware resources. For our ex-
periments we choose the V100 GPU Nodes which are equipped with NVIDIA Tesla V100
16 GB GPUs 6, 20 CPUs and 368 GB of RAM. For the inference benchmarking of our
modified models we decided to use Google Cloud as their Compute Engine7 service and
especially their N2 machines give us access to CPUs with Vector Neural Network Instruc-
tions (VNNI) which are optimized for deep learning inference as show in table 2. Further,
SparseML also recommends in their documentation to use such resources to achieve opti-
mal results. In addition, we deployed the models on several private smaller edge devices
like a Raspberry Pi 3, Raspberry Pi 3 B+, Raspberry Pi 4 and a NVIDIA Jetson Nano
TX2.

x86 Extension Microarchitectures Activation Sparsity Kernel Sparsity Sparse Quantization
AMD AVX2 Zen 2, Zen 3 not supported optimized emulated
Intel AVX2 Haswell, Broadwell, and newer not supported optimized emulated
Intel AVX-512 Skylake, Cannon Lake, and newer optimized optimized emulated
Intel AVX-512 VNNI (DL Boost) Cascade Lake, Ice Lake, Cooper Lake, Tiger Lake optimized optimized optimized

Table 2: DeepSparse CPU Hardware Support

3.2 Planning and Implementation Phase

After we had decided which technologies we were going to use for experiment conduction,
we started designing the actual architecture of the pipeline and other software around the
experiments. The result of this process can be seen in the system diagram depicted in

3https://sigopt.com/
4https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems
5https://www.lrz.de/
6https://www.nvidia.com/en-gb/data-center/tesla-v100/
7https://cloud.google.com/compute

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 17

Figure 7. Our architecture consists of four main modules (Model Optimization, Bench-
marking, Metric Collection and Hyperparameter Tuning). In the following subsections,
each module will be explained, and its implementation is briefly discussed.

Figure 7: Overview of our System Architecture

3.2.1 Model Modification

In order to optimize a model with methods such as quantization or sparsification we use
the SparseML Toolkit. SpaseML is usually integrated into an existing model training
workflow - in our case, a PyTorch8 implementation for training a deep learning model.
The Train&Modify component forms the core of the model optimization process. The
Experiment Controller consumes a Base Recipe and updates the hyperparemters given
in Configuration File. The result is given to Train&Modify to train and export the op-
timized model. After each run, the transformed model is exported in the Open Neural
Network Exchange (ONNX)9 format and saved together with the used recipe. The entire
process and its required dependencies are combined in a single enroot10 container. Using
the SLURM11 resource manager, the container can then be executed on a specific resource
of the LRZ AI Systems.

We have used ResNet-50 [10] for all experiments, as it is widely used in the sparsifi-
cation literature. For an image classification dataset, CIFAR-100 [14] was chosen as it
is a popular benchmark for new approaches. Moreover, it has 50,000 data points, which
eliminates a possible computational overhead. We have pretrained a ResNet-50 model on
the CIFAR-100 and reached a baseline accuracy of 80.33%. The recipe prunes parts

8https://pytorch.org/
9https://onnx.ai/

10https://github.com/NVIDIA/enroot
11https://slurm.schedmd.com/

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 18

of the convolution weights except in the input convolution and last classification layers
by using an Alternating Compressed/ DeCompressed (AC/DC) pruning strategy [17].
Contrary to general magnitude pruning, which prunes part of weights at each iteration,
AC/DC divides the training and sparsification process into two phases - decompressed
and compressed. During decompressed phase, the full model is trained, and during com-
pressed phase only the Top-k weights are trained. This cycle is repeated several times,
and training is completed by final fine-tuning on the sparse model. AC/DC [17] shows
not only better models metric wise, but also provides theoretical guarantees of why this
method should work.

3.2.2 Benchmarking

The second component of the architecture is the Benchmarking module. It takes the
models produced by the Model Optimization module and benchmarks them on the re-
served Google Cloud hardware extension as well as on the Edge devices we got. In order
to understand the impact of di↵erent inference parameters, we tried di↵erent possible
configurations on the DeepSparse engine mainly multiple batch sizes, core counts for each
experiments described in Chapter 4.

3.2.3 Metric Collection

In order to aggregate the di↵erent experiment results and configurations for later analysis,
we used the Metric Collection component. Metrics from both the training and benchmark-
ing are reported to Weights & Biases. We log the metrics in two di↵erent stages (training
and benchmarking) under the same run. This gives us the possibility to append the in-
ference results from di↵erent hardwares to the corresponding optimized model logs. The
metrics we collected are listed below:

• Training metrics: For the training, we keep track of the train and validation accu-
racy, the loss as well as the model sparsity. Further, we store additional information
about the hyperparameters (e.g. epochs, sparsity percentage, architecture, dataset,
etc.) used for each run.

• System resources: We collected over 20 di↵erent system metrics thanks to the built-
in Weights & Biases system monitoring. Along those were metrics like GPU uti-
lization, GPU temperature, memory and disk allocation as well as CPU utilization,
just to name a few.

• Inference metrics: For the benchmarking of a sparsified model, we report the latency
with respect to di↵erent batch sizes and number of cores.

3.2.4 Optimization

As mentioned in 3.1, the SparseML library uses recipes with many hyperparameters to
describe the modifications to be applied. To perform hyperparameter optimization, we
used the Configuration Generator to create multiple configuration files. It takes multiple
parameters with corresponding values (e.g. final sparsity=[0.35,0.75,0.95]) and creates
configuration files consisting of all possible combinations between the provided parameter

3 EXPERIMENT ARCHITECTURE AND IMPLEMENTATION 19

ranges. We use SigOpt as a parallel approach to find the optimal set of parameters.
Finding the optimal set of parameters can be expressed as an optimization problem. We
pass the ranges of the parameters, the budget of runs and the formulated optimization
problem (e.g. maximize the validation accuracy given the sparsity target) to find the best
solution. SigOpt is able to do multi metric optimization (e.g. minimize one metric while
maximizing another). Therefore, SigOpt practically replaces the manual configuration
generation and creates new parameter values for an experiment. The results of each of the
experiments are then reported back to SigOpt, which are then used to derive a new, more
optimal set of values. This feedback-refinement loop is repeated for a predefined amount
of experiments. The SigOpt UI displays the progress and results of the experiments,
including best value combinations and further metrics.

4 EXPERIMENTS 20

4 Experiments

To define the framework of the experiments, we used the following research questions to
guide the experiments.

• How does the sparsity level a↵ect the latency and validation accuracy?

• How does number of cores and batch size a↵ect the final model’s latency?

• Do the results obtained above transfer when input size (hence amount of computa-
tion) is increased?

• How much does quantization a↵ect the latency?

• What is the e↵ect on train and inference metrics when the base recipes hyperpa-
rameters are changed for a fixed sparsification level?

• How do our models perform on the acquired edge devices?

• How is the hardware resource utilization a↵ected by the chosen method and hyper-
parameter configuration?

This resulted in a total of 4 runs with di↵erent objectives. The set of runs is as following:

Grid search run: 54 experimental runs to study the e↵ect of hyperparameter changes
to the base recipe. For this we used the configuration generator with the following values
(epoch = [10,15,25], pruning update frequency = [1,3,5], pruning epoch frac=[0.925,0.7,0.5],
sparsity in [0.95,0.99]). Our configuration generator create all 54 configuration files, each
containing one possible combination of the before mentioned values.

Optimization run: In order to test SigOpts multimetric optimization, we give SigOpt
a budget of 20 runs to find the best combinations of hyperparameters to maximize the
validation accuracy while minimizing the number of epochs.

Sparsity run: In this run, we vary only the sparsity to see its e↵ect on the valida-
tion accuracy and latency. The aim is to find the range where we have the best trade-o↵
between sparsity and accuracy. Therefore, we created 18 di↵erent runs with varying spar-
sities. The first 14 runs test sparsity levels starting from 30% up till 95%, incrementing
by 5% each run. The remaining 4 runs test the high sparsity regimes of 96-99%.

Quantization run: In order to check the e↵ect of quantization on our models, we ad-
ditionally quantized models with 85% and 95% sparsity for later comparison with their
non-quantized counterparts.

Apart from these sparsification and quantization experiments, we were also able to ex-
periment on the third methods for reducing the peak memory consumption by operator
reordering as discussed in Chapter 2.

5 RESULTS 21

5 Results

The following sections show the results of our experiments, which were created using the
data and metrics collected in Weights & Biases. Each of the following sections addresses
one of the previously presented questions.

5.1 E↵ect of Sparsity Level on Accuracy and Inference Speed

Varying the sparsity levels while keeping all other configurations the same (shown in
Figure 8) shows that at a mid-sparsity level between 40% and up to 95%, we can achieve a
validation accuracy higher than the baseline accuracy of 80.33%. The validation accuracy
vs sparsity trend follows the Occam’s hill displayed in Figure 4. We have used batch

Figure 8: E↵ect of Sparsity on Inference Speed

size of 1 and 4 cores to benchmark the model at di↵erent sparsities. We can see how
sparsity a↵ects inference speed. Models with up to 80% sparsity are actually slower than
the original non-pruned model. We can get actual speed up only after 80% sparsity. This
outcome is caused by DeepSparse engine, as it is optimized towards high sparsity regimes.

5.2 E↵ect of Batch Size and Number of Cores on Inference
Speed

We have investigated the connection of batch size, number of cores and latency (Figure
9). As edge devices have limited resources, we limited the number of cores by 8 and batch
size by 64. A 95% sparse model was used for this experiment. Although results go on
par with general intuition that increasing number of cores should decrease latency, we see
diminishing increase when going from 4 cores to 8. Another curious finding is the highly
slight di↵erence of latency for batch sizes of 8 and 16. This e↵ect is seen on any number
of cores.

5 RESULTS 22

Figure 9: E↵ect of Batch Size and Number of Cores on Inference Speed

5.3 E↵ect of the Input Size on Inference Speed

We benchmark the 95% sparse model on various input sizes - 32x32, 128x128, 512x512
- for batch size of 1, 16 and number of cores 1, 2, 4, 8. Figures 10 and 11 show the
results for batch size of 1 and 16 respectively (numbers on the bars indicate speedup in
percentage relative to dense model).

Figure 10: Input Size and Latency (Batch Size 1)

In Figure 10, we can see that increasing the number of cores does not result in a sig-
nificant speedup relative to the original model. For an input size of 512, the di↵erence
is in the range of 1.3%. In absolute terms, a sparse model is 38.68% - 54.44% faster.
When switching to batch size 16, we see an even smaller di↵erence in relative latency
when increasing the number of cores. Here we can notice that the di↵erence in abso-
lute percentages have increased. For batch size of 16, it ranges from 68.51% to 71.87%.
Furthermore, the variance in absolute speedup has significantly decreased.

5 RESULTS 23

Figure 11: Input Size and Latency (Batch Size 16)

We can conclude that DeepSparse engine handles the increment of batch size much better
than of input size.

5.4 E↵ect of Quantization on Inference Speed

SparseML supports quantization-aware training by adding QuantizationModifier to the
recipe. It will perform quantization-aware training during the last several epochs. We
can see the e↵ect of quantization on inference speed for di↵erent sparsification regimes
for batch size 1 and 16 in Figures 12 and 13. The numbers on the bars are the speedup
of each model relative to the original model.

Figure 12: Quantization E↵ect (Batch Size 1)

We are seeing 20-30% improvement in inference speed when a sparse model is quantized.
We can also see that for batch size 1 85% sparsity decreases the inference speed by 14-15%
which is not the speedup one expects when pruning 85% of the weights. Furthermore, 85%
sparse quantized and 95% sparse model have almost equal inference speed. The reason

5 RESULTS 24

can be the way DeepSparse engine handles the pruned weights, and it is more optimized
for higher sparsity, such as 95%. The picture changes when we consider batch size 16.
We can see almost linear increase in latency of original model, but sparse and quantized
models’ latency increase 6-8 times. Moreover, the e↵ect of quantization changes for batch
size 16. We see around 2 times less speedup compared to batch size of 1.

Figure 13: Quantization E↵ect (Batch Size 16)

5.5 E↵ect of Recipe Hyperparameters on Train Metrics

To answer this question, we conducted two di↵erent types of experiments. First, we
collected metrics for 54 di↵erent experiments while varying the four main parameters
of our base recipe. They consist of the number of epochs and the final sparsity level.
Further it includes the pruning update frequency, which describes after how many epochs
a pruning step should be performed as well as the pruning epoch fraction which specifies
the percentage of the epochs which should be spend on sparsification besides warm-up
and fine-tuning. We tested all combinations which are possible with the values below:

• epoch in [10,15,25]

• pruning update frequency in [1,3,5]

• pruning epoch frac in [0.925,0.7,0.5]

• sparsity in [0.95,0.99]

In addition, we used SigOpt to perform a multimetric optimization of the parameters
with the goal of generating an accurate model in as little time as possible. We instruced
SigOpt to derive the best set of parameters within a specific range which minimizes the
used amount of epochs while also maximizes the validation accuracy. For this purpose we
used the same hyperparameters as above and defined the following ranges

• epoch in (min=10, max=20)

• pruning update frequency in (min=1, max=7)

5 RESULTS 25

• pruning epoch frac in (min=0.5, max=1.0)

• sparsity in [0.95,0.99]

Unfortunately, in both experiments no real correlations between the parameters of prun-
ing update frequency and pruning epoch frac on the validation accuracy could be found.
Besides the trivial conclusion that with lesser epochs and increased sparsity the validation
accuracy decreases, almost all combinations reach a similar validation score (the variance
is only around 3%). This can be seen in Figure 14, which shows validation accuracy for the
di↵erent combinations of the pruning fraction and update frequency for the 95% sparsified
model. The reason for this could be due to the fact that the underlying method of AC/DC
sparsification is not as sensitive to changes in hyperparameter settings or the CIFAR-100
task is still to trivial to see real di↵erences. However, one interesting thing to observe is
SigOpts multimetric optimization in Figure 15, which runs a lot more experiments with
smaller epoch numbers due to its minimization obejctive.

Figure 14: Pruning Fraction and Pruning Frequency E↵ect on the Validation Accuracy

Figure 15: SigOpt Parallel Coordinates of Recipe Parameters on Validation Accuracy

5 RESULTS 26

5.6 Model Deployment on di↵erent Edge Devices

In order to test our results in a real scenario we used some of our own devices. We were
able to deploy the above said models and experiments on the real-time edge devices -
Raspberry Pi 3, Raspberry Pi 3 B+, Raspberry Pi 4 and NVIDIA Jetson Nano TX2.
From table 2 it is clear that DeepSparse doesn’t support ARM based architectures. So,
we have exported the model files and benchmarked the models and edge devices using the
native libraries available. The table 3 will showcase the specifications of the edge devices
chosen.

Device CPU Cores CPU Clock GPU RAM
Raspberry Pi 3 Cortex-A53 64-bit 4 1.2 GHz VideoCore IV 1 GB DDR2
Raspberry Pi 3 B+ Cortex-A53 64-bit 4 1.4 GHz VideoCore IV 1 GB DDR2
Raspberry Pi 4 Cortex-A72 64-bit 4 1.5 GHz VideoCore VI 4 GB DDR4
NVIDIA Jetson TX2 Cortex-A72 64-bit 4 1.2 GHz Pascal GPU with 256 CUDA cores 4 GB DDR4

Table 3: Used Edge Devices Specifications

The edge devices specified in the table above are chosen for the models to be deployed and
benchmarked. We chose the baseline model, 85% sparsified, 85% sparsified+quantized,
95% sparsified model and 95% sparsified+quantized models for deployment across the
said edge devices. It is observed that the models took a little more inference time on
the edge devices when compared to the DeepSparse benchmarking engine. The fact that
Raspberry Pi 3 and 3 B+ models’ specification are more or less same is reflected in the
inferencing time of the models. Also the Jetson TX2 CPU is similar to Raspberry Pi 4’s
performance. Figure 16 gives an in detail comparison across models and edge devices.

Figure 16: Comparison of Models Deployed on Edge Device

From the graph it is observed that Jetson TX2 with GPU enabled performed better across
the models and the 95% sparsified+quantized model is 10X faster when compared to the
baseline model in terms of inference time. When we look at the relationship across the
models on the edge device, we can clearly see it follows a pattern of reduction in inference
time with better hardware configuration. The trend is similar to the hardware listed in
table 3. Apart from this, it is also observed, it holds general relationship as analogous to
the DeepSparse benchmarked models.

5 RESULTS 27

Using the reordering of operators technique discussed in 2.3, we have reordered the op-
erators for the baseline model. We were able to see that there was a 10% reduction in
the model’s memory footprint per inference when compared to the baseline model on the
edge devices. The memory footprint of the models were same on all the edge devices. It
is seen that baseline required 300 kilobytes of memory for inferencing, where as after the
reordering operation, it required only 272 kilobytes, which is approx. 10% reduction in
memory size. Figure 17 visualizes the di↵erences in the memory footprint.

Figure 17: Comparison of Models’ Memory Footprint on Edge Devices

5.7 System Resources Usage

During the process of modifying the models, we kept track on the system resources con-
sumption over time and compared their allocation and performance. We observed that
the resources utilization is independent of any hyperparameter choice, like sparsity or
pruning frequency. The system resources allocation always follows the same pattern. The
only correlation is the obvious one between number of epochs and training time.

The process of sparsifying or quantizing the model is computationally intensive as it
requires retraining of the models for multiple epochs. Therefore, a typical run (sparsify-
ing a model in 20 epochs) took around 30 minutes to complete on the before described
LRZ GPUs. The GPUs used around 200 Watts (as shown in figure 18 left) and 100%
of the GPU cores throughout the sparsification process. An interesting thing to observe

5 RESULTS 28

is that the quantization process was less computationally intensive than the sparsifica-
tion. One could see that the GPU power consumption as well as utilization dropped to
around 150 Watts and 70% utilization as soon as quantization started (when the yellow
line drops).

Figure 18: GPU Power Usage (left)/ GPU Memory Usage (right) for only Sparsification
and Sparsification with Subsequent Quantization

6 CONCLUSION AND FURTHER RESEARCH 29

6 Conclusion and Further Research

The limited resources of edge devices provide unique challenges to researches in this field.
And even though the huge benefits of utilizing such devices on a large scale heavily out-
weigh these challenges, a lot of research still has to be conducted.

Therefore, this work conducted a literature review to identify and describe the most
promising techniques of the current state-of-the-art approaches and hardware limitations.
Especially sparsification and quantization have been identified as very promising methods.
To demonstrate how those techniques can be used and optimized, a prototype of a deep
learning pipeline was designed and implemented. This pipeline allows to e�ciently tune
and test di↵erent sparsification and quantization methods without too much technical
expertise. In the course of the project, the pipeline was used to make a set of experiments
to further strengthen the understanding of how train and inference metrics, input sizes,
batch sizes and CPU cores, as well as sparsification, model size, and hyperparameter are
connected and should be interpreted.

Using our trained ResNet-50 architecture on the CIFAR-100 dataset, we have shown
that we can achieve higher accuracy and lower runtime than the baseline in a high spar-
sity regime (more than 85% sparsity). We showed that increasing the number of cores
from 1 core up to 4 cores showed a significant increase in the speed of deployment, while
levering to 8 cores didn’t show significant results compared to using only 4 cores. The
experimentation of di↵erent combinations of input sizes, batch sizes and number of cores
showed that we can get higher speed up compared to the initial model, when increasing
the batch size. Our results indicate that increasing number of cores do not a↵ect the
relative speedup compared to original model. Combining sparsification with quantization
gave a huge speedup of 65-82% in latency.

We have also deployed the above discussed models on real-time edge devices like Rasp-
berry Pi 3, Pi 3B+, Pi4 and NVIDIA Jetson Nano TX2 and compared the inference times.
It is observed that among the devices deployed, Jetson Nano TX2 had lesser inference time
and the fact lies with the specification of the device, as it has a GPU with 256 CUDA cores.

In summary, we have shown that there are promising opportunities to deploy deep learn-
ing models on edge devices. However, one inevitably has to decide between di↵erent
trade-o↵s. The faster the model, the lower the accuracy and the faster and more powerful
the edge device the more expensive the resource. In the future, there will be a lot of
promising research in di↵erent areas around this domains. E�cient, cheap and powerful
hardware devices need to be created to deploy e�cient models. Furthermore, research
will continue to reduce the size of models faster and more e�ciently. Another interesting
point of research is the development of one-shot methods to reduce the size of models
so that the additional e↵ort of fine-tuning and retraining is eliminated. With the pop-
ularity of giant language models that consume vast sums of money during training, the
developments in the field of sparse training are also extremely exciting.

References

[1] Tianlong Chen et al. “The Lottery Ticket Hypothesis for Pre-trained BERT Net-
works”. In: CoRR abs/2007.12223 (2020). arXiv: 2007 . 12223. url: https : / /
arxiv.org/abs/2007.12223.

[2] Tianlong Chen et al. “The Lottery Tickets Hypothesis for Supervised and Self-
supervised Pre-training in Computer Vision Models”. In: CoRR abs/2012.06908
(2020). arXiv: 2012.06908. url: https://arxiv.org/abs/2012.06908.

[3] Cisco visual networking index: Global mobile data tra�c forecast update (2017â“2022).
online: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-520862.

html. last accessed: 18 July 2022.

[4] Tim Dettmers and Luke Zettlemoyer. Sparse Networks from Scratch: Faster Train-
ing without Losing Performance. 2019. doi: 10.48550/ARXIV.1907.04840. url:
https://arxiv.org/abs/1907.04840.

[5] Utku Evci et al. “The Di�culty of Training Sparse Neural Networks”. In: CoRR
abs/1906.10732 (2019). arXiv: 1906.10732. url: http://arxiv.org/abs/1906.
10732.

[6] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks.” In: ICLR. OpenReview.net, 2019. url: http:
//dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19.

[7] Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep Neural
Networks. 2019. doi: 10.48550/ARXIV.1902.09574. url: https://arxiv.org/
abs/1902.09574.

[8] Amir Gholami et al. “A survey of quantization methods for e�cient neural network
inference”. In: arXiv preprint arXiv:2103.13630 (2021).

[9] Joydeep Ghosh and Kagan Tumer. “Structural adaptation and generalization in
supervised feed-forward networks, d”. In: Artif. Neural Networks (1994), p. 458.

[10] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[11] Torsten Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for e�cient
inference and training in neural networks”. In: CoRR abs/2102.00554 (2021). arXiv:
2102.00554. url: https://arxiv.org/abs/2102.00554.

[12] IoT: Number of Connected Devices Worldwide 2012â“2025. online: https://www.
statista . com / statistics / 471264 / iot - number - of - connected - devices -

worldwide/. last accessed: 18 July 2022.

[13] Xiaojie Jin et al. “Training Skinny Deep Neural Networks with Iterative Hard
Thresholding Methods”. In: CoRR abs/1607.05423 (2016). arXiv: 1607.05423. url:
http://arxiv.org/abs/1607.05423.

[14] Alex Krizhevsky, Geo↵rey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

30

http://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2007.12223
http://arxiv.org/abs/2012.06908
https://arxiv.org/abs/2012.06908
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://doi.org/10.48550/ARXIV.1907.04840
https://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1906.10732
http://arxiv.org/abs/1906.10732
http://arxiv.org/abs/1906.10732
http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19
http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19
https://doi.org/10.48550/ARXIV.1902.09574
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
http://arxiv.org/abs/2102.00554
https://arxiv.org/abs/2102.00554
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://arxiv.org/abs/1607.05423
http://arxiv.org/abs/1607.05423

[15] Edgar Liberis and Nicholas D. Lane. Neural networks on microcontrollers: saving
memory at inference via operator reordering. 2019. doi: 10.48550/ARXIV.1910.
05110. url: https://arxiv.org/abs/1910.05110.

[16] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. “Edge Machine Learning for
AI-Enabled IoT Devices: A Review”. In: Sensors 20.9 (Apr. 2020), p. 2533. doi:
10.3390/s20092533.

[17] Alexandra Peste et al. “Ac/dc: Alternating compressed/decompressed training of
deep neural networks”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 8557–8570.

[18] C. E. Rasmussen and Z. Ghahramani. “Occam’s razor”. In: Advances in Neural
Information Processing Systems 13. Ed. by T. K. Leen, T. G. Dietterich, and V.
Tresp. Cambridge, MA: MIT Press, 2001, pp. 294–300.

[19] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

[20] Weisong Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of
Things Journal 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.2579198.

[21] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[22] Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Sparsifying Neural Network Connec-
tions for Face Recognition”. In: CoRR abs/1512.01891 (2015). arXiv: 1512.01891.
url: http://arxiv.org/abs/1512.01891.

[23] Top 5 benefits of edge computing for businesses. online: https://www.techtarget.
com/iotagenda/tip/Top-5-benefits-of-edge-computing-for-businesses.
last accessed: 18 July 2022.

[24] Blesson Varghese et al. “Challenges and Opportunities in Edge Computing”. In:
2016 IEEE International Conference on Smart Cloud (SmartCloud). 2016, pp. 20–
26. doi: 10.1109/SmartCloud.2016.18.

[25] What Edge Computing Means for Infrastructure and Operations Leaders. online:
https : / / www . gartner . com / smarterwithgartner / what - edge - computing -

means-for-infrastructure-and-operations-leaders. last accessed: 18 July
2022.

[26] Dianlei Xu et al. “A Survey on Edge Intelligence”. In: CoRR abs/2003.12172 (2020).
arXiv: 2003.12172. url: https://arxiv.org/abs/2003.12172.

[27] Shuochao Yao et al. DeepIoT: Compressing Deep Neural Network Structures for
Sensing Systems with a Compressor-Critic Framework. 2017. doi: 10.48550/ARXIV.
1706.01215. url: https://arxiv.org/abs/1706.01215.

[28] Haonan Yu et al. Playing the lottery with rewards and multiple languages: lottery
tickets in RL and NLP. 2019. doi: 10.48550/ARXIV.1906.02768. url: https:
//arxiv.org/abs/1906.02768.

31

https://doi.org/10.48550/ARXIV.1910.05110
https://doi.org/10.48550/ARXIV.1910.05110
https://arxiv.org/abs/1910.05110
https://doi.org/10.3390/s20092533
https://doi.org/10.1109/JIOT.2016.2579198
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1512.01891
http://arxiv.org/abs/1512.01891
https://www.techtarget.com/iotagenda/tip/Top-5-benefits-of-edge-computing-for-businesses
https://www.techtarget.com/iotagenda/tip/Top-5-benefits-of-edge-computing-for-businesses
https://doi.org/10.1109/SmartCloud.2016.18
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
http://arxiv.org/abs/2003.12172
https://arxiv.org/abs/2003.12172
https://doi.org/10.48550/ARXIV.1706.01215
https://doi.org/10.48550/ARXIV.1706.01215
https://arxiv.org/abs/1706.01215
https://doi.org/10.48550/ARXIV.1906.02768
https://arxiv.org/abs/1906.02768
https://arxiv.org/abs/1906.02768

	Abstract
	Introduction
	Motivation
	Challenges
	Approach and Contribution of this Work

	Theoretical Background
	Sparsification
	What to Sparsify?
	When to Sparsify?
	How to Sparsify?

	Quantization
	Reduced Peak Memory Consumption
	Hardware Limitations

	Experiment Architecture and Implementation
	Conceptualization Phase
	Planning and Implementation Phase
	Model Modification
	Benchmarking
	Metric Collection
	Optimization

	Experiments
	Results
	Effect of Sparsity Level on Accuracy and Inference Speed
	Effect of Batch Size and Number of Cores on Inference Speed
	Effect of the Input Size on Inference Speed
	Effect of Quantization on Inference Speed
	Effect of Recipe Hyperparameters on Train Metrics
	Model Deployment on different Edge Devices
	System Resources Usage

	Conclusion and Further Research
	References

