
Complex Reflexes for Low-Level Robotic Systems

TUM DATA INNOVATION LAB

Cristina Cipriani, Yang Liu, Andrea Linxen
Garching, 24. July 2018

SUPERVISOR: Professor Dr. Massimo Fornasier

SCIENTIFIC LEAD: Dr. Martin Bischoff

PROJECT LEAD: Dr. Ricardo Acevedo Cabra

ADVISOR: Adrian Sieler

Introducing the team

Cristina Cipriani
Master Mathematics

Andrea Linxen
Master Mathematics

Yang Liu
Master Informatics

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 2

Introducing the trained robot

Goal:
Communication framework between a robot and a simulation server which applies machine learning

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 3

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 4

The ShadowArm robot

Combination of the Shadow Dexterous Hand and an extendable machine arm

Machine Arm
• Rotating trunk with extendable arm
• Full agility within the sphere

Shadow Dexterous Hand
• Similar to an average human hand
• Tendon-driven system with 24 joints
• Compatible with ROS

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 5

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 6

ROS - Introduction

ROS (Robot Operating System) is one of the most famous and wildly used open source middle-ware
in the world, designed to operate different robotic systems.

ROS provides a set of software libraries and tools that help you build robot applications, including:

• Hardware abstraction

• Low-level device control

• Implementation of commonly-used functionality

• Message-passing between processes

• Package management

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 7

ROS - Concepts

1. Node

2. Topic

3. ROSCore

4. Message

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 8

ROS - Node and Topic

Node

A node is an entity that uses ROS to communicate
with other nodes.

Topic

Nodes can publish messages to a topic as well as
subscribe to a topic to receive messages.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 9

ROS - Master

• ROS-Master manages all the nodes and their topics or services in the ROS Network.

• ROS-Master tracks the activities of all the nodes, and enable individual ROS nodes to locate one
another.

• Once the locating is done, nodes can communicate peer-to-peer.

Figure: Talker-node advertises a
new topic

Figure: Listener-node subscribes a
topic Figure: Talker publishes a new

message on the topic ”chat” that
Listener has subscribed

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 10

ROS - Message

• The communication between nodes is achieved by passing messages.

• The description of a message is written in a .msg file.

Odometry.msg

std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
• geometry_msgs/Point position
• geometry_msgs/Quaternion orientation

geometry_msgs/TwistWithCovariance twist
• geometry_msgs/Vector3 linear
• geometry_msgs/Vector3 angular

Joint_State.msg

std_msgs/Header header
string[] name
float64[] position
float64[] velocity
float64[] effort

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 11

Gazebo Introduction

• A well-designed simulation tool that has its own physics engine
• Optimal to work hand in hand with ROS

• Application area:
• Test algorithms
• Design robots
• Perform regression testing
• Simulate indoor/outdoor environment

• Important components in our project:
• URDF - To model an object or to

assemble a robot with multiple joints
• Plugins - To control the behavior of an

object in Gazebo
• Launch file - To start a Gazebo world with

all the related objects/sensors in it.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 12

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 13

The Unity Environment

Game engine capable of simulating a physical training environment

Components of the Physics Engine

Rigidbodies
Regulate the influence of external forces

Layer-Based Collision detection
Detecting collisions depending on layers

Joints
Influence the position and movement of connected Rigidbodies

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 14

The Unity training environment

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 15

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 16

ML-Agents

Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin that enables games and
simulations to serve as environments for training intelligent agents.

• Agent:
actor that can observe its environment
and decide on the best course of action.

• Brain:
it encapsulates the decision making
process. Four types are allowed:
external, internal, player and heuristic.

• Academy:
it orchestrates all the Agent and Brain
objects in a Unity scene.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 17

Reinforcement Learning

Learning what to do in order to maximize a numerical reward signal.

The learner is not told which actions to take, but it must discover itself which actions yield the most
reward by performing them.
−→ "trial-and-error search"

Actions may affect not only the immediate reward but also the next situation and, through that, all
subsequent rewards.
−→ "delayed reward"

• Cheese: +1000 points
• Water drops: +10 points
• Flash: -100 points

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 18

Reinforcement Learning

t = 0,1,2, ..
State st
Action at
Reward rt

−→ policy:
πt(a|s) = Pr(at = a|st = s)

mapping from states to probabilities of selecting each possible action

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 19

Values Functions

State-value function: expected return when starting in s and following π thereafter:

V π(s) = Eπ(Rt |st = s) (1)

Action-value function: expected return starting in s, taking action a, and then following policy π :

Qπ(s,a) = Eπ(Rt |st = s,at = a) (2)

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 20

Values Functions

State-value function: expected return when starting in s and following π thereafter:

V π(s) = Eπ(Rt |st = s) (3)

Action-value function: expected return starting in s, taking action a, and then following policy π :

Qπ(s,a) = Eπ(Rt |st = s,at = a) (4)

−→ Optimal values:

V ∗(s) = max
π

V π(s) (5)

Q∗(s,a) = max
π

Qπ(s,a) (6)

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 21

Values Functions

State-value function: expected return when starting in s and following π thereafter:

V π(s) = Eπ(Rt |st = s) (7)

Action-value function: expected return starting in s, taking action a, and then following policy π :

Qπ(s,a) = Eπ(Rt |st = s,at = a) (8)

−→ Optimal values:

V ∗(s) = max
π

V π(s) (9)

Q∗(s,a) = max
π

Qπ(s,a) (10)

−→ This is never actually done!

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 22

Values Functions

State-value function: expected return when starting in s and following π thereafter:

V π(s) = Eπ(Rt |st = s) (11)

Action-value function: expected return starting in s, taking action a, and then following policy π :

Qπ(s,a) = Eπ(Rt |st = s,at = a) (12)

−→ Optimal values:

V ∗(s) = max
π

V π(s) (13)

Q∗(s,a) = max
π

Qπ(s,a) (14)

−→ This is never actually done!
−→ Model-free methods

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 23

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 24

Gazebo Setup - Requirements

• Setup the simulation scene as close as possible to the real-world condition

• Gravity

• Initial status

• An object (ball) which does a parabolic movement

• Random initial position, speed, direction

• Falls eventually within the reachable area of the robot hand

• The Shadow Robot should start with random pose

• Gazebo and Unity are able to communicate via ROS

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 25

Gazebo Setup - Ball Model
ball.urdf Explanation

−→ <pose> Initial position and initial orientation
−→ <link> The main content of this ball object
−→ The inertial properties of the link, include
mass and rotational inertia
−→ <collision> defines the boundary of the
interaction with other objects in the simulation.

−→ <visual> Shape of the object (box, cylinder,
etc.) for visualization purposes

−→ <gazebo> The plugin we use to control the
movement

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 26

Gazebo Setup - Ball Movement

In order to let the ball falls within the reachable area of the robot hand, we generate the final position
where the ball should fall into, then calculate the initial position of the ball backwards.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 27

Gazebo Setup - Joint control of Shadow Robot

• Two approaches to control the joints of the Shadow Robot

1. Use a native ROS service in Gazebo to directly change the joint positions
+ Easy to use, no effort to be made to write an additional plugin for that.
- Extra step by opening another Terminal in Ubuntu, extra waiting time

2. Use PID-controller to apply force to each joint accordingly
+ Reusable when we got target joint positions from Unity
+ Physics simulation, calculated forces are applicable for real-world robot.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 28

Gazebo Setup - ROS Communication

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 29

Communication between Ros and Unity

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 30

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 31

Creating the GrabBall Agent

Goal

Grabbing and securing a ball with the fingers of
the Shadow Dexterous Hand

Simplifications

• Modified Surface
Increasing friction and reducing elasticity

• Layer-based collision detection
Preventing internal collisions

• Drop ball in straight line
Neglecting horizontal forces

• Decreasing the degrees of freedom
Fingers curl into the palm depending on a
variable force

• Tilting the palm downwards
Make ball roll towards the fingers

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 32

Training the GrabBall Agent

Design of the GrabBall Agent

• Start
Create a trigger-sphere around ShadowHand

• Collect Observations
Recording status of ball and palm

• Agent Action
− Called at each time step
− Decides on value of force
− Activates Agent’s reset if ball is dropped
− Assigns Rewards and Penalties
• Agent Reset

Move ball and Agent into initial position

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 33

Outline

• Equipment and Software
− The ShadowArm Robot
− Introduction to ROS and Gazebo
− The Unity Environment
− ML-Agents

• Development

− ROS Communication and Gazebo Simulation
− GrabBall Scene
− ReachBall Scene

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 34

ReachBall Scene

Goal: reach the exact position of the Ball

Simulation setup:
• the Hand and the Fingers remain

fixed
• four joints of the model are actively

controlled (Trunk, Shoulder, Elbow
and Wrist)

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 35

Learning Environment

• Which observations should we collect?
− velocity and the relative position of the Ball and Palm
− position of all the relevant joints (Shoulder, Elbow, Wrist)
− velocity of all the relevant joints (Shoulder, Elbow, Wrist)
− Trunk’s angular velocity

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 36

Learning Environment

• Which observations should we collect?
− velocity and the relative position of the Ball and Palm
− position of all the relevant joints (Shoulder, Elbow, Wrist)
− velocity of all the relevant joints (Shoulder, Elbow, Wrist)
− Trunk’s angular velocity

• Which actions can be taken?
− Trunk’s Rotation: it may rotate 180 degree around itself
− Arm’s Extension: the movements of Shoulder, Elbow and Palm are constrained in order to

move together to a specified target position.

−→ huge reduction of the degrees of freedom

−→ other approaches?

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 37

Our Approaches to define Actions

• Increment of the arm extension: the same joints mentioned above are moved through small
increments of their positions and not by a fixed target position

• Increment of the position of each joint: each joint is now independent from the others, hence
the movement is still the result of small increments of their positions, but it is not constrained
anymore

−→ 4 degrees of freedom instead of 2

• blue line:
it corresponds to the agent trained with 4
degrees of freedom

• grey line:
corresponds to the agent trained with 2
degrees of freedom

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 38

Learning Environment

• How do we define the Reward?

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 39

Learning Environment

• How do we define the Reward?
− negative reward whenever the ball falls (i.e. does not land stable on the Palm)
− negative reward when the Ball collides with anything else than the Palm.

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 40

Learning Environment

• How do we define the Reward?
− negative reward whenever the ball falls (i.e. does not land stable on the Palm)
− negative reward when the Ball collides with anything else than the Palm.
− reward proportional to the negative distance between Ball and Palm while the Ball is falling

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 41

Learning Environment

• How do we define the Reward?
− negative reward whenever the ball falls (i.e. does not land stable on the Palm)
− negative reward when the Ball collides with anything else than the Palm.
− reward proportional to the negative distance between Ball and Palm while the Ball is falling
− positive reward whenever the ball is close enough to the Palm (deterministic radius)
− positive reward when the Ball collides with the palm, but only if it’s the first time it happens

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 42

Our Agents

Agent with 2 degrees of freedom: Agent with 4 degrees of freedom:

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 43

Captured with Snagit 2018.2.1.1590

Webcam - Integrated Webcam

Microphone - Mikrofon (Realtek Audio)

Conclusion

Complex Reflexes for Low-Level Robotic Systems | TUM Data Innovation Lab 44

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:

