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Abstract

Accurately predicting the behavior of fluids is fundamental to a variety of scientific and
engineering tasks. Capturing all physical phenomena on small scales is, however, noto-
riously difficult and requires large computational effort. Advancements in the field of
Computational Fluid Dynamics (CFD) therefore aim to increase the accuracy of existing
solver methods by modelling the effects of unresolved physical processes on a larger scale.
The goal of this project was to develop methods that enable learning such correction
models from data. Specifically, in this work, we explore a family of correction models
that is tightly coupled with classical numerical CFD solver schemes.
On the one hand, the learned model intervenes in each solver step, leading to an improve-
ment in accuracy over the uncorrected solution. On the other hand, error signals are
propagated through the solver, providing the model with information about the physical
evolution of the system.
For this purpose we implement a pipeline that is able to train these kinds of correction
models from an external data source. In the course of that, we empirically assess the
suitability of two different numerical solver schemes in the context of augmenting them
by learned corrections. To represent the corrections, we employ local variants of fully
convolutional neural networks, forcing the model to base its predictions only on local
features of the flow field. Our experiments show that this method leads to promising
generalization properties.
We point out the practical challenges associated with learning models that tightly interact
with classical solver schemes in a recurrent manner. Based on our findings, we develop
requirements on datasets and solver methods for future work in this direction.
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1 Introduction

Computational Fluid Dynamics (CFD) simulations are an essential tool in a multitude of
scientific and engineering disciplines. Advances in high-performance computing have made
CFD an indispensable tool for rapid prototyping, design analysis, and material testing in
academic and industrial applications. The most prominent uses include: aerodynamic
analysis in the automotive and aerospace industries, reaction flow and thermal man-
agement for combustion engines, and channel flow simulations.
Typically, CFD simulations require a fundamental trade-off:

• Lower resolution simulations (with fewer degrees of freedom) are unable to capture
micro-scale processes, and can miss out their cumulative effects on the macro-scale.

• Higher resolution simulations are able to capture the cumulative effects of micro-
scale phenomena, but are computationally expensive and time consuming.

An ideal simulation should thus be detailed enough to capture the required physical details
for the desired application whilst being computationally inexpensive and time efficient.

1.1 Problem Definition and Goals of the Project

The crux of this project was to develop a CFD pipeline that operates on coarse
discretisations but is able to capture the cumulative effects of micro-scale phe-
nomena on the macro-scale picture whilst maintaining computational cost.
Our task was to achieve this by employing a differentiable solver pipeline, where the inter-
mediate computational steps of the solver are subject to a learned correction, represented
by deep neural networks (DNN). Thus, the differentiable CFD solver would enable us to
incorporate future information about the dynamics of the system into the training of the
corrections, leading to potentially more accurate predictions than in the purely supervised
setting [22]. Another project objective was therefore to assess the suitability of different
types of solvers for this approach and to report on the practical implications and obstacles
involved in the use of varying methodologies.
The dataset provided by Siemens consisted of steady-state flow fields for 5,005 different
channel geometries (i.e. boundary conditions) with 4 different sets of initial conditions
for each channel. These simulations were produced by the state-of-the art CFD software
Simcenter STAR-CCM+ [20] developed by Siemens Digital Industries Software.

1.2 Related Work

With the rise of deep learning (DL), researchers from the CFD and machine learning com-
munities are trying to leverage DL methods in order to accelerate CFD simulations. One
line of work employs so-called super resolution approaches, a group of methods that has
been very successful in the image domain. [3] employ super-resolution in fluid simulations
in order to reconstruct small scale turbulent features from down-scaled, high-resolution
simulations. In engineering applications however, the detailed features of the flow field
are typically of less interest. Instead, a different line of research aims to learn the dis-
cretization of the solver scheme itself in order to increase the accuracy of predictions on
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the larger scale [8]. The approach we take directly builds upon the works of [22] and
[6], which propose methods in which the solver schemes closely interacts with a learned
correction model; the “solver in the loop” approach enables gradients to flow through the
solver, providing the model with information about the physical evolution of the system.
Unlike DNN architectures employed in the previously mentioned works, we restrict the
input of our DNNs to a local neighbourhood of the flow field. Furthermore, whereas [22]
deal with transient simulations, our model is only allowed to learn from steady-state data.
This is because the stationary case is often of greater importance in engineering tasks.

This report is structured as follows: In section 2 we introduce the Navier-Stokes equations
and the idea of turbulence modelling. Based on that: in section 3 we explain our approach
to learning correction models. In sections 4 and 5 we discuss aspects of data preparation
and setup of the plane simulations respectively. Section 6 focuses on the implementation
of the pipeline for training correction models. In section 7 we present our experimental
results and discuss the challenges faced when training these models in section 8.

2 Theoretical Background

The Navier-Stokes equations are non-linear PDEs that govern the dynamics of viscous
fluids. The equations are essentially statements of conservation laws for viscous fluids.

2.1 Derivation of Navier-Stokes Equations

Conservation of mass for a fluid can be expressed in the form of a continuity equation:

∂ρ

∂t
− ρ∇ · v = 0.

Since the density ρ for an incompressible fluid is constant, we obtain the first equation:

∇ · v = 0 (1)

The conservation of momentum equation can be obtained by expressing Newton’s second
law in terms of intensive quantities equated to body forces:

ρ
d

dt
(v (x, y, z, t)) = b.

Applying the chain rule, and assuming that the velocity-field v = (vx, vy, vz) =
(
dx
dt
, dy
dt
, dz
dt

)
we arrive at the momentum conservation equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= b. (2)

The body force can be exressed as a sum of internal and external forces. In the case of an
incompressible Newtonian fluid, we have b = −∇p + µ∇2v + f , where f represents the
external forces. The Navier-Stokes equations for an incompressible Newtonian fluid are:
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∇ · v = 0 (3)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (4)

2.2 Turbulence Modelling and Closure

The Navier-Stokes equations constrain the velocity and pressure of fluid flow. Turbulence
is indicative of a loss of regularity in fluid flow, and is thus characterised by chaotic
changes in the the pressure and flow velocity. Consequently, turbulence problems are
typically studied within a stochastic framework. Turbulent flows are characterised by:

• aperiodic motion,

• random (3D) spatial variations,

• strong dependence upon initial data,

• wide range of relevant length scales.

A characteristic feature of turbulent flow is the emergence of structure at different length
scales. We therefore cast the Navier-Stokes equations into a dimensionless form to obtain
a scale independent model. This dimensionless model then contains one parameter:

Re =
vL

ν
. (5)

The Reynolds number Re is comprised of the speed of the flow v = |v|, the character-
istic linear dimension (e.g. the diameter of a pipe) L and the kinematic viscosity ν = µ

ρ
.

Whereas the maximal scale of fluid motion is set by the overall geometry (e.g. the diameter
of a smoke stack or water pipe), the minimal scale is determined by the Reynolds num-
ber. As apparent from the equation above, the Reynolds number represents the relative
influence of inertial versus viscous forces on the motion of the fluid, and thus determines
the relative importance of convection and diffusion mechanisms governing the flow of the
fluid. Increasing the Reynolds number increases the influence of smaller scale structure
on the flow characteristics. Flows with a high Reynolds number are thus turbulent.
The objective of direct numerical simulation is to solve the time-dependent Navier-Stokes
equations resolving all relevant length scales for a sufficient time interval such that the fluid
properties reach a statistical equilibrium. Therefore, direct numerical simulations
of turbulent flows need to be resolved to a greater precision (finer meshing)
in order to obtain an accurate picture and are thus computationally costly. In
engineering and design applications, wherein often the finest spatio-temporal details are
irrelevant, a time-averaged and coarse-scale approach is sufficient.
In order to extract coarse-scale time-averaged features, we reformulate the time-dependent
Navier-Stokes equations in terms of Reynolds-Averaged quantities. The flow velocity is
decomposed into a time-averaged component v̄ and a fluctuating component v̆ :

v (x, t) = v̄ (x) + v̆ (x, t) (6)
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Figure 1: Instantaneous and Time-Averaged flows over a backstep. Only the recirculation
region is of interest in engineering applications [14].

This then yields the Reynolds-Averaged Navier Stokes equations (in tensor notation):

∂v̄i
∂xi

= 0 (7)

∂v̄i
∂t

+ v̄j
∂v̄i
∂xj

= f̄i −
1

ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

− ∂v̆iv̆j
∂xj

(8)

Note that the velocity fluctuations still appear in the RANS equations in the (non-linear)
−v̆iv̆j term from the convective acceleration. This is a consequence of the nonlinearity
of the Navier-Stokes equations. This term Rij = −v̆iv̆j is known as the Reynolds stress
since its effect on the mean flow is like that of a stress term. In order to obtain equa-
tions containing only time-averaged quantities, we need to close the RANS equations by
modelling Rij exclusively in terms of functions of time-averaged quantities. This is the
closure problem, and lies at the heart of turbulence modelling.

3 General Approach

To compute numerical solutions to the Navier-Stokes equations, the physical domain has
to be discretised in the spatial and temporal dimensions. The discretisation introduces
numerical errors which are directly proportional to the coarseness of the discretisation.
We aim to learn correction funcionals that operate on coarse spatial discretisations of
the flow field to reduce the numerical error over the naive solution. The error itself is
computed with respect to a simulation employing a finer spatial discretisation.
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3.1 Notation

Given an initial velocity-field, v(0) at time t = 0, on Ω ⊂ R2 with prescribed boundary
conditions, the forward-stepping scheme is:

v(nt+1) = F(v(nt),∆t, θ), (9)

where v(nt) denotes the velocity field after nt time steps of size ∆t each. The number
of timesteps nt = t

∆t
is a function of the elapsed time t and the (constant) step-size ∆t.

Therefore F(v(nt),∆t, θ) denotes the propagation of the solution in time by the CFD
solver, subject to corrections parametrized by θ (see 6.1 for the forms the correction can
take). For all further considerations we will ommit the dependency on ∆t and without
loss of generality assume that ∆t is constant.
After recursively applying the timestepping scheme T times, we obtain the solution of the
velocity field at time T∆t as:

v(T ) = FT ◦FT−1 ◦ ... ◦F(v(0), θ)

:= F̃(v(0), θ)
(10)

where we introduced the shorthand notation Fnt for the nt-th application of the solver.

3.2 Optimization Objective

Suppose we are given a target velocity field v̂ with the same spatial discretization as v(T )

(that is, v̂ was produced by a higher resolution approach, but downscaled to the coarse
discretization afterwards). We aim to find correction parameters θ as to minimize some
loss measure L(v̂,v(T )) between the two velocity fields. For the rest of this work we will
set the loss measure to be the mean squared error between the discretized velocity fields,
however, we only consider grid points inside the flow domain1:

θ∗ = arg min
θ
L(v̂, F̃(v(0), θ)) = arg min

θ
L(v̂,v(T )) (11)

= arg min
θ

1

n

∑
i

(v̂i − v(T )
i )2 (12)

where i runs over all grid points and n denotes the number of grid points inside the flow
domain.
We want to emphasize that in the primary setting we consider, no intermediate velocity
targets v̂(nt) are available to us. Only after T applications of F do we compute the loss
measure for the final velocity field.
We find a (local) minimum of L by gradient-based methods on the learnable parameters
θ. I.e., we iteratively update the correction parameters according to

θj ← θj − α
∂L
∂θj

∀θj ∈ θ, (13)

1In general, the computational domains we consider can contain grid points that lie inside boundary
regions and therefore have a constant velocity value of 0. As the number of grid points in the exterior
varies between the different designs in the dataset, we exclude those points in the calculation of the loss
as to obtain a more comparable performance measure between simulation with different geometries.
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where α is the learning rate hyperparameter (can be adaptive). In eq. 13, first order
partial derivatives of the loss function w.r.t individual correction parameters θj have to
be computed. Because the same correction parameters θ appear in each application of
eq. 9, the gradient ∇θL contains contributions from each timestep t.
Intuitively this means when corrections to the state at time step nt < T influence the
state of the system at time step T , the gradient signal takes into account the effects of
this perturbation over time. The partial derivatives can be derived by applying the chain
rule to eq. 10 and 11:

∂L
∂θj

=
∂L
∂v(T )

∂F̃(v0, θ)

∂θj
(14)

=
∑

0≤nt≤T

(
∂L
∂v(T )

∂v(T )

∂v(nt)

∂F
∂θj

∣∣∣∣
v(nt−1)

)
(15)

The terms ∂v(T )

∂v(nt)
are products of jacobians that propagate the error from step T to step

nt (compare to [12]). Specifically, in our case, these terms require us to be able to calcu-
late derivatives through the solver, creating the necessity for a differentiable CFD solver.
Rather then explicitly deriving the forms of all intermediate jacobians, in this project we
choose to handle these calculations by automatic differentiation (AD) as discussed later
in section 6.2.3.

3.3 Correction Functionals

The Navier-Stokes momentum equation is:

∂v

∂t
= −(v · ∇)v − 1

ρ
· ∇p+ ν∇2v + f (16)

We implement and analyse two types of corrections:

1. The effective viscosity model extends the diffussion term ν∇2v by replacing
the constant kinematic visocsity ν with a functional of the velocity field such that
ν → ν0 + νθ(v). Here ν0 is the material viscosity, and θ denotes the learnable pa-
rameters. The effective viscosity augments the eddy viscosity model by introducing
a velocity dependent viscosity. Thus, we are able to recover the cumulative effects of
micro-scale vortices (or eddies) on the macro-scale dynamics. Unlike the kinematic
viscosity, which is a material parameter, the eddy viscosity can be negative [18, 23].

2. The residual model replaces the (constant) external body force with a velocity
dependent force field: f → f0 + fθ(v). Note that although the effective viscosity
model implements an explicit correction to the vector Laplacian of the velocity field
∇2v, given sufficiently many parameters θ, it is equivalent to the residual model and
vice versa. The residual model is thus analogous to the control-term in [6].

Our approach to these corrections differs from related methods as follows:

• The corrections are local and act only on the neighbourhood of a given point.

• The corrections are time-independent and are applied between solver steps.
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• The corrections are strongly coupled to the solver. They incorporate information
about future dynamics into the forward evolution of the solver.

The manner in which these corrections interact with the solver depends on the actual
discretization and the time-stepping scheme of the solver. In general, we always correct
some (intermediate) physical quantity as a functional of the flow field.

4 Data Preparation

For the given problem, we are provided with steady state flow field data from 5,005 designs
of different nozzle geometries. For each of the designs, we have 4 inlet velocities, resulting
in a set of 20,020 targets. Before implementing the subsequent parts of the pipeline, we
need to analyse the datasets to gain further insights into the designs and the distribution
of the coordinates within the domain of the design. In the following subsections, we will
describe the structure of the data and the processing required to produce a target dataset
for the training stage.

4.1 Structure of the Training Data

Table 1: Ranges of design parameters, determining the geometry of the simulation. A is
the design identifier, B is the height of the channel. C,D and E determine the shape of
the nozzle. F denotes the inflow velocity.

A B C D E F
1-5005 10-40 mm 0.15-0.4 0.2-0.4 0-0.5 0.5-2 m/s

All the nozzle designs provided are based on the parameters shown in the table 1. We
were provided an excel file containing the design parameters for all the designs. Varying
combinations of these parameters correspond to different designs as shown in the figure
2a. The more about the structure of the data can be found in appendix D).The file most
important for our pipeline is the CSV file as will be used as a target for the optimization
problem. It stores the coordinates of the data points within the domain of the design and
velocity and pressure values at these coordinates. A sample dataframe is shown in the
figure 3. If we further analyze the CSV file, we see the coordinates within the domain are
unstructured, which means the simulation result is obtained using an unstructured grid.
We have a non-uniform distribution of points in the grid, more points in the boundary
regions at the walls. The same can be seen in the left part of figure 4.

4.2 Computing Training Targets

We saw in the previous subsection that the simulation result are obtained using the
mesh of unstructured triangular grids. The velocity values (either magnitude or vector
components) yi, i = 1...n contained in the CSV file are given at unstructured arbitrary
coordinates xi in the designs as seen in left part of the figure 4. The simulation schemes
we employ (section 6.2), are using meshes of structured square grids. Hence, we need to
process our target velocities to obtain the velocity data on these grid points.
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(a) Design parameters, determining the geome-
try of the problem

(b) Channel and nozzle geometry design. See
table 1.

Figure 2

1

Figure 3: A sample dataframe obtained from the simulation CSV file.

To tackle the above problem we solve a weighted least squares (WLS) [4] problem for
each point x̂ in the regular grid. That is, we try to find a fitting function g(x) = b(x)Tc
with polynomial basis vectors b(x) = [b1(x), b2(x)..., bk(x)]T of degree k and unknown
coefficient c = [c1, ..., ck]

T .
We can write down the WLS optimization problem as:

min
c

n∑
i

W (di)||g(xi)− yi||2

where di is the euclidean distance between x̂ and any other point xi. We give a more
detailed description of WLS in appendix E). A common choice for the weighting function

is a Gaussian W (d) = e−
d2

σ2 , where σ controls the localization of the weighting function
around x̂. The choice of these types of weighting function ensures that more weight is
given to the data points near to x̂. In our case this is extremely important so that the
velocities at the structured grid points are very close to nearest unstructured grid data
that we have.
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This fitting task has two parameters. One is the degree of the basis function and another
one is the σ. We tried to find the best σ and degree k for the fitting using grid search
approach. We implement a function and pass various values of σ and degree to calculate
the velocity values at the grid points. Once we get the velocity values at the grid points,
we again fit the velocity values back to the unstructured grid points with the same σ
and degree. We then calculate the mean squared error of the velocities at the original
unstructured grid point coordinates. We ran this function for a subset of the design
that covered the parameter range in the dataset. We then calculate the errors for each
combination of σ and degree. The figure 5a shows the error value for all the combinations.
From the figure, it is quite evident that the best σ is around 1.0 and the best degree is 2.
The figure 5b shows the study of the fitting accuracy around σ = 1.0 for degree 2.
The right side of the figure 4 shows the result of the fitting using the best sigma and the
degree on the structured grid. We can see that we are able to produce the velocity values
at the structured grid quite close to the original data that we had. This will now act as
a target for the pipeline.

Figure 4: Velocity representation on the unstructured grid. On the left, Original velocity
obtained from the STAR-CCM+ solver. On the right, Interpolated velocity using the
best sigma and degree, used as target for the model.

(a) Error distribution (b) Error for various sigma for a fixed
degree 2

Figure 5
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5 Simulation Setup

In the following section we will elaborate on setting up the plain simulation. By plain
we refer to the uncorrected simulation using the PP solver or ΦFlow [13] solver in order
to solve Navier-Stokes equations (3) and (4). We will give a description of both methods
in section in 6.2. Here, we focus in the simulation setup in ΦFlow as it is the framework
in which we conduct most of our experiments, we reason about this choice in section
7.2. For the later phases of the project it is crucial to verify the correct simulation
setup, including boundary conditions and geometry, as well as to choose appropriate time
stepping parameters. In this section we are going to answer the following questions:

• How many time-steps will the solver take to reach a steady state?
→ It is desirable for use to reach the steady state in as few time steps as possible.

• Does the simulation converge? Will it cause perturbations?
→ We aim to find the largest feasible time-step size.

• Is the velocity field obtained from the untrained simulation close to the reference?
→ We can verify the correctness of the simulation setup and physical properties.

5.1 Meshing

Before elaborating on the setup of the plain simulations, we will discuss a challenge,
which we call the meshing problem. Meshing is a crucial pre-processing step in CFD
simulations to generate grid points. Grids are constructed in the solution domain and
every computation happens on a grid point. The solver schemes we employ use structured
grids, which are equally spaced in 2D. Ideally, we would like all geometries to be placed
precisely in the grid, i.e. that the boundary regions lie on the staggered grid points in the
case of ΦFlow. If the geometry requires the boundaries to lie in between grid points, we
should make an additional effort to solve this. This problem is one of the disadvantages
and a common issue associated with structured grids. We can address it with three
possible strategies:

1. We find the largest grid resolution, which is able to resolve all the boundary regions
for all geometries (i.e. the greatest common divisor). This largest resolution is 0.125
mm.

2. We use Shortley-Weller scheme [2], which is used in complicated geometries in finite-
difference methods.

3. We fix an appropriate resolution and classify all designs into two groups, based on
wether or not their geometries locate on or in between the grid points. Only the
designs lying on the grid points are usable for us.

Given that the point of this work is to operate on coarse grids, we reject the 1st method.
It would lead to impractical computational effort, i.e., the total number of grid points
in the largest domain is 256,000. We also reject the Shortley-Weller scheme due to its
considerable complexity. We choose the third strategy because we can select the coarse
resolution to save computational effort but keep the chosen designs located precisely on
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the grid points. Figure 6 indicates the amount of usable geometry designs for different res-
olutions. It is intuitive to consider the higher resolution, however, increasing the amount
of usable data significantly increases computational effort. This is a trade off. Finally, we
select 1 mm resolution according to three reasons:

1. 1232 designs are presumable enough for training.

2. The smallest nozzle length is 1 mm, so the grid can’t be larger than 1mm.2

3. The simulation employing the 1 mm resolution has the fastest computational time.
See table 2.

(a) grid size 1mm (b) grid size 0.5mm (c) grid size 0.25mm

Figure 6: Statistic pie charts of geometry design.

Table 2: Computation time required for 1000 time-steps in design 5005, employing struc-
tured grids of different resolutions.

resolution (mm) 1 0.5 0.25
time (s) 68 152 312

Our ultimate goal is to use the simulation with coarse grids as precise as a reference solu-
tion by correction from deep learning. Therefore, we can consider the coarse resolution,
which makes the simulation fastest as long as it converges instead of the fined resolution.
1 mm is pretty suitable in both plain simulation and deep learning.

5.2 Plain Simulation

We implement functionalities for setting up parameterized simulations in ΦFlow[13], corre-
sponding to the designs encountered in the dataset. Based on the design number and the
specified resolution, we automatically generate the computational domain, including the

2In general, only one cell is not enough to resolve the inflow nozzle. Considering the computational
time in whole approach, we make a trade off here and exclude these designs from the dataset.
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geometry of the flow field and boundary conditions. We then use the results from section
5.3 to set appropriate values for ∆t and T and let the simulation run for appropriate
number of timesteps.
By producing plots of the resulting flow fields and visually comparing both the velocity
field and the velocity variation against the reference solution, we can further debug and
check the stability of our setup. We note that we do not expect the simulation to produce
an output very similar to that of the reference. We rather check whether or not the plain
simulation produces reasonable results and roughly conforms to the reference, based on
the given physical properties and boundary conditions.

Figure 7: The visualization of the velocity field helps us to check the physical plausibility
of the simulation. Depicted are simulations for different inflow velocities.

5.3 Time stepping

The choice of time-step size is crucial in our approach: In the training phase, each forward
pass involves a full execution of the plain simulation. To reduce the computational cost, it
is therefore important to determine the time stepping that leads to the fastest convergence
to the steady state.
We choose the time step size ∆t and the total number of time steps T based on the
following strategy:

1. We utilize the Courant-Friedrichs-Levy (CFL) condition [17]

|vx,max|∆t < ∆x, |vy,max|∆t < ∆y (17)

to find an appropriate timestep size. In CFD simulations, the CFL conditions help
to ensure the numerical stability in an explicit scheme. In eq.17, ∆t is determined
by the maximum absolute velocity in the flow field |vmax| and the distance between
two adjacent grid points ∆x (named resolution in the following). In the following
we will assume that ∆x = ∆y, as it is the case for ΦFlow.

2. Then, we directly compute the difference between the velocity fields for two consec-
utive time steps nt and nt + 1 to determine the point of convergence, i.e. we define
the condition for the steady state as : |v(nt+1)− v(nt)| ' 0. We denote the timestep
after which this condition is reached as convergence time T .

To illustrate the process, we demonstrate one example of choosing appropriate timestep-
ping parameters. Firstly, given an inlet velocity uinlet = 1m/s and resolution ∆x = 1 mm,
we have the following condition according to CFL:

∆t <
∆x

|umax|
≤ ∆x

|uinlet|
= 0.001s (18)
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Secondly, to limit the overall computational effort in finding appropriate settings for the
whole dataset, we only test a set of “edge-case” designs which we found to be likely to gen-
erate high amounts of turbulence, requiring more timesteps to reach convergence. These
cases generally have the largest computational domain with different nozzle geometries,
e.g. designs 5005 and 4956. By testing these designs we assess the upper bound on T ,
enabling us to use the same settings for all geometries. In fig. 8, we observe that with
∆t = 0.01, both cases fail to reach a stationary state. With ∆t = 0.001, both cases
improve significantly, but there’s a small perturbation in Design 4956. With ∆t = 0.0001,
both case converge after around 400 time-steps. The running time of the simulation is
approximately 30 seconds.
In summary, we choose the following settings for ∆t and convergence time T in the plain
simulation as well as the training procedure throughout the rest of the report:

• ∆t = 10−4 s , which fulfills the CFL conditions for the inflow velocities 0.5 to 2 m/s.

• T = 500 steps, which is a rather conservative estimate and includes a “safety buffer”.

(a) Design 4956 (b) Design 5005

Figure 8: Velocity variations |u(nt+1)−u(nt)| for different step sizes ∆t. Larger step sizes
result in oscillations and lead to no stationary state.

6 Methods and Implementation

In the following section we will elaborate on implementations of the computational com-
ponents needed for training the correction models studied in this work. We will first
motivate the architecture of the neural networks used in this work. After that we will
introduce the differentiable CFD solvers employed and point out their differences.

6.1 Network Architecture

We employ deep neural networks (DNN) as universal function approximators to represent
the correction functions. Two considerations regarding the architecture of the DNN have
to be made:

1. As the network operates on regular grids only, we can use classical convolutional
operations to capture spatial correlations.
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(a)
(b)

Figure 9: a) Schematic of the local, fully convolutional architecture. The convolutional
operations preserve the spatial dimensions h × w and the perceptive field of each point
in the output is restricted to the local 3× 3 neighbourhood in the input. b) Predictions
of individual points in the output made by the CNN are equivalent to a “moving” MLP
where the input consist of the local neighbourhood of k × k grid points.

2. The architecture should represent the spatial invariances on a global scale. I.e. it
should fulfill the condition that the output is only a function of the local neighbour-
hood of the corresponding input region.

To satisfy both of these requirements we employ a local variant of a fully convolutional
neural network (FCNN). The first layer of the network is always a convolution of kernel
size k×k×n, where k ∈ {3, 5} and n is a variable feature size for all future considerations.
This layer is able to capture the local neighbourhood in the input of the 9 or 25 grid points
respectively. All following operation are 1× 1× n convolutions which do not incorporate
any more spatial information then provided by the first layer. A schematic visualization
of the architecture is shown in figure 9. The architecture is computationally equivalent
to ”moving” a multi layer perceptron (MLP) with k · k · d input neurons over the input
to predict individual scalar values in the output plane as indicated in 9 b). In this case
the feature size n corresponds to the number of hidden neurons and d corresponds to the
channel size of the input. We want to stress that, unlike common FCNN architectures
from the field of image processing (see e.g. [16] or [9]), our network variant is agnostic
to ”global features”. For the purpose of the different experiments performed during the
project, we implement this architecture in TensorFlow [11], PyTorch as well as the
Julia programming language.
We show the computational steps required to actually apply the networks on the flow
field data in appendix B).

6.2 Differentiable Physics Solvers

At the core of our method is a differentiable CFD solver that is able to propagate error
signals through its computational steps.
We employ and compare two implementations for solving the incompressible Navier-Stokes
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equations: PP-solver [5] and ΦFlow[13]. The two schemes represent two contrasting
methods for solving the governing equations: While the PP-solver is a finite-element
scheme, ΦFlow employs finite-differences.
Therefore, part of the goal for this project was to assess and compare the suitability for
both of these solvers in the context of augmenting them by learned corrections.
Besides these differences in discretization schemes, we also use the opportunity to assess
advantages and disadvantages of two different ways of calculating derivatives through the
solvers; While we reimplement the PP-solver to use so-called forward-mode automatic
differentiation, ΦFlow [13] comes with the ability for reverse mode automatic differentiation
(backpropagation).

6.2.1 PP-Solver

Siemens provided us with an matlab implementation of a finite-element solver for solving
the incompressible Navier-Stokes equations, the so called PP-solver [5]. Due to the
limited scope of this report we will omit a description of the details of the scheme itself
but, for the interested reader, say that it employs Q2-P1 finite-elements, Van-Kan pressure
correction and a Crank-Nicolson time stepping scheme. A detailed theoretical description
can be found in [21]. This original ”plain” matlab implementation naturally does not
allow for gradient propagation through the solver. Therefore our task was to produce a
differentiable implementation of the scheme.
For this purpose, based on suggestions by Siemens, we first completely re-implement the
PP-solver code base in the Julia programming language. We validate the output of
our implementation against the matlab reference. Importantly, we implement taking
derivatives through the computational steps of the solver by means of forward automatic
differentiation. We elaborate on the practical reasoning leading to this decision in section
7.2. We validate our implementation in section 7.1 and assess its suitability regarding the
augmentation by learned corrections in section 7.2

6.2.2 PhiFlow

As described on the official github page [13] “ ΦFlow is a research-oriented, open-source
PDE solving toolkit that is fully differentiable [...]”. It is a finite-differences solver based
on the stable fluids algorithm [19] for solving the incompressible Navier Stokes equations.
The scheme involves 4 main computational steps to advance the state of the fluid to the
next time step, as shown in figure 10.
It deviates from the original stable fluids algorithm [19] in some points. I.a. ΦFlow employs
a staggered grid for the velocity field and calculates the diffusion in an explicit manner.

6.2.3 Modes of Automatic Differentiation

Automatic Differentiation (AD) describes an algorithmic form of calculating derivatives
of numeric functions implemented as computer programs [1]. It uses the fact that any,
arbitrary complex, computation is composed of simple arithmetic operation, for which
derivatives are known.
We choose to employ AD in our experiments because:
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Figure 10: Computational steps in the stable fluid scheme [19] for advancing the flow field
to the next time step 1.) External forces are applied as w1 = vt +∆tf . For our purposes,
the residual correction model is applied in this step 2.) The advection of the fluid by itself
is calculated by the method of characteristics [19] 3.) The effect of diffusion is taken into
account by solving an implicit form of the diffusion equation. The ΦFlow implementation
deviates at this point by explicitely computing the vector Laplacian by finite-difference
discretization. Our effective viscosity model comes in here. 4.) w3 is projected onto the
space of divergence free fields by solving the associated Poisson problem.

• In most applications, AD is more accurate and more efficient then calculating deriva-
tives by finite differences [1].

• Manually deriving the expressions for the derivatives for complicated operations
is prone to error and no analytical solution may exist for problems with implicit
solutions.

At its core, AD presents ways of algorithmically applying the chain rule to compound
functions. There are two main variants of Automatic Differentiation that roughly corre-
spond to traversing the chain rule from the inside out or from the outside in respectively.
We refer the reader to [1] and [10] for more comprehensive reviews of the different AD
methods. We give a short illustration of both methods in appendix A). In our differen-
tiable PP-solver we implement forward mode AD. For this purpose, we employ the Julia
package ForwardDiff [15], where we had to make sure that each function and opera-
tion is is able to process the dual number types introduced for differentiability. ΦFlow [13]
relies on reverse mode AD (backpropagation) in Tensorflow [11].

6.3 Pipeline

We combine the differentiable solver, the local neural network variant and the computation
of target velocity field in a pipeline for training the different models. The training process
for each sample in the dataset can be summarized in short as follows:

1. We obtain the target velocity field v̂ by computing the WLS fit of the data provided
by Siemens to the regular grid used in our simulation as described in section 4.2.
This step is precomputed in advance to the training procedure.

2. We setup the simulation geometry and boundary conditions corresponding to the
datasample as described in section 5.

3. We perform T steps of the augmented solver scheme F and obtain the final velocity
field v(T ).

4. We compute the loss L on the magnitude of the velocity field and calculate gradients
with respect to model weights ∇θL through the solver steps. The model weights
are updated by gradient descent.
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7 Results

This section presents the experimental results and is structured as follows: We begin by
verifying the correctness of our implementations and provide a proof of concept on some
test cases in 7.1. In section 7.2 we elaborate on the practical implications of the different
solver methods and their empirical suitability for the proposed method. In section 7.3
we outline the training experiments in the original setting and point out the challenges
associate with it. Based on this, in section 7.4 we will present promising, alternative
experimental settings.

7.1 Proof of Implementation

Figure 11: Proof of im-
plementation for the differ-
entiable implementation of
the PP-solver. Deriva-
tive of the loss function
L:=
√
L w.r.t. viscosity

(top) and the shape of
the loss function (bottom),
both as a function of vis-
cosity µ. The minimum
of the loss is located at
the viscosity of the target
simulation with µ = 0.10.
All dimensionless quanti-
ties for testing purposes.

To confirm the correctness of our implementations of the differentiable solver as well as
the training procedure, we perform the following tests:

1. We begin by verifying that derivatives are correctly propagated through our dif-
ferential implementation of the PP-solver. For that purpose we first produce a
reference simulation with a grid of 4x4 elements using a target viscosity of µ = 0.1.
We then run 1000 individual simulations where we vary the viscosity value in the
range [0.05, 0.15] in between simulations. For each simulation we compute the loss
between the velocity field u at timetstep 10 and the velocity field of the reference
simulation utarget. We obtain the derivative dL

dµ
at the same time from forward mode

AD. We verify our solution by plotting the resulting ”loss landscape” as well as its
derivative obtained from forward mode AD in fig 11.

2. For verifying the training procedure, we design an experiment in a similar manner
to 1.; we compute a reference velocity field after T = 10 timesteps with ∆t = 0.0001
and a viscosity value which is 10 times higher then the kinematic viscosity ν0 used
during optimization. This time, however, we calculate gradients w.r.t. the model
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weights, rather then derivatives w.r.t. a scalar. We then try to overfit our model
to the reference state. The correction model in this case is the effective viscosity
model, using a 4-layer CNN with an architecture as described in section 6.1 (k=3,
n=8, totalling 377 learnable parameters). For reasons explained in the next section
we used ΦFlow for this and further experiments. For optimization we use the Adam
optimizer [7] with a learning rate of 10−3. As seen in fig 12 a), after ∼ 125 iterations
the optimization converges to a state close to the reference, indicating that the
correction successfully learned to reproduce the target viscosity function. While the
optimization easily converges for the case of a laminar pipe flow in figure 12 b), for
the general case of non-laminar flow the optimization on a single sample is more
prone to converge to local minima.

Figure 12: Exemplary results from overfitting to a single target state. On the left: Train-
ing loss during optimization for 3 different random initializations (glorot uniform). On
the right: Reference state and predicted solution after convergence after T = 10 steps.
The simulation geometry is that of a plain pipe, resulting in a laminar flow field.

7.2 Assessment of Solver Suitability

Based on our experience in implementing and working with the corrections schemes in
both ΦFlow as well as our differentiable implementation of the PP-solver, we would like
to discuss the empirical advantages and disadvantages associated with each method both
from a computational point of view, as well as regarding its practicality and convergence
properties.

Computational aspects: In each solver step of the PP-solver, internally several
nested loops and iterative methods are called. Storing all intermediate values for the
backward pass in reverse mode AD quickly leads a an explosion in memory requirements,
even for relatively small simulations. Therefore, in our differentiable PP-solver imple-
mentation we decided to employ forward mode AD, as it drastically reduced the memory
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requirements of the computations over naively employing reverse mode AD. The reason
for this is that fewer intermediate results have to be stored in memory with forward AD,
as there is no backward pass. On the other hand, the run time costs of forward mode
AD increase with the number of input parameters (i.e. weights to be optimized) [1]. In
our implementation, the main performance hurdle was that core operations like matrix
multiplication were not optimized for use with dual numbers. Together with Siemens
we decided that further optimizing our differentiable implementation of the PP-solver
on a computational level was beyond the scope of the project. In general, we conclude
that, in order to implement a performant differentiable CFD solver, automatic differenti-
ation methods have to be combined with either 1) manually derivation of expressions or
2) derivatives by finite differences for substituting otherwise heavy computational opera-
tions.
Regarding the implementation of the pipe-flow simulations and correction models in ΦFlow,
we find that with “graph mode” in Tensorflow [11], a large computational overhead
is introduced compared to executing the plain simulation (section 5). The reason for
this is that, contrary to classical machine learning tasks, in our case a new computation
graph corresponding to the new simulation for each training sample has to be created.
We experience a 14 fold decrease in training time when switching to “eager”-execution
for training.

Convergence: When augmenting the CFD solvers by learned corrections, one inevitably
perturbs the intermediate states. As the same correction functional is applied for all
timesteps, we find that the convergence properties of the solver schemes are affected even
by minor perturbations when integrated in time. This behaviour poses a major challenge
when trying to optimize corrections by gradient-based methods; each update step can
potentially lead to divergence of the solver scheme, effectively leading the training run
into a dead end.
In the case of the PP-solver scheme, even with careful initialization and small learning
rates, we were not able to consistently train for longer periods without ”blowing up” the
solver scheme. Although formally studying the convergence properties of the PP-solver
is beyond the scope of this project, we think that major adjustments to the scheme have
to be made in order to be robust to the kind of perturbation applied by our method.
On the contrary, we find that the stable fluids algorithm [19] as employed in ΦFlow is
in general well suited for applying perturbations to the intermediate states. In fact, the
scheme was originally developed to be able to handle external ”interactions” with the
flow field, without leading to ”blow-ups” [19] of the scheme (i.e. even if the resulting
behaviour may be non-physical, it does not lead to divergence of the scheme). We argue
that this property is essential for choosing an appropriate solver scheme accompanying
the correction method studied in this work.
In summary, because of the difficulties regarding both the performance, as well as the
convergence of the PP-solver, we decided to focus on the implementation employing
ΦFlow for all experiments to follow in this report.
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7.3 Training Experiments

Like discussed previously, the original goal for the project is to learn intermediate correc-
tion functionals from only the steady state data provided by Siemens. This is equivalent
to optimizing the objective 11 i.e. only the target state û corresponding to the final
timestep T is given. Using the results from section 5.3 we know that T ≈ 500 is required
to reach the steady state in the plain simulations. Hence, starting from initial state v(0)

(set to 0 by default), 500 recurrent steps F have to be computed before the loss and corre-
sponding gradients can be calculated. We find that this is not possible in practice. Below,
we outline the experiments leading to this finding and study its failure modes. Based on
this, in section 7.4 we will present promising, more suitable experimental settings.

Figure 13: Distribution of
absolute gradient compo-
nents for different maxi-
mum number of timesteps
T ∈ {10, 20, 30, 40}. The
entries of the histograms
are the 377 weights of a 4-
layer convolutional archi-
tecture respectively. The
distributions correspond to
the very first iteration of
gradient descent i.e. be-
fore any weight update is
applied. Note the increas-
ing scale on the x-axis.

Exploding Gradients When trying to calculate gradients corresponding to long tem-
poral components (i.e. T � 1 in eq. 15), we observe the problem of exploding gradients.
To illustrate the issue we repeat the experiment from section 7.1 point 2 with targets at
different number of timesteps T . Fig 13 shows the distribution of absolute components of
the gradients for increasing T . The gradient magnitude clearly increases with T , leading
to numerical overflow in some components for T ≥ 50.
We experimented with addressing this issue by gradient clipping [12] (i.e. normalizing gra-
dient if its magnitude goes above a certain threshold). However, in the setting discussed
here, we were unable to consistently obtain valid gradients with this method, mainly be-
cause for large T , increasing numbers of gradient components are invalidated by numerical
overflow.
We want to emphasize that we find the issue of exploding gradients to occur independently
of the weight initialization or learning rate. We also found no connection to the size of
the neural network, i.e. the issue remains present even for a network with a single layer.
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In fact, we believe that the issue is closely related to the exploding gradients problem
encountered when training recurrent neural networks (RNN)[12]. We will discuss the
analogies in appendix C).

7.4 Alternative Settings

In the following we present ways of circumventing the problems elucidated in the previous
sections. All of the proposed experimental settings involve calculating intermediate error
signals with respect to targets states v̂(nt) at times nt ≤ T :

L(v̂,v(T )) :=
1

n

∑
1≤nt≤T

∑
i

(v̂i
(nt) − v(nt)

i )2 (19)

This setting enables us to control the contributions of long term temporal components to
the gradients.
Siemens offered to provide us with the a new set of target simulations where intermediate
state at times nt (in intervals of ∆t = 10−4s) would be available. However, we have found
that the new dataset was not compatible for our purposes: The transient simulation data
provided by Siemens was obtained using the StarCCM+ software which implements a
finite volume scheme, while ΦFlow employs a finite difference scheme with an explicit
advection step. This leads to very different dynamics of the velocity fields, especially in
the beginning of the simulation, where the advection of the fluid from the inflow outwards
is limited by the finite step size.
To still be able to present a proof of concept of the method, we consider the following
alternative settings:

1. We create a small scale dataset, consisting of 5 high resolution transient simulations
using ΦFlow. For this purpose we choose a grid resolution of 0.2mm, resulting in 1
grid point on the coarse scale for every 25 grid points on the fine scale. Similarly,
according to the CFL criteria, we adjust the timestepping size by a factor of 5.
The increased spatial and temporal resolution increases the computational time by
a factor of ∼ 125. We choose 4 out of 5 simulations as training data and use the
remaining simulation for evaluation. Fig 14 shows an exemplary training run for
T = 10 with intermediate error signals, achieving up to 40% improvement over the
plain simulation in the unseen simulation used for evaluation. We find the results

Figure 14: Results from training
on the self-produced high-resolution
transient data. The improvement is
calculated w.r.t. the coarse plain
simulation. The dashed line at
epoch 9 marks the point after which
overfitting to the training data is
observed.
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on the small dataset to be promising, as they show that good generalization can
be achieved with relatively small amounts of data. We argue that this is because
each simulation actually contains information for thousands of individual samples,
considering the spatial and temporal dimensions. A caveat is that this small-scale
study was performed in the regime in the beginning of the simulation, where the
progression of the flow field is limited by the finite advection step.

2. We study the case where the initial velocity field is set to the target velocity field
corresponding to the steady state i.e. v(0) = v̂(T ). This is justified by the fact that
v̂(T ) is assumed to be a flow field in steady state, which does not change in time
by definition. This enables us to also set all intermediate targets to v̂(T ) = v̂(nt).
So, while the loss will be 0 in the very first iteration, every consecutive (untrained)
solver step is expected to bring v(nt) away from v̂(T ), while the trained model should
keep v(nt) near v̂(T ) for all timesteps.
We find that the effective viscosity model is able to generalize well beyond timeframes
seen during training, leading us to the conclusion that the viscosity functional is a
good prior on the type of correction. We describe the experiments leading up to
this finding in more detail in appendix F). A noteworthy detail in implementing this
setting is that the target and initial state v̂(T ) will in general not be divergent free
in the discretization of the coarse simulation (although being divergent free in the
original discretization). We therefore first project v̂(T ) onto the space of divergent
free fields in order to obtain consistent initial and target states.

8 Discussion

Challenges We find that optimizing the objective eq. (11) is very challenging in prac-
tice. We hypothesise that this is mainly because of two reasons: 1) the interaction of
the correction model with the CFD solver introduces a large non-linear contribution into
the objective problem and 2) the recursive nature of the correction model influences the
gradient flow while training. We think that these circumstances add a large amount of
complexity to the training procedure when compared to more classical, fully supervised
machine learning approaches.
Specifically, we find that the optimization process becomes more difficult, the sparser the
error signal becomes; in the case where there is only a single target state after T steps,
we observe that the optimization becomes ”brittle” in a sense that it is very sensitive to
initialization, easily converges to ”bad” local minima or even diverges for larger T . In-
troducing intermediate error signals (eq. 19) helps in ”smoothing” the optimization and
addressing some of the previous issues as discussed in section 7.4.

Generalization By design of the correction model, the interaction with the flow field
is limited to a local neighbourhood. Because the same correction functional is applied
across the whole domain, this can be interpreted as a strong regularization on the learned
parameter space, hampering the risk of overfitting. We could verify this hypothesis in
our experiments and find that, with relatively small amounts of training data, good gen-
eralization within the training domain can be accomplished. On the other hand, in the
scope of the project the parameter space of simulations shown to the correction models
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was limited: The dataset only consisted of pipe-flows with an inflow on the left side,
we therefore expect that our models has a strong bias towards this setting. Nonetheless
we expect the method to potentially exhibit better generalization properties then more
classical “global” architectures, an assumption that could be verified in future work.

9 Conclusions and Outlook

In this work we studied the learning of closure models with the goal of increasing the
accuracy of coarsely discretized CFD solvers. In the course of the project we created
training targets from an external data source, we implemented a differential CFD solver,
automated the setup of parameterized pipe- flow simulations and experimented with dif-
ferent correction models.
We have found that the type of models studied in this work are, in principle, able to cap-
ture physical phenomena based on only local predictions. In our experiments, we show
that training recurrent correction models is challenging in practice. In the following we
conclude our findings and, based on that, define requirements on chosen solver methods
and training data for future work:

1. The interaction of the correction models with the fluid solver perturbs the interme-
diate physical states, influencing the convergence properties of the original scheme.
When choosing a solver method, one should pay attention to the robustness of the
scheme w.r.t. these kinds of perturbations. We found the stable fluids algorithm [19]
as implemented in ΦFlow to work well in practice.

2. We think that intermediate error signals/ targets are necessary in order to control
the influence of long term contributions to the gradients. For iterative methods, the
training data should contain information of the flow field for the intermediate steps.

3. In general, it is difficult to learn corrections corresponding to time series of arbitrary
length. In particular, we find that is is not feasible to learn general correction
functionals for an iterative model from only the steady state data. The training
data should be obtained by a method that is “compatible” with the scheme used for
training (i.e. the flow field should be propagated in time in a similar manner).

4. When trained in the right setting, the models show nice generalization properties,
even with relatively small amounts of training data. We found the effective viscos-
ity model together with the local NN architecture to be good priors on the form of
correction.

For training, we found it useful to experiment with lowering the magnitude of the weight
initialization and generally found gradient clipping to have a positive effect on performance
(see appendices C) and F)). In section 7.4 we showed that with a suitable dataset of
transient simulations, the method studied in this work exhibits promising properties.
We expect that this result is transferable to a larger dataset of high-resolution transient
simulations, which has to be shown in future work.
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Appendix

A) Modes of Automatic Differentiation

In the following we will introduce the two distinct modes of automatic differentiation,
namely forward mode and backward mode. To illustrate the conceptual differences, we
will closely follow [10] and consider the case where we are interested in calculating elements
of a jacobian Jij = ∂Fi

∂θj
, where F : Rn → Rm is a nested nested function similar to eq.

(10).

Forward Mode AD: Given a “seed” vector u ∈ Rn in the input space of F , Forward
Mode AD evaluates the effect of the jacobian J · u. It computes the directed partial
derivates w.r.t to all outputs in one forward sweep. This is achieved by employing a
so-called algebra of dual numbers. In our differentiable PP-solver we implement forward
mode AD. For this, we employ the Julia package ForwardDiff [15], where we had to
make sure that each function and operation is is able to process the dual number types
introduced for differentiability.

Reverse Mode AD: Given a vector in the output space w ∈ Rm, reverse mode AD
evaluates the effect of the transposed jacobian JT · w. I.e. for complex operation it
actually implements the adjoint jacobian. For this reason, calculating derivatives through
the solver in eq. 15, can be considered as solving for the adjoint of F̃ .
Reverse mode AD comprises two distinct phases: In the forward pass, F is evaluated as
usual, however, the operations leading up to the final result are recorded and intermediate
results are saved. In the backward pass, starting from the output, error adjoints are
computed by traversing the function in reverse. Backpropagation, as employed in most
machine learning frameworks, is a sepcial case of reverse mode AD for scalar outputs (i.e.
loss functions). ΦFlow[13] relies on reverse mode AD in tensorflow [11].

B) Applying CNNs to staggered grids

In the case of ΦFlow, the velocity field is given in form of a staggered grid. To be able
to integrate the CNN into the solver step, we do the following prep-processing steps: We
first center the x and y vector components respectively by linear interpolation. We then
concatenate the components as channel dimensions and feed the resulting tensor of shape
h × w × 2 to the network. In the case of the effective viscosity model the output of the
NN is of channel dimension 1, such that we can feed it as a centered scalar field to the
diffusion step. In the case of the residual model the output is of shape h × w × 2 and
has to be converted back to a staggered grid. We do this by linear interpolation to shape
h− 1×w− 1× 2, followed by a zero padding operation along the appropriate dimensions
to obtain the outputs of shapes h×w+1×1 and h+1×w×1 for the x and y components
respectively.
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C) Recurrent View of Correction Models

The correction models described in section 3.3 are applied in a recurrent manner at each
solver step. Although the model is not a Recurrent Neural Network (RNN) the classical
sense, in the following we will show the analogies to RNNs point out the emergence of
the exploding gradients problem. For this purpose, in our explanations below we will
repeatedly relate our expressions to the derivations shown in [12]. Consider the most
simple, one unit recurrent neural network:

xnt = F (xnt−1,unt , θ) = Wσ(xnt−1) + Winunt + b (20)

Where xnt is the internal “hidden state” at step nt, and θ denote learnable parameters,
in this case the weight matrices W, Win and bias term b. unt is the input at step nt and
σ is an element-wise function introducing the non-linearity. Transferring this formulation
to our problem, we can identify the following correspondences for the example of the
effective viscosity model :
unt = 0 (no input), xnt = νnt (scalar viscosity field). The non-linearity σ in this case
encapsulated the solver scheme. It takes in a scalar viscosity field and a vector field of
velocity v and computes the velocity field at the next timestep σ(vnt−1, µnt−1) = vnt .
Choose dimensions of W and b accordingly, such that

µnt = Wσ(vnt−1, µnt−1) + b. (21)

compare this to equation 8 in [12]. We showed that training the correction model can
be considered as training an RNN with no input and a very complex non-linearity. For
the case of the simple RNN model, [12] show that, depending on the eigenvalues of W ,
gradients through the model tend to vanish or explode. This property is grounded in the
nature of the product of jacobians, propagating the error through time. In our case (eq.

15), this corresponds to the terms ∂v(T )

∂v(nt)
=
∏

nt<i<T
∂v(i)

∂v(i−1) . The applicability of the proof
of exploding gradients to the case of correction models studied in this work depends on
the properties of the solver non-linearity, specifically wether its derivative is bounded.
Instead of formally proving the applicability, we will argue from an experimental point
of view and observe the temporal components of the gradients. In figure 15 we show the
magnitudes of the temporal components (v̂

(nt)
i − vnti )2 increasing exponentially. This will

lead the overall gradient to be generally dominated by the loss component corresponding
to the largest temporal component. By gradient clipping, this explosion of gradients can
be mitigated to a certain degree, which is why we employ gradient clipping throughout our
experiments. As mentioned in section 6.2 however, very large T lead to numerical overflow
in some components, making it impractical to calculate loss functions over arbitrary large
time intervals.

D) Structure of training data

The simulation data of the different designs are contained in four folders which correspond
to four the inlet velocities. Each folder contains 5,005 sub-folders corresponding to each
design. Again moving into a simulation folder of a design, we have the result of the
simulation stored in a *.CSV file as well as the visualization of the result in a *.png file.
We can visualize the structure in the figure 16.
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Figure 15: Temporal contributions of different timesteps to the gradient with and without
gradient clipping. The cumulative sum of the shown contributions equals the loss with
intermediate temporal targets (eq. 19.)

Figure 16: Structure of the training data folder

E) Weighted Least Squares

Let us consider the problem of fitting a function to a data set in 1D. The point coordinates
are given by xi, where i = 1...n, each of which is associated with a scalar value yi. We
try to find a fitting function g(x) given by equation 22

g(x) =
k∑
j=1

bj(x)cj (22)

It can also be written in the vector form as

g(x) = b(x)Tc

with polynomial basis vectors b(x) = [b1(x), b2(x)..., bk(x)]T of degree k and unknown
coefficient c = [c1, ..., ck]

T . The Least Squares (LS) approach finds these coefficient by
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solving the optimization problem

min
c

n∑
i=1

||g(xi)− yi||2.

The solution of the problem is

c = (BTB)−1BTg

where matrix B is given by


b1(x1) b2(x1) ... bk(x1)

...
. . .

...
...

...
b1(xn) b2(xn) ... bk(xn)

 and g is a vector of known

function values.
In WLS, instead of finding a global function g(x), we tend to go local. We are interested
in finding the function values at points x̂, which in our case correspond to the coordinates
of the regular grid. Between this fixed point and any other point xi, we will define a
weighting function W (di) as a function of the distance between these two points points
di = ||x̂ − xi||. The objective function is slightly changed and added with weight vector
as shown in the equation 23

min
c

n∑
i=1

W (di)||g(xi)− gi||2 (23)

F) Supplementary Results

Training from Initial Steady State

The following section presents more detailed experimental results for the training setting
in which the initial velocity field is set to the target velocity field. An optimal model
is therefore expected to keep the flow field close to the initial state for all times. As
described in section 7.4, the initial velocity field and target are first projected onto the
space of divergence free fields. Figure 17 shows the velocity fields before and after this
step.
Figure 18 shows two exemplary roll-outs of the two trained correction models. Both mod-
els were trained in the same setting with the same hyper-parameters i.e. Adam optimizer,
a learning rate of 0.5 ·10−3 and an architecture as described in 6.1 with parameters k = 5,
n = 8, and three hidden layers. Layer wise gradient clipping with a threshold of 0.001
was applied. We don’t expect these hyper-parameters to be the most optimal in general,
although we found them to work reliably across training runs. To limit the computa-
tional effort, the dataset used herein consisted of a subset of the large dataset discussed
in section (4), which we found to include a representative cross section of training samples
encountered in the main dataset. During training time, only the first 5 consecutive time-
steps for each training sample were shown to the model. The roll-outs in figure (18) are
therefore extrapolating, both in the temporal dimension (nt > 5) as well as regarding the
actual geometry from the evaluation set. In these experiments we find that the effective
viscosity model tends to exhibit better generalization properties then the residual model.
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Figure 17: Velocity fields obtained directly as the weighted least squares fit (top) and
divergent free target (bottom), which is also the initial velocity field for the experiments
in this section.

As seen in figure 18, while the residual model is able to reduce the evaluation loss over the
plain simulation for time-steps up to ∼ 13, it generally fails to extrapolate beyond that.
The effective viscosity model on the other hand improves the predictions far beyond the
time-frames seen during training.
Figure 19 shows the resulting flow fields for the case of the effective viscosity model. By
observing the difference between the plain and the corrected solutions (bottom), we see
that the model predominantly learned to correct the boundary regions around the nozzle
and inflow. This is actually expected, as the plain coarse simulation is unable to resolve
these boundary regions with the same accuracy as the target solution. As seen in figure 4,
the method which produced the target data introduces more mesh elements around these
regions to accurately resolve the boundary layers. Although the trained model clearly
improves the accuracy of the solver over the plain simulation, we think that the training
setting described here is in general sub-optimal, considering that the model still notably
deviates from the target state.
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(a) correction by effective viscosity model (b) correction by residual model

Figure 18: Roll-outs of the effective viscosity model (a) and the residual model (b) on
two evaluation cases unseen during training. Both models were trained on the same
setting, i.e. same hyper-parameters and training set. The training data included T = 5
consecutive time-steps for both cases only, as indicated by the dashed blue line.

Figure 19: Exemplary final flow fields from the corrected simulation (effective viscosity
model), the target and the absolute difference in flow fields between the corrected and the
plain simulation.
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