
Technical University of Munich

Machine Learning Accelerators for 3D Physics Simulations
TUM Data Innovation Lab

Yi-Han(Kimi) HSIEH1, Aman KUMAR1, Lennart RÖSTEL1,

Saad SHAMSI2

1Department of Informatics, Technical University of Munich (TUM)
2Department of Mathematics, Technical University of Munich (TUM)

February 25, 2021

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 1

Technical University of Munich

Aerodynamic Analysis

Source: Simcenter STAR-CCM+

HKRS | ML for 3D Physics 2

Technical University of Munich

Reacting Flows

Source: Simcenter STAR-CCM+

HKRS | ML for 3D Physics 3

Technical University of Munich

Cavitation Analysis

Source: Simcenter STAR-CCM+

HKRS | ML for 3D Physics 4

Technical University of Munich

Motivation

CFD simulations require a trade-off – Resolution vs. Speed:

• Low-Res + High Speed: No Micro-Scale Details

• High-Res + Low Speed: Computationally Expensive

Ideal Simulation = High Resolution + High Speed

HKRS | ML for 3D Physics 5

Technical University of Munich

Plan from SIEMENS

Goals:
• Develop a CFD pipeline that operates on coarse discretisations

• Capture the cumulative effects of micro-scale phenomena on the macro-scale

• Lower computational cost

Computational Approach:
• Construct Differentiable Solver Pipeline

• Learn Correction Functionals

• Assess Solver Suitability

HKRS | ML for 3D Physics 6

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 7

Technical University of Munich

Theory: Navier-Stokes Equations

Conservation of Mass
∇ · v = 0. (1)

Conservation of Momentum

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + µ∇2v + f (2)

HKRS | ML for 3D Physics 8

Technical University of Munich

The Trouble with Turbulence

Most problems exhibit turbulence characterised by:

• aperiodic motion

• random spatial variations

• instability

• phenomena at multiple length-scales

Turbulence problems are typically studied within a stochastic framework

HKRS | ML for 3D Physics 9

Technical University of Munich

The Trouble with Turbulence
• Direct Simulations: High Resolution in space and time

• Applications: Coarse Picture + Time-Averaged

Figure: Instantaneous and Time-Averaged flows over a backstep. Only the recirculation region is of interest. Ramsai 2020.

HKRS | ML for 3D Physics 10

Technical University of Munich

The Trouble with Turbulence

To extract coarse-scale and time-averaged features use Reynolds-Averaged Quantities:

v (x , t) = v̄ (x) + v̆ (x , t) (3)

This yields the Reynolds-Averaged Navier Stokes (RANS) equations:

∂v̄i

∂t
+ v̄j

∂v̄i

∂xj
= f̄i −

1
ρ

∂p̄
∂xi

+ ν
∂2v̄i

∂xj∂xj
+
∂ −v̆i v̆j

∂xj
(4)

HKRS | ML for 3D Physics 11

Technical University of Munich

Closure Problem

• Non-Linearity→−v̆i v̆j in RANS equations→ Closure Problem

• Rij = −v̆i v̆j is the Reynolds stress

• Turbulence Modelling: Rij = Rij (v̄ , p̄)

• Turbulence Modelling: correction functionals correct for Rij = −v̆i v̆j

Can we learn the turbulence model?

HKRS | ML for 3D Physics 12

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 13

Technical University of Munich

Turbulence Models: Correction Functionals
Effective Viscosity Model
• Extend the diffusion term ν∇2v by introducing a correction: νθ(v)

• Reproduces the cumulative effects of small scale vortices

ν → ν0 + νθ(v) (5)

Residual Model
• Augment the external forces f by introducing a correction: fθ(v)

• Analogous to the control term introduced in Holl, Koltun, and Thuerey 2020

f → f0 + fθ(v) (6)

HKRS | ML for 3D Physics 14

Technical University of Munich

Turbulence Models: Our Approach

Our implementation of correction functionals distinguishes itself in terms of:

• Spatial Locality: Corrections act on the neighbourhood of a point

• Temporal Independence: Corrections propagate through the entire time domain

• Strong Coupling: Future dynamics incorporated into corrections to previous times

HKRS | ML for 3D Physics 15

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 16

Technical University of Munich

Network Architecture
Implementing the locality assumption into the NN architecture (inductive bias).
We propose a local variant of a fully convolution neural network (FCNN):

HKRS | ML for 3D Physics 17

Technical University of Munich

Learning Operators on Vector Fields
Employ local FCNN for learning stencils.
Preliminary study on “mockup” vector field:

V : R2 → R2
(

x
y

)
→
(

sin(ωxx + φx)
cos(ωyy + φy)

)
For this simple case, we can analytically
calculate the effect of different operators.
By varying ω and φ we create a training
dataset.

HKRS | ML for 3D Physics 18

Technical University of Munich

Learning Operators on Vector Fields
Divergence: ∇ · V
Learned kernels resemble central
differences:

Non-linear Operators, e.g. V · ∇2V

Conclusion: Local FCNN is able to resemble operators based on local predictions.

HKRS | ML for 3D Physics 19

Technical University of Munich

Parameter Optimization - Pipeline

HKRS | ML for 3D Physics 20

Technical University of Munich

Parameter Optimization - Pipeline

HKRS | ML for 3D Physics 21

Technical University of Munich

Parameter Optimization - Pipeline

HKRS | ML for 3D Physics 22

Technical University of Munich

Parameter Optimization - Pipeline

HKRS | ML for 3D Physics 23

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 24

Technical University of Munich

Data Preparation

Figure: Design parameters to generate various designs

Figure: Corresponding Geometry

HKRS | ML for 3D Physics 25

Technical University of Munich

Design Visualization

Simulations obtained from the Simcenter STAR-CCM+ by Siemens

HKRS | ML for 3D Physics 26

Technical University of Munich

Data Structure

Figure: A sample dataframe containing the result of simulation

→ Design folder containing simulation
results contained in files named
Velocity.png, *.csv → CSV file containing
the results at the points in the simulation
domain
→ Processing required to get the underlying
structure of data

HKRS | ML for 3D Physics 27

Technical University of Munich

Data Processing
→ CSV file contains velocity values at
unstructured grid points
→ Need to retrieve velocity values for the
structured grid points as required by the
solver
→Weighted Least Square approach to fit
the data

Figure: Actual velocity on the unstructured grid

HKRS | ML for 3D Physics 28

Technical University of Munich

Weighted Least Square
→ More suitable as the velocity at the
structured grid needs to be close to nearest
unstructured point
→ Optimization function is

min
c

n∑
i

W (di)||g(xi)− yi ||2

→ di is distance of structured grid point
from ith point in the unstructured grid

→ g(x) = b(x)T c where b(x) is polynomial
basis function of degree k
→Weight function is

W (d) = e−
d2

σ2

→ Two hyper-parameters to optimize :
degree and σ

HKRS | ML for 3D Physics 29

Technical University of Munich

Parameters of WLS

Figure: Error plots for various combinations of degree and σ

→ Hyper parameter search for degree and
σ

→ Best combination is degree = 2 and
σ = 1

HKRS | ML for 3D Physics 30

Technical University of Munich

Target computation

Figure: In left we see the actual velocity provided and on the right interpolated velocity using the best sigma and degree, used as target for the model.

HKRS | ML for 3D Physics 31

Technical University of Munich

Integration with the pipeline
→ Processing provides the target velocity for the learning process
→ Provides the parameters and boundary conditions for a particular design as shown in
the figure

Figure:

HKRS | ML for 3D Physics 32

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 33

Technical University of Munich

Timestepping with Correction

HKRS | ML for 3D Physics 34

Technical University of Munich

Timestepping with Correction
We optimize parameters θ by

gradient-based methods.
→ find ∇θL!
Or: How does the correction at step n
influence the loss at step T ?

HKRS | ML for 3D Physics 35

Technical University of Munich

Timestepping with Correction
We optimize parameters θ by
gradient-based methods.
→ find ∇θL!
Or: How does the correction at step n
influence the loss at step T?
→ Gradients through the solver!

HKRS | ML for 3D Physics 36

Technical University of Munich

Differentiable CFD solvers
We need to calculate derivatives through the solver → differentiable CFD solver.
We employ and test two solver implementations:

ΦFlow PP-solver
Method Finite-Difference Finite-elements
Algorithm ∼stable fluids [Stam 1999] PP-algorithm [Helmich et

al. 2018]
Differentiable? yes no

HKRS | ML for 3D Physics 37

Technical University of Munich

PP-solver

• MATLAB reference implementation
provided by Siemens.

• We completely re-implement the solver
in JULIA.

• We employ automatic differentiation
(AD)

• Forward Mode AD, due to memory
efficiency.

→We produce an end-to-end differentiable implementation.

HKRS | ML for 3D Physics 38

Technical University of Munich

PP-solver - Proof of Implementation
We verify our implementation of the
forward differentiable solver:
• Set up small pipe flow simulation.
• Run target simulation with viscosity
µ = 0.10. Obtain target velocity field v̂ at
T = 10.

• Run 1000 simulations with varying µ. For
each simulation calculate:
− Final state v(T)

− Loss L = ||v(T) − v̂||2
− Derivative dL/dµ

HKRS | ML for 3D Physics 39

Technical University of Munich

PP-solver - Challenges

• We implement the (residual) correction model into PP-solver.
• We optimize weights through the solver by gradient descent.
• We face two main challenges:

1 Computational Inefficiencies
2 Convergence depends on current correction parameters.

Correction introduces perturbance of the physical state.
→ Optimization by gradient descent empirically difficult.

Conclusion: We concentrate our efforts on ΦFlow .

HKRS | ML for 3D Physics 40

Technical University of Munich

Φflow

Philipp Holl 2020

• Invented by Nils Thuerey Group in TUM
I15

• A differentiable and open-source physics
simulation library.

• A Navier-Stokes stable fluids-type solver.
• Using the Structured-Staggered-Grid

system.
• Integration with TensorFlow allowing for

straightforward neural network.
Figure:

HKRS | ML for 3D Physics 41

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 42

Technical University of Munich

Simulation of Navier-Stokes Flow
plain simulation
• Input: geometry, boundary conditions, physical properties, grid resolution and timestep dt
• Output: flow field in steady state.

In general, we try to find the reasonable gird resolution, dt and T (#timesteps to reach steady state), we can apply them to
forward simulation.

Figure: Velocity field plot

HKRS | ML for 3D Physics 43

Technical University of Munich

Meshing and resolution
All computations happen in the grid points. We would like all geometries to be placed precisely in the grid.

Figure: on grid Figure: in between grid

1 Find the largest feasible grid resolution. i.e. the greatest common divisor, which is 0.125 mm.
2 Shortley-Weller scheme.
3 Fix a resolution and classify all designs into two groups,on or in between the grid points.

HKRS | ML for 3D Physics 44

Technical University of Munich

Meshing and resolution cont’d

Table: Computation time required for 1000 time-steps in design 5005

resolution (mm) 1 0.5 0.25
time (s) 68 152 312

HKRS | ML for 3D Physics 45

Technical University of Munich

Time stepping
We choose the time step size ∆t and the total number of time steps T based on the following strategy:

1 We utilize the Courant-Friedrichs-Levy (CFL) condition

|vx ,max |dt < ∆x , |vy ,max |dt < ∆y (7)

2 We define the condition for the steady state as : |v (nt+1) − v (nt)| ' 0.

Figure: Design 4956 Figure: Design 5005
HKRS | ML for 3D Physics 46

Technical University of Munich

Summary of Simulation of Navier-Stokes Flow
• We have 1232 test desighs with resolution = 1mm, which saves compuataional effoet.
• dt = 10−4 s , which fulfills the CFL conditions for the inflow velocities 0.5 to 2 m/s.
• T = 500 steps, which is a rather conservative estimate and includes a “safety buffer”.

HKRS | ML for 3D Physics 47

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 48

Technical University of Munich

Pipeline

HKRS | ML for 3D Physics 49

Technical University of Munich

Training Experiments - Proof of concept
We test the training setup (including simulation setup, solver, FCNN and optimization)
by overfitting to a made-up training sample with fixed target viscosity and T = 10.

HKRS | ML for 3D Physics 50

Technical University of Munich

Training Experiments - Exploding Gradients
For increasing T , gradients tend to vanish
or explode.
Problem occurs even with:
• careful weight initialization
• small learning rates
• very small networks

Gradient clipping only helps to a certain
degree.
→ training on only steady state (T = 500)
not feasible

HKRS | ML for 3D Physics 51

Technical University of Munich

Alternative Settings - Transient Training
Intermediate target states are required:

• We create a small dataset of 5
high-resolution transient simulations

• Target simulation 125*computation time
• Promising generalization even with few

training samples.
• Actually: Every simulations contains

thousands of samples!

HKRS | ML for 3D Physics 52

Technical University of Munich

Roadmap

• Motivation
• Navier-Stokes Equations and Turbulence
• Correction Functionals
• Computational Strategy
• Data Preparation
• Differentiable Solvers
• Simulation of Navier-Stokes Flow
• Final Experiments
• Conclusions

HKRS | ML for 3D Physics 53

Technical University of Munich

Summary
Locality (assumption):
Correction depends only
on the local
neighbourhood in the flow
field.

Recurrence:
The correction is applied
in each solver step.

Interaction with solver:
Training of correction
parameters informed by
future evolution of physical
states through
differentiable solver.

HKRS | ML for 3D Physics 54

Technical University of Munich

Conclusions

1 Correction functionals perturb intermediate physical states.
→ empirically, optimization via gradient descent is delicate.

2 Optimization of the recurrent model not feasible for arbitrary time periods.

3 For correction of iterative methods, intermediate state information needs to be
available.

4 In the right setting: Effective viscosity model and local FCNN lead to nice
generalization.

HKRS | ML for 3D Physics 55

Technical University of Munich

Acknowledgments
We would like to thank...

• our Mentors from Siemens
• our TUM Co-Mentor Laure Vuaille

• ... you for your attention!

HKRS | ML for 3D Physics 57

Technical University of Munich

References
Baydin, A. G. et al. (2015). “Automatic differentiation in machine learning: a survey”. In: Journal of Machine Learning
Research 18, pp. 1–43. arXiv: 1502.05767.
Helmich, T. et al. (2018). Kurzanleitung fuer den Matlab-PP-Loeser fuer die inkompressible Navier-Stokes Gleichung.
Tech. rep. Technical University Dortmund, Department of Mathematics.
Holl, P., V. Koltun, and N. Thuerey (2020). “Learning to Control PDEs with Differentiable Physics”. In: arXiv: 2001.07457.
Margossian, C. C. (2019). A Review of Automatic Differentiation and its Efficient Implementation Graphical table of content
Automatic Differentiation. Tech. rep. arXiv: 1811.05031v2.
Pascanu, R., T. Mikolov, and Y. Bengio (n.d.). On the difficulty of training Recurrent Neural Networks. Tech. rep. arXiv:
1211.5063v2.
Philipp Holl, N. T. (2020). PhiFlow. https://github.com/tum-pbs/PhiFlow.
Ramsai (2020). “RANS Derivation and Analysis”. In: SKILL LYNC.
Revels, J., M. Lubin, and T. Papamarkou (2016). “Forward-Mode Automatic Differentiation in Julia”. In: arXiv:1607.07892
[cs.MS].
Stam, J. (1999). “Stable fluids”. In: Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, pp. 121–128.

HKRS | ML for 3D Physics 58

http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/2001.07457
http://arxiv.org/abs/1811.05031v2
http://arxiv.org/abs/1211.5063v2
https://github.com/tum-pbs/PhiFlow

Technical University of Munich

Backup Slides

HKRS | ML for 3D Physics 59

Technical University of Munich

Contrasting to “Global” Architectures
Contrasting our approach, it is comparatively easy to
directly predict steady states from the input geometry
(i.e. no solver in the loop):
• Custom Unet Variant (∼ 2M parameters)
• Inference time 0.05s
• Fast and accurate, real-time ready

But:
• Global architecture do not generalize well;
• Predictions limited to training distribution
• No control over physical quantities (viscosity, etc.)

Figure: Our results on steady state prediction with a Unet VariantHKRS | ML for 3D Physics 60

Technical University of Munich

Automatic Differentiation (AD) [Margossian 2019]
Automatic differentiabtion uses the fact that any computation can be decomposed into
elementary operations.
Consider the function F : Rn → Rm. In general, we are interested in computing the
jacobian Jij = ∂Fi

∂θj
.

If F is decomposable as F = FT ◦ FT−1 ◦ ... ◦ F1, then by the chain rule it follows
J = JT · JT−1 · ... · J1. Two main variants:
• Forward Mode: Given a “seed” vector u ∈ Rn in the input space of F , Forward Mode

AD evaluates J · u.
• Reverse Mode: Given a vector in the output space w ∈ Rm, reverse mode AD

evaluates JT · w .
The relevant difference between the variants lies in the implications regarding
computational implementation
HKRS | ML for 3D Physics 61

Technical University of Munich

Reverse Mode AD
Two distinct phases
1 Forward pass: Evaluate F , store intermediate results (activations) and computations

(computation graph).
2 Backward pass: Starting from the output, compute error (adjoints) by traversing F in

reverse.
Calculate derivatives w.r.t all inputs (i.e. whole gradients) in two passes!
Backpropagation is a special case of reverse mode AD for scalar outputs (m=1). Most
machine learning frameworks, including ΦFlow employ reverse AD.
However: Reverse mode requires storing of intermediate results! Large memroy
overhead for our application (internal iterative methods, convergence criteria ...).

HKRS | ML for 3D Physics 62

Technical University of Munich

Forward Mode AD

• Computes the directed partial derivates w.r.t to all outputs in one forward sweep.
• One forward pass required for each input (weight to be optimized).
• No backward pass needed→ no storage of intermediate activation required.

This is achieved by augmenting operations with a dual number type (see Baydin et al.
2015):

x → (v + εv̇) , v , v ∈ R, ε2 = 0

e.g. multiplication becomes (v1 + εv̇1) · (v2 + εv̇2) = (v1v2) + (v1v̇2 + v̇1v2)ε.
For differentiation, "just" evaluate F(v + 1ε) = dF(θ)

dθ |v and ε = 0 for any other number.
In our application: We employ FORWARDDIFF [Revels, Lubin, and Papamarkou 2016]
and make sure dual number types are understood by all operations.

HKRS | ML for 3D Physics 63

Technical University of Munich

Alternative Setting - Initialization with steady state
Exploit the fact that the given target v̂ is in
steady state:
→ set v(0) = v̂
and use intermediate targets v̂(n) for
computing the loss.

Figure: Correction by effective viscosity modelHKRS | ML for 3D Physics 64

Technical University of Munich

Alternative Setting - Initialization with steady state
In roll-outs in unseen simulations: Effective viscosity generalizes well beyond time
periods seen during training.

Figure: Effective viscosity model Figure: Residual modelHKRS | ML for 3D Physics 65

Technical University of Munich

Recurrence and Exploding Gradients
Exploding and vanishing gradients are properties of recurrent neural networks.

For a one-layer NN with parameters W, b, we can
rewrite our scheme as.

ν(n) = Wσ(v(n−1), ν(n−1)) + b. (8)

where σ(v(n−1), ν(n−1)) = v(n) resembles the (highly
non-linear) solver.
Under some assumptions about σ, gradients for
RNN’s vanish or explode, depending on the
eigenvalues of W [Pascanu, Mikolov, and Bengio
n.d.].

HKRS | ML for 3D Physics 66

Technical University of Munich

Recurrence and Exploding Gradients
The gradient components can be calculated as:

∂L
∂θj

=
∂L
∂v (T)

∂F̃(v (0), θ)

∂θj
(9)

=
∑

0≤nt≤T

(
∂L
∂v (T)

∂v (T)

∂v (nt)

∂F
∂θj

∣∣∣∣
v (nt−1)

)
(10)

where the error is propagated through time by the product of jacobians:

∂v (T)

∂v (nt)
=

∏
nt<i<T

∂v (i)

∂v (i−1)
(11)

HKRS | ML for 3D Physics 67

