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Aerodynamic Analysis

Source: Simcenter STAR-CCM+
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Reacting Flows

Source: Simcenter STAR-CCM+
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Cavitation Analysis

Source: Simcenter STAR-CCM+
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Motivation

CFD simulations require a trade-off – Resolution vs. Speed:

• Low-Res + High Speed: No Micro-Scale Details

• High-Res + Low Speed: Computationally Expensive

Ideal Simulation = High Resolution + High Speed
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Plan from SIEMENS

Goals:
• Develop a CFD pipeline that operates on coarse discretisations

• Capture the cumulative effects of micro-scale phenomena on the macro-scale

• Lower computational cost

Computational Approach:
• Construct Differentiable Solver Pipeline

• Learn Correction Functionals

• Assess Solver Suitability
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Theory: Navier-Stokes Equations

Conservation of Mass
∇ · v = 0. (1)

Conservation of Momentum

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + µ∇2v + f (2)
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The Trouble with Turbulence

Most problems exhibit turbulence characterised by:

• aperiodic motion

• random spatial variations

• instability

• phenomena at multiple length-scales

Turbulence problems are typically studied within a stochastic framework
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The Trouble with Turbulence
• Direct Simulations: High Resolution in space and time

• Applications: Coarse Picture + Time-Averaged

Figure: Instantaneous and Time-Averaged flows over a backstep. Only the recirculation region is of interest. Ramsai 2020.
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The Trouble with Turbulence

To extract coarse-scale and time-averaged features use Reynolds-Averaged Quantities:

v (x , t) = v̄ (x) + v̆ (x , t) (3)

This yields the Reynolds-Averaged Navier Stokes (RANS) equations:

∂v̄i

∂t
+ v̄j

∂v̄i

∂xj
= f̄i −

1
ρ

∂p̄
∂xi

+ ν
∂2v̄i

∂xj∂xj
+
∂ −v̆i v̆j

∂xj
(4)
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Closure Problem

• Non-Linearity→−v̆i v̆j in RANS equations→ Closure Problem

• Rij = −v̆i v̆j is the Reynolds stress

• Turbulence Modelling: Rij = Rij (v̄ , p̄)

• Turbulence Modelling: correction functionals correct for Rij = −v̆i v̆j

Can we learn the turbulence model?
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Turbulence Models: Correction Functionals
Effective Viscosity Model
• Extend the diffusion term ν∇2v by introducing a correction: νθ(v)

• Reproduces the cumulative effects of small scale vortices

ν → ν0 + νθ(v) (5)

Residual Model
• Augment the external forces f by introducing a correction: fθ(v)

• Analogous to the control term introduced in Holl, Koltun, and Thuerey 2020

f → f0 + fθ(v) (6)
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Turbulence Models: Our Approach

Our implementation of correction functionals distinguishes itself in terms of:

• Spatial Locality: Corrections act on the neighbourhood of a point

• Temporal Independence: Corrections propagate through the entire time domain

• Strong Coupling: Future dynamics incorporated into corrections to previous times
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Network Architecture
Implementing the locality assumption into the NN architecture (inductive bias).
We propose a local variant of a fully convolution neural network (FCNN):
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Learning Operators on Vector Fields
Employ local FCNN for learning stencils.
Preliminary study on “mockup” vector field:

V : R2 → R2
(

x
y

)
→
(

sin(ωxx + φx)
cos(ωyy + φy)

)
For this simple case, we can analytically
calculate the effect of different operators.
By varying ω and φ we create a training
dataset.
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Learning Operators on Vector Fields
Divergence: ∇ · V
Learned kernels resemble central
differences:

Non-linear Operators, e.g. V · ∇2V

Conclusion: Local FCNN is able to resemble operators based on local predictions.
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Parameter Optimization - Pipeline
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Parameter Optimization - Pipeline
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Data Preparation

Figure: Design parameters to generate various designs

Figure: Corresponding Geometry
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Design Visualization

Simulations obtained from the Simcenter STAR-CCM+ by Siemens
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Data Structure

Figure: A sample dataframe containing the result of simulation

→ Design folder containing simulation
results contained in files named
Velocity.png, *.csv → CSV file containing
the results at the points in the simulation
domain
→ Processing required to get the underlying
structure of data
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Data Processing
→ CSV file contains velocity values at
unstructured grid points
→ Need to retrieve velocity values for the
structured grid points as required by the
solver
→Weighted Least Square approach to fit
the data

Figure: Actual velocity on the unstructured grid
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Weighted Least Square
→ More suitable as the velocity at the
structured grid needs to be close to nearest
unstructured point
→ Optimization function is

min
c

n∑
i

W (di)||g(xi)− yi ||2

→ di is distance of structured grid point
from ith point in the unstructured grid

→ g(x) = b(x)T c where b(x) is polynomial
basis function of degree k
→Weight function is

W (d) = e−
d2

σ2

→ Two hyper-parameters to optimize :
degree and σ
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Parameters of WLS

Figure: Error plots for various combinations of degree and σ

→ Hyper parameter search for degree and
σ

→ Best combination is degree = 2 and
σ = 1
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Target computation

Figure: In left we see the actual velocity provided and on the right interpolated velocity using the best sigma and degree, used as target for the model.
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Integration with the pipeline
→ Processing provides the target velocity for the learning process
→ Provides the parameters and boundary conditions for a particular design as shown in
the figure

Figure:
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Timestepping with Correction
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Timestepping with Correction
We optimize parameters θ by

gradient-based methods.
→ find ∇θL!
Or: How does the correction at step n
influence the loss at step T ?
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Timestepping with Correction
We optimize parameters θ by
gradient-based methods.
→ find ∇θL!
Or: How does the correction at step n
influence the loss at step T?
→ Gradients through the solver!
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Differentiable CFD solvers
We need to calculate derivatives through the solver → differentiable CFD solver.
We employ and test two solver implementations:

ΦFlow PP-solver
Method Finite-Difference Finite-elements
Algorithm ∼stable fluids [Stam 1999] PP-algorithm [Helmich et

al. 2018]
Differentiable? yes no
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PP-solver

• MATLAB reference implementation
provided by Siemens.

• We completely re-implement the solver
in JULIA.

• We employ automatic differentiation
(AD)

• Forward Mode AD, due to memory
efficiency.

→We produce an end-to-end differentiable implementation.
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PP-solver - Proof of Implementation
We verify our implementation of the
forward differentiable solver:
• Set up small pipe flow simulation.
• Run target simulation with viscosity
µ = 0.10. Obtain target velocity field v̂ at
T = 10.

• Run 1000 simulations with varying µ. For
each simulation calculate:
− Final state v(T )

− Loss L = ||v(T ) − v̂||2
− Derivative dL/dµ
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PP-solver - Challenges

• We implement the (residual) correction model into PP-solver.
• We optimize weights through the solver by gradient descent.
• We face two main challenges:

1 Computational Inefficiencies
2 Convergence depends on current correction parameters.

Correction introduces perturbance of the physical state.
→ Optimization by gradient descent empirically difficult.

Conclusion: We concentrate our efforts on ΦFlow .
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Φflow

Philipp Holl 2020

• Invented by Nils Thuerey Group in TUM
I15

• A differentiable and open-source physics
simulation library.

• A Navier-Stokes stable fluids-type solver.
• Using the Structured-Staggered-Grid

system.
• Integration with TensorFlow allowing for

straightforward neural network.
Figure:
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Simulation of Navier-Stokes Flow
plain simulation
• Input: geometry, boundary conditions, physical properties, grid resolution and timestep dt
• Output: flow field in steady state.

In general, we try to find the reasonable gird resolution, dt and T (#timesteps to reach steady state), we can apply them to
forward simulation.

Figure: Velocity field plot
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Meshing and resolution
All computations happen in the grid points. We would like all geometries to be placed precisely in the grid.

Figure: on grid Figure: in between grid

1 Find the largest feasible grid resolution. i.e. the greatest common divisor, which is 0.125 mm.
2 Shortley-Weller scheme.
3 Fix a resolution and classify all designs into two groups,on or in between the grid points.
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Meshing and resolution cont’d

Table: Computation time required for 1000 time-steps in design 5005

resolution (mm) 1 0.5 0.25
time (s) 68 152 312
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Time stepping
We choose the time step size ∆t and the total number of time steps T based on the following strategy:

1 We utilize the Courant-Friedrichs-Levy (CFL) condition

|vx ,max |dt < ∆x , |vy ,max |dt < ∆y (7)

2 We define the condition for the steady state as : |v (nt+1) − v (nt)| ' 0.

Figure: Design 4956 Figure: Design 5005
HKRS | ML for 3D Physics 46
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Summary of Simulation of Navier-Stokes Flow
• We have 1232 test desighs with resolution = 1mm, which saves compuataional effoet.
• dt = 10−4 s , which fulfills the CFL conditions for the inflow velocities 0.5 to 2 m/s.
• T = 500 steps, which is a rather conservative estimate and includes a “safety buffer”.
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Pipeline
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Training Experiments - Proof of concept
We test the training setup (including simulation setup, solver, FCNN and optimization)
by overfitting to a made-up training sample with fixed target viscosity and T = 10.
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Training Experiments - Exploding Gradients
For increasing T , gradients tend to vanish
or explode.
Problem occurs even with:
• careful weight initialization
• small learning rates
• very small networks

Gradient clipping only helps to a certain
degree.
→ training on only steady state (T = 500)
not feasible
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Alternative Settings - Transient Training
Intermediate target states are required:

• We create a small dataset of 5
high-resolution transient simulations

• Target simulation 125*computation time
• Promising generalization even with few

training samples.
• Actually: Every simulations contains

thousands of samples!
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Summary
Locality (assumption):
Correction depends only
on the local
neighbourhood in the flow
field.

Recurrence:
The correction is applied
in each solver step.

Interaction with solver:
Training of correction
parameters informed by
future evolution of physical
states through
differentiable solver.
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Conclusions

1 Correction functionals perturb intermediate physical states.
→ empirically, optimization via gradient descent is delicate.

2 Optimization of the recurrent model not feasible for arbitrary time periods.

3 For correction of iterative methods, intermediate state information needs to be
available.

4 In the right setting: Effective viscosity model and local FCNN lead to nice
generalization.
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Backup Slides
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Contrasting to “Global” Architectures
Contrasting our approach, it is comparatively easy to
directly predict steady states from the input geometry
(i.e. no solver in the loop):
• Custom Unet Variant (∼ 2M parameters)
• Inference time 0.05s
• Fast and accurate, real-time ready

But:
• Global architecture do not generalize well;
• Predictions limited to training distribution
• No control over physical quantities (viscosity, etc.)

Figure: Our results on steady state prediction with a Unet VariantHKRS | ML for 3D Physics 60
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Automatic Differentiation (AD) [Margossian 2019]
Automatic differentiabtion uses the fact that any computation can be decomposed into
elementary operations.
Consider the function F : Rn → Rm. In general, we are interested in computing the
jacobian Jij = ∂Fi

∂θj
.

If F is decomposable as F = FT ◦ FT−1 ◦ ... ◦ F1, then by the chain rule it follows
J = JT · JT−1 · ... · J1. Two main variants:
• Forward Mode: Given a “seed” vector u ∈ Rn in the input space of F , Forward Mode

AD evaluates J · u.
• Reverse Mode: Given a vector in the output space w ∈ Rm, reverse mode AD

evaluates JT · w .
The relevant difference between the variants lies in the implications regarding
computational implementation
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Reverse Mode AD
Two distinct phases
1 Forward pass: Evaluate F , store intermediate results (activations) and computations

(computation graph).
2 Backward pass: Starting from the output, compute error (adjoints) by traversing F in

reverse.
Calculate derivatives w.r.t all inputs (i.e. whole gradients) in two passes!
Backpropagation is a special case of reverse mode AD for scalar outputs (m=1). Most
machine learning frameworks, including ΦFlow employ reverse AD.
However: Reverse mode requires storing of intermediate results! Large memroy
overhead for our application (internal iterative methods, convergence criteria ...).
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Forward Mode AD

• Computes the directed partial derivates w.r.t to all outputs in one forward sweep.
• One forward pass required for each input (weight to be optimized).
• No backward pass needed→ no storage of intermediate activation required.

This is achieved by augmenting operations with a dual number type (see Baydin et al.
2015):

x → (v + εv̇) , v , v ∈ R, ε2 = 0

e.g. multiplication becomes (v1 + εv̇1) · (v2 + εv̇2) = (v1v2) + (v1v̇2 + v̇1v2)ε.
For differentiation, "just" evaluate F(v + 1ε) = dF(θ)

dθ |v and ε = 0 for any other number.
In our application: We employ FORWARDDIFF [Revels, Lubin, and Papamarkou 2016]
and make sure dual number types are understood by all operations.
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Alternative Setting - Initialization with steady state
Exploit the fact that the given target v̂ is in
steady state:
→ set v(0) = v̂
and use intermediate targets v̂(n) for
computing the loss.

Figure: Correction by effective viscosity modelHKRS | ML for 3D Physics 64
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Alternative Setting - Initialization with steady state
In roll-outs in unseen simulations: Effective viscosity generalizes well beyond time
periods seen during training.

Figure: Effective viscosity model Figure: Residual modelHKRS | ML for 3D Physics 65
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Recurrence and Exploding Gradients
Exploding and vanishing gradients are properties of recurrent neural networks.

For a one-layer NN with parameters W, b, we can
rewrite our scheme as.

ν(n) = Wσ(v(n−1), ν(n−1)) + b. (8)

where σ(v(n−1), ν(n−1)) = v(n) resembles the (highly
non-linear) solver.
Under some assumptions about σ, gradients for
RNN’s vanish or explode, depending on the
eigenvalues of W [Pascanu, Mikolov, and Bengio
n.d.].
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Recurrence and Exploding Gradients
The gradient components can be calculated as:

∂L
∂θj

=
∂L
∂v (T )

∂F̃(v (0), θ)

∂θj
(9)

=
∑

0≤nt≤T

(
∂L
∂v (T )

∂v (T )

∂v (nt)

∂F
∂θj

∣∣∣∣
v (nt−1)

)
(10)

where the error is propagated through time by the product of jacobians:

∂v (T )

∂v (nt)
=

∏
nt<i<T

∂v (i)

∂v (i−1)
(11)
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