Technical University of Munich m

Machine Learning Accelerators for 3D Physics Simulations
TUM Data Innovation Lab

Yi-Han(Kimi) HSIEH', Aman KUMAR?, Lennart ROSTEL',
Saad SHAMSI?

'Department of Informatics, Technical University of Munich (TUM)
2Department of Mathematics, Technical University of Munich (TUM)

February 25, 2021




Technical University of Munich

Roadmap

- Motivation

. Navier-Stokes Equations and Turbulence
. Correction Functionals

. Computational Strategy

 Data Preparation

. Differentiable Solvers

« Simulation of Navier-Stokes Flow

. Final Experiments

. Conclusions

HKRS | ML for 3D Physics



Technical University of Munich

Aerodynamic Analysis

Source: Simcenter STAR-CCM+
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Reacting Flows
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Source: Simcenter STAR-CCM+
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Cavitation Analysis

Source: Simcenter STAR-CCM+
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Motivation

CFD simulations require a trade-off — Resolution vs. Speed:
. Low-Res + High Speed: No Micro-Scale Details

. High-Res + Low Speed: Computationally Expensive

Ideal Simulation = High Resolution + High Speed
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Plan from SIEMENS

Goals:
. Develop a CFD pipeline that operates on coarse discretisations

. Capture the cumulative effects of micro-scale phenomena on the macro-scale
« Lower computational cost
Computational Approach:
. Construct Differentiable Solver Pipeline
. Learn Correction Functionals

. Assess Solver Suitability

HKRS | ML for 3D Physics
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Theory: Navier-Stokes Equations

Conservation of Mass

Conservation of Momentum

p(%Jrv-Vv) = —Vp+uVev +f
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The Trouble with Turbulence

Most problems exhibit turbulence characterised by:
. aperiodic motion
. random spatial variations
. instability

. phenomena at multiple length-scales

Turbulence problems are typically studied within a stochastic framework

HKRS | ML for 3D Physics



Technical University of Munich

The Trouble with Turbulence

. Direct Simulations: High Resolution in space and time
. Applications: Coarse Picture + Time-Averaged

Instantaneous

high v

low v

Time-Averaged

recirculation region

Figure: Instantaneous and Time-Averaged flows over a backstep. Only the recirculation region is of interest. Ramsai 2020.
HKRS | ML for 3D Physics
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The Trouble with Turbulence

To extract coarse-scale and time-averaged features use Reynolds-Averaged Quantities:

vix,t)=v(x)+ v(x,t) 3)

This yields the Reynolds-Averaged Navier Stokes (RANS) equations:
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Closure Problem

. Non-Linearity — —v;v; in RANS equations — Closure Problem
. Rj = —V,V; is the Reynolds stress

- Turbulence Modelling: R; = R;i (v, p)

. Turbulence Modelling: correction functionals correct for R; = —V,v;

Can we Jlearn the turbulence model?

HKRS | ML for 3D Physics

12



Technical University of Munich

Roadmap

. Motivation

. Navier-Stokes Equations and Turbulence
. Correction Functionals

. Computational Strategy

 Data Preparation

. Differentiable Solvers

« Simulation of Navier-Stokes Flow

. Final Experiments

. Conclusions

HKRS | ML for 3D Physics

13



Technical University of Munich m

Turbulence Models: Correction Functionals

Effective Viscosity Model
. Extend the diffusion term v V2v by introducing a correction: vy(v)
- Reproduces the cumulative effects of small scale vortices

v — v+ vy(v) (5)

Residual Model
. Augment the external forces f by introducing a correction: f;(v)
- Analogous to the control term introduced in Holl, Koltun, and Thuerey 2020

f— fo+ fy(v) (6)
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Turbulence Models: Our Approach

Our implementation of correction functionals distinguishes itself in terms of:
. Spatial Locality: Corrections act on the neighbourhood of a point
. Temporal Independence: Corrections propagate through the entire time domain

. Strong Coupling: Future dynamics incorporated into corrections to previous times

HKRS | ML for 3D Physics 15
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Network Architecture

Implementing the locality assumption into the NN architecture (inductive bias).
We propose a local variant of a fully convolution neural network (FCNN):

o)
* Bosiw x 2 hhoxwxe
Exk=n
:\:...lxlxn 1x1 = 7
Input Output
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Learning Operators on Vector Fields

Employ local FCNN for learning stencils.
Preliminary study on “mockup” vector field:

Vo R2 s R2 (X) . (sin(wxx + (bx))
y cos(wyy + ¢y)

For this simple case, we can analytically
calculate the effect of different operators.
By varying w and ¢ we create a training
dataset.

HKRS | ML for 3D Physics
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Learning Operators on Vector Fields

Divergence: V - V Non-linear Operators, e.g. V - V2V
Lgarned kernels resemble central preclctod analytical
differences:

o 1 2
_dv
T dz ~ dy
Conclusion: Local FCNN is able to resemble operators based on local predictions.

o 20 40 &0
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Parameter Optimization - Pipeline

/

Forward
Simulation
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Parameter Optimization - Pipeline

/

Forward
Simulation
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Parameter Optimization - Pipeline

/

Forward Calculate
Simulation Gradients
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Parameter Optimization - Pipeline

/
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Data Preparation

Figure: Design parameters to generate various designs

HKRS | ML for 3D Physics

A B C D E

Name channel height ratio_height_chl_nzl ratio_nzl_to floor  ratio_width_chl_nzl | Vin

Design 1 10 0.1 0.2 0 1
Design 2 10 0.1 0.2 0.05 1
Design 3 10 0.l 0.2 0.1 1
Design4 10 0.1 0.2 0.15 1
Design 5 10 0.1 0.2 0.2 1
Design 6 10 0.1l 0.2 0.25 1
Design 7 10 0.1 0.2 0.3 1
Design 8 10 0.1 0.2 0.35 1
Design @ 10 0.1 0.2 0.4 1
Design 10 10 0.1 0.2 0.45 1

Obstacle

Obstacle

A

[
rl

100xE

100 mm

Figure: Corresponding Geometry
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Design Visualization

pume——— - ———————————
Simulations obtained from the Simcenter STAR-CCM+ by Siemens

HKRS | ML for 3D Physics 26
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Data Structure

Pressure
(Pa)

X(mm) Y (mm) Imm:'";

M:;::’:J;‘; Velocity[i] Velocity[]] Velocity[K]
(mis) (mis) (mis) (mis)
0 0000000 0.000000 0.000000 0
1 0000000 0.000000 0.000000 0
2 1207703 1291035 -0.120198 0
3 1500000 1500000 0.000000 0
4 0000000 0.000000 0.000000 0
Figure

0.395229

0.651822

0.344968

0.649019

0.651015

0.34965 10.000000

0.00000  10.000000

0.34965 9.862637

0.00000  9.862637

0.00000  0.000000

: A sample dataframe containing the result of simulation

HKRS | ML for 3D Physics
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— Design folder containing simulation
results contained in files named
Velocity.png, *.csv — CSV file containing
the results at the points in the simulation
domain

— Processing required to get the underlying
structure of data

27
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Data Processing

— CSV file contains velocity values at
unstructured grid points

— Need to retrieve velocity values for the
structured grid points as required by the
solver

— Weighted Least Square approach to fit
the data

HKRS | ML for 3D Physics
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Figure: Actual velocity on the unstructured grid
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Weighted Least Square

— More suitable as the velocity at the
structured grid needs to be close to nearest
unstructured point

— Optimization function is

min Z W(d)l19(x) — yil

— d; is distance of structured grid point
from ith point in the unstructured grid

HKRS | ML for 3D Physics

TUTI

— g(x) = b(x)" ¢ where b(x) is polynomial
basis function of degree k
— Weight function is

W(d) = e
— Two hyper-parameters to optimize :
degree and o

29
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Parameters of WLS
— Hyper parameter search for degree and

o
40 L] L L] L] L L] L L 10
35 — Best combination is degree = 2 and
1w
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Figure: Error plots for various combinations of degree and o
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Target computation

0 20 40 60 80 100 0 20 40 60 80 100

Figure: In left we see the actual velocity provided and on the right interpolated velocity using the best sigma and degree, used as target for the model.

HKRS | ML for 3D Physics
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Integration with the pipeline

— Processing provides the target velocity for the learning process

— Provides the parameters and boundary conditions for a particular design as shown in
the figure
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Timestepping with Correction

HKRS | ML for 3D Physics
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Timestepping with Correction

We optimize parameters 6 by
gradient-based methods.

— find VyL!

Or: How does the correction at step n
influence the loss at step 77

ETa)

v(® Solver H v
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Timestepping with Correction

We optimize parameters 6 by
gradient-based methods.

@) V(v ,
il L) s find V,L!
J Or: How does the correction at step n
Solver —» y{1) Solver ‘- viT) influence the loss at step T7?

, l - — Gradients through the solver!
LD, %)

v®) v(®+1)
{ ’
‘;?thl—1 )
fv(n)
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Differentiable CFD solvers

We need to calculate derivatives through the solver — differentiable CFD solver.
We employ and test two solver implementations:

D Fow PP-solver
Method Finite-Difference Finite-elements
Algorithm ~stable fluids [Stam 1999] | PP-algorithm [Helmich et
al. 2018]
Differentiable? yes no

HKRS | ML for 3D Physics 37
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PP-solver

- MATLAB reference implementation
provided by Siemens.

. We completely re-implement the solver

08

in JULIA. _
. We employ automatic differentiation
(AD) .
. Forward Mode AD, due to memory
efficiency.

— We produce an end-to-end differentiable implementation.

HKRS | ML for 3D Physics
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PP-solver - Proof of Implementation

We verify our implementation of the
forward differentiable solver:

. Set up small pipe flow simulation.

 Run target simulation with viscosity
1 = 0.10. Obtain target velocity field v at
T =10.

« Run 1000 simulations with varying u.. For

each simulation calculate:

— Final state v(7)
— Loss L = ||v(T) — ||
— Derivative dL/du

HKRS | ML for 3D Physics
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PP-solver - Challenges

« We implement the (residual) correction model into PP-solver.
. We optimize weights through the solver by gradient descent.

. We face two main challenges:

1 Computational Inefficiencies

2 Convergence depends on current correction parameters.
Correction introduces perturbance of the physical state.
— Optimization by gradient descent empirically difficult.

Conclusion: We concentrate our efforts on g, .

HKRS | ML for 3D Physics
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Dow

Philipp Holl 2020

. Invented by Nils Thuerey Group in TUM
115

. A differentiable and open-source physics
simulation library.

. A Navier-Stokes stable fluids-type solver.

. Using the Structured-Staggered-Grid
system.

. Integration with TensorFlow allowing for
straightforward neural network.

HKRS | ML for 3D Physics

Physical sample points
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Simulation of Navier-Stokes Flow

plain simulation
e Input: geometry, boundary conditions, physical properties, grid resolution and timestep dt
e Output: flow field in steady state.

In general, we try to find the reasonable gird resolution, df and T (#timesteps to reach steady state), we can apply them to
forward simulation.

Design 5005 Velocity field, Inletflow = 2.0 m/s, dt = 0.0001s, resolution 1mm

obstacle X Wall/no-slip

obstacle

#grid

15
|Velocity (m/s)|

Figure: Velocity field plot
HKRS | ML for 3D Physics 43
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Meshing and resolution

All computations happen in the grid points. We would like all geometries to be placed precisely in the grid.

Basss
T

Figure: on grid Figure: in between grid

1 Find the largest feasible grid resolution. i.e. the greatest common divisor, which is 0.125 mm.
2 Shortley-Weller scheme.
3 Fix a resolution and classify all designs into two groups,on or in between the grid points.

HKRS | ML for 3D Physics 44
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Meshing and resolution cont'd

Usable data ratio % Usable data ratio %
grid_size = 0.25 mm grid_size = 0.5 mm

=#data_usable =#data_out = #data_usable = #data_out

Usable data rartio %
grid_size =1 mm

= #data_usable =#data_out

Table: Computation time required for 1000 time-steps in design 5005

resolution (mm)

1

0.5

0.25

time (s)

68

152

312

HKRS | ML for 3D Physics
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Time stepping

We choose the time step size At and the total number of time steps T based on the following strategy:

1 We utilize the Courant-Friedrichs-Levy (CFL) condition

| Vi max|dt < Ax,

60 — dt=10.01
dt =0.001
50 — dt =0.0001
_ 40
=
1
T30
P
20
10
i
o 200 400 600 800 1000
timestep

Figure: Design 4956
HKRS | ML for 3D Physics

|V, max|dt < Ay (7)
2 We define the condition for the steady state as : [v("*+") — v(")| ~ 0,

50 — dt=0.01
dt = 0.001
—— dt = 0.0001
40
T
|
:
ER
10
0
0 200 400 E00 B0 1000
timestep

Figure: Design 5005
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Summary of Simulation of Navier-Stokes Flow

e We have 1232 test desighs with resolution = 1mm, which saves compuataional effoet.
e dt = 10~* s, which fulfills the CFL conditions for the inflow velocities 0.5 to 2 m/s.
e T =500 steps, which is a rather conservative estimate and includes a “safety buffer”.

HKRS | ML for 3D Physics
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Pipeline

/

=

setup geometry &
boundary conditions

Forward
Simulation

HKRS | ML for 3D Physics

Calculate
Gradients

Plain Solver

gradient
descent

\

0+ 0—aVeLl

/

N
\_______,_/
NT———
r> N WLS target
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Training Experiments - Proof of concept

We test the training setup (including simulation setup, solver, FCNN and optimization)
by overfitting to a made-up training sample with fixed target viscosity and T = 10.

10 7 target

\
.
\ N

0 pL] 50 75 W00 125 150 175 200 00 0.1 0.2 0.3 0.4 0.5 0.6
optimization step

(=3} -

wn

predicted

training loss
(51} 4=

=]

|u| inm/s
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Training Experiments - Exploding Gradients

For increasing T, gradients tend to vanish
or explode.

Problem occurs even with:
. careful weight initialization

Exploding

107 mm T=10 . T=20 s T=30 . T=40

=
. small learning rates .
. very small networks g;m
Gradient clipping only helps to a certain 5
degree. :
— training on only steady state (T = 500) I ‘ ‘ ‘l
not feasible . ' B o

10
\ a h50|ute q rad

vanishing

HKRS | ML for 3D Physics 51



Technical University of Munich

Alternative Settings - Transient Training

Intermediate target states are required:

. We create a small dataset of 5
high-resolution transient simulations

. Target simulation 125*computation time

. Promising generalization even with few
training samples.

. Actually: Every simulations contains
thousands of samples!

.0

T

HKRS | ML for 3D Physics
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Summary

Locality (assumption):
Correction depends only
on the local
neighbourhood in the flow
field.

.0

HKRS | ML for 3D Physics

Recurrence:

The correction is applied
in each solver step.

4 N
h
Plain Solver
v
Correction
vp(v)
- /

TUTI

Interaction with solver:
Training of correction
parameters informed by
future evolution of physical
states through
differentiable solver.

v v(@+1)
4)[ Solver }—)
<€
gv(ntl)
Av(n)
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Conclusions

1 Correction functionals perturb intermediate physical states.
— empirically, optimization via gradient descent is delicate.

2 Optimization of the recurrent model not feasible for arbitrary time periods.

3 For correction of iterative methods, intermediate state information needs to be
available.

4 In the right setting: Effective viscosity model and local FCNN lead to nice
generalization.

HKRS | ML for 3D Physics
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Contrasting to “Global” Architectures

Contrasting our approach, it is comparatively easy to
directly predict steady states from the input geometry
(i.e. no solver in the loop):

« Custom Unet Variant (~ 2M parameters)
o Inference time 0.05s
« Fast and accurate, real-time ready
But:
« Global architecture do not generalize well;
« Predictions limited to training distribution
« No control over physical quantities (viscosity, etc.)

Input predicted target

HKRS | ML for 3D Physics Figure: Our results on steady state prediction with a Unet Variant 60
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Automatic Differentiation (AD) [Margossian 2019]

Automatic differentiabtion uses the fact that any computation can be decomposed into
elementary operations.
Consider the function F : R” — R™. In general, we are interested in computing the

jacobian J; = G7-.

If Fis decomposable as F = Fro Fr_qo...0 JFq,then by the chain rule it follows
J=J7r-Jr_q-...-Jy. Two main variants:
. Forward Mode: Given a “seed” vector u € R" in the input space of F, Forward Mode
AD evaluates J - u.
. Reverse Mode: Given a vector in the output space w € R, reverse mode AD
evaluates J” - w
The relevant difference between the variants lies in the implications regarding

computational implementation
HKRS | ML for 3D Physics 61



Reverse Mode AD

Two distinct phases
1 Forward pass: Evaluate F, store intermediate results (activations) and computations
(computation graph).
2 Backward pass: Starting from the output, compute error (adjoints) by traversing F in
reverse.
Calculate derivatives w.r.t all inputs (i.e. whole gradients) in two passes!
Backpropagation is a special case of reverse mode AD for scalar outputs (m=1). Most
machine learning frameworks, including ® g, employ reverse AD.
However: Reverse mode requires storing of intermediate results! Large memroy
overhead for our application (internal iterative methods, convergence criteria ...).

HKRS | ML for 3D Physics 62



Forward Mode AD

. Computes the directed partial derivates w.r.t to all outputs in one forward sweep.
. One forward pass required for each input (weight to be optimized).
- No backward pass needed — no storage of intermediate activation required.

This is achieved by augmenting operations with a dual number type (see Baydin et al.
2015):

x—=(v+ev) ,v,veER, =0

e.g. multiplication becomes (vy + evy) - (Vo + €Vo) = (vivo) + (Vg Vo + Vi Vo)e.

For differentiation, "just” evaluate F(v + 1¢) = d‘Z—§”|v and ¢ = 0 for any other number.
In our application: We employ FORWARDDIFF [Revels, Lubin, and Papamarkou 2016]
and make sure dual number types are understood by all operations.
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Alternative Setting - Initialization with steady state

Exploit the fact that the given target V is in
steady state:

comected 150
0) _
— setv® = ¢

125
and use intermediate targets U(" for o
computing the loss. 075§

difference to plain

0 0.050
10 0.025 =
0.000

0 20 40 &0 80

HKRS | ML for 3D Physics Figure: Correction by effective viscosity model 64
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Alternative Setting - Initialization with steady state

In roll-outs in unseen simulations: Effective viscosity generalizes well beyond time
periods seen during training.

0.0030 7 = cormrected : — correctaed 1
pain 1 0.025 1 pain 1
00025 { --- trget | --- t@rget |
1 1
! 0.020 i
0.0020 i i .
: i
. i 0.015 H
4 0.0015 i & H
] :
D.0010 0.010 1 i
1
0.0005 4 0.005 i
i 1
e i
0L00a0 4 .-----.---- : : 0.000 4 <
0o 25 B0 25 50 75 100 125 150 175 200

t

HKRS | ML for 3D Igl%}Jsr%sEffectlve viscosity model Figure: Residual model 65



Technical University of Munich

Recurrence and Exploding Gradients

Exploding and vanishing gradients are properties of recurrent neural networks.

For a one-layer NN with parameters W, b, we can
rewrite our scheme as.

(W = Wo(v® 1 (1)) 4 p, 8)

where o(v("~") 1(1=1)) = v(") resembles the (highly
non-linear) solver.

Under some assumptions about o, gradients for
RNN'’s vanish or explode, depending on the
eigenvalues of W [Pascanu, Mikolov, and Bengio
n.d.].
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Recurrence and Exploding Gradients

The gradient components can be calculated as:

oL oL 0F(V,0)
89,- N aV(T) 80j

oy (2 o) OF
N ov(T Ovim) 9,

Oﬁntﬁ T

V(”t—1))

where the error is propagated through time by the product of jacobians:

oviT) ovl)
gy — H oy(i—1)

n<i<T
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