
TUM Data Innovation Lab
Munich Data Science Institute (MDSI)

Technical University of Munich

&

PwC

Final report of the project:

Synthetic Data Generation with Generative
Artificial Intelligence

Authors Valentin Gölz, Eva Resch, Ju-Shan Chao,
Henri Petuker, Mazen Ba Shammakh

Mentors Oliver Kobsik (PwC), Sophie Mutze (PwC),
Jan-Patrick Schulz (PwC)

TUM Mentor Prof. Dr. Massimo Fornasier (MDSI)
Project lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

July 2024



i

Abstract
Institutions such as banks and insurance companies invest significant resources in con-
structing data to meet business requirements, often facing challenges related to data
quality and availability. Synthetic data generation offers a promising alternative, enabling
the creation of high-quality data sets while maintaining privacy and adhering to data
regulations. This project aims to address data scarcity by developing innovative methods
to generate synthetic data that closely mirrors real-world scenarios. More specifically,
we generate accurate synthetic data sets using only statistical information such as mean,
distribution type, or correlation factors, without relying on other input information.
The project is split into two approaches: the first approach employs methods from mathe-
matical statistics such as Bayesian networks and copulas. The second approach leverages
recently developed Large Language Models such as GPT-4o or Gemini-flash and different
prompt-techniques for the generation. We create synthetic data sets of high quality
with both approaches. Our comparative analysis highlights the strengths and differences
between the statistical and Generative Artificial Intelligence approaches, providing a
comprehensive understanding of their capabilities and outcomes. Our findings demonstrate
that both, the statistical and the Generative Artificial Intelligence approach, can effectively
generate synthetic data that preserves privacy and maintain statistical accuracy. These
methodologies offer powerful tools for various applications, including privacy-preserving
data sharing, advanced model training, and scenario testing.
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1 INTRODUCTION 1

1 Introduction
TUM Data Innovation Lab (TUM-DI-Lab) is a summer (or winter) educational research
experience offered by the Munich Data Science Institute (MDSI) [21]. The Lab welcomes
master students from TUM, other German universities and Erasmus students interested
in exploring AI and new data-driven approaches to interdisciplinary challenges.
The project Synthetic Data Generation with Generative Artificial Intelligence was con-
ducted in corporation with PwC Germany and took place between April and July 2024.
The overarching goal of this research project was the generation of synthetic data that is
solely based on a parametric description of the underlying distribution, using statistical as
well as Generative Artificial Intelligence (GenAI) methods and comparing them.

We begin this report by defining the scope of the project in section 2 and presenting some
related work in section 3. Then, we introduce our code base in section 4 and present the
statistical approaches to our problem in section 5 and the approach via GenAI in section 6.
Lastly, we evaluate the results from this project in section 7, suggest next steps in section
8 and come to a conclusion in section 9.

2 Project Goal
The objective of this project is to build a tool for PwC to help optimise the use of all
accessible information. Due to data protection requirements and legal restrictions, PwC
often has limited access to real-world data. For this reason, we are focusing and limiting
ourselves in this project to statistical information such as univariate and multivariate
measures. In particular, this means to have insights into univariate measures for each
variable, like the median, the quartiles and an expert opinion of the underlying distribution,
and some multivariate measures, most importantly the empirical correlation matrix. Given
this information, we want to generate synthetic data that mimics the data described by
the univariate and multivariate measures. This synthetic data does not pose any problems
regarding privacy and can therefore be used internally for in-depth market analyses,
portfolio modeling, benchmarking, and even help for publications.
The twist of this project is that we want to follow both a modern approach with GenAI
and a classical approach leveraging statistical methods. We are able to compare these
approaches, exploit their strengths and weaknesses, and present our findings.

3 Related Work
The landscape of synthetic data generation has recently seen substantial advancements,
with significant contributions from various fields and with many applications. Here, we
provide an overview of notable research in this domain.
Guo and Chen [9] explore the use of GenAI, particularly Large Language Models (LLMs),
for generating synthetic data. They highlight the ability of these models to generate data
that rivals real-world data in scenarios with limited availability. Patel et al. [15] introduce
DataDreamer, an open-source tool for implementing LLM workflows, including synthetic
data generation. They address challenges related to the scale, closed-source nature, and
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reproducibility of LLM-based workflows. Yu et al. [24] investigate the use of LLMs as
training data generators with diverse attributed prompts. Their study highlights the
importance of attribute diversity in enhancing model performance and mitigating biases
in synthetic data sets. In [4], Van Breugel and Van der Schaar advocate for prioritizing
research on large tabular models (LTMs) to revolutionize the use of tabular data in machine
learning. They argue that LTMs could transform data science by enabling few-shot learning,
automating data analysis, and improving out-of-distribution data generation.
The exploration of LLMs’ ability to generate random numbers and sample probability
distributions has also been a critical area of research. Studies such as Can LLMs Generate
Random Numbers? [11] evaluate LLMs’ performance as distribution samplers, revealing
challenges in inducing reasonable distributions over generated elements, which suggests
a need for careful consideration of sampling methodologies. Additionally, the Stochastic
Interpolants framework introduces a unifying approach for flow-based and diffusion-
based generative models [3]. This framework leverages stochastic processes to bridge
arbitrary probability density functions, offering a robust method for constructing generative
models with adjustable noise levels and control over likelihood, highlighting its potential
applicability in probabilistic tasks and generative modeling.
While there exist rich resources in the area of synthetic data generation, we haven’t
found related work that generates new data directly from statistical parameters, without
additional training data or multi-shot techniques. This leads to a new research field that
has yet to be developed.

4 Code Base
In this section, we give an introduction to our code base. The repository is currently
private as it belongs to our project partner PwC. We focus on explaining the general
structure and show which models can be used. We implement all models mentioned here
in sections 5 and 6.

4.1 Architecture Overview

Our overarching goal is the creation of a fully functioning application, which can be used
to generate custom synthetic data that fits the operator’s needs. Thus, our application has
two parts: a frontend, which implements a well-rounded UI / UX, and a backend, which
is used for the generation of data. Because the focus of this project lies on the research
of new approaches, we choose the open-source framework streamlit to implement the
frontend. This framework suits all our needs, and is extremely easy to use.
The project requirements are to facilitate uploading statistical information such as the
distribution type or the median, as well as a correlation matrix. The user should then be
able to choose a generation method, e.g. copula or GPT-4o, and then generate synthetic
data based on that approach. We now give an overview of the front- and backend to
explain how the application works.

https://streamlit.io/
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Frontend

The first thing a user sees when opening the application is the screen in Figure 4 (the
figures are in appendix C). On the left side in the side-bar, the user has the possibility to
choose how many samples they want to generate, which model and which csv separator
should be used. In the center, a short guide introduces the functionality of the application.
After scrolling down, the user can choose which type of statistical data they want to
provide. Currently, there are two options: statistical information, which includes values
such as median or distribution type, and correlation matrix, which should be a csv file
containing the correlation matrix of the input features.
After uploading the files as seen in Figure 5, the user only needs to press generate synthetic
data and wait until the generation is completed. The generation time depends on the
used method and on the sample size. Generally, the statistical approaches are faster as
they rely on simpler algorithms than LLMs. The generated data then looks like the one
in Figure 7. The user can always choose a different method or sample size and rerun
the generation. One limitation of LLMs is their performance with varying sample sizes.
Specifically, the application encounters difficulties in producing optimal output when the
sample size exceeds 50. This issue does not exist for the statistical approaches.

Backend

We now cover the structure of the backend. For the file structure, see Figure 6. The
centerpiece is the file main.py, which contains the main function. This function represents
the pipeline of our project and is called for each generation. It receives statistical features
from the user, calls the correct model and its synthetic data generation function and in
the end returns the generated data to the user. Because of this pipeline structure, we are
also able to run experiments directly from the backend. This allows us to run large-scale
experiments, e.g. to facilitate a grid-search using all available methods and different sample
sizes.
Besides this function, the most important module is the directory called synthdata. Here
all the models are stored, the prompt templates are saved and also where the type-checking
happens. To add a new method in the future, users can use a predefined template which
is also part of the repository. The full process in documented in our README file.

4.2 Model Overview

We continue by giving a quick overview of the different models and approaches that we have
implemented, the idea behind each approach will be explained in detail in the following
chapters. For a summary see Table 1.
As already mentioned, our models can be categorized in two general approaches:

• A statistical approach, using standard methods from mathematical statistics

• A GenAI approach, leveraging recently published LLMs.

For the statistical part, we use two different approaches. Our baseline, the parametric
approach, uses the random number generators provided by the library numpy [10] which
can generate univariate and multivariate samples from various distributions, but is not fit
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Model Name Type #Params

Parametric Method Statistical –
Copula Statistical –
Gemini Flash GenAI unknown
Gemini Pro GenAI >100 bn
GPT-3.5-turbo GenAI >175 bn
GPT-4-turbo GenAI >1.7 tn (est.)
GPT-4o GenAI >1.7 tn (est.)

Table 1: Models, types, and number of parameters

to generate from a joint distribution of different distribution types. Furthermore, we have
developed an approach using copulas, which can generate samples from mixed multivariate
distributions. In section 5.2 we cover an approach using Bayesian networks, however, we
were not able to create a working implementation, which is why that approach is not
covered in the model overview.
For the GenAI approach, we use five different state-of-the-art LLMs. We use the GPT
models from OpenAI, as well as the Gemini models from Google.

5 Statistical Approaches
In our preliminary research on employing statistical methods in synthetic data generation,
we found many different preexisting implementations. There are packages like pyvine and
copula using copulas and BaysianNetwork from pgmpy.models to build a corresponding
Bayesian network, all of them with the goal to model the inherent dependence structure of
the input data. The big challenge we encountered was that every implementation relies on
seeing the real data which we do not want to use in this project. This means, we extracted
the ideas from the implementations and tried to find approximations and workarounds to
adapt them to our needs.

5.1 Copulas

The idea in copula theory is to be able to represent a joint distribution by its marginal
distributions and some type of linking function to model the dependence structure. In the
words of Roger Nelsen in [14] that means those functions “couple” multivariate distribution
functions to their one-dimensional marginal distributions.
The word copula stems from Latin meaning link and was first introduced by Sklar in 1959
[20]. Since then, this theory has gained a lot of traction and led to several conferences on
copulas and their applications.
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What is a copula?

In this section we give a brief overview about copula theory, without going into too much
detail. For a more rigorous introduction and the probability-theoretic background, please
refer to the works of R. Nelsen [14], F. Durante and C. Sempi [7], and C. Czado [6].

We begin by introducing some notation: we denote a d-dimensional random variable (r.v.)
by X and its realisation by x = (x1, . . . , xd) and say X ∼ F if X follows a distribution
with distribution function F . The distribution functions can be absolutely continuous or
discrete and therefore have corresponding densities or probability mass functions (pmf),
both of which we denote by f . Furthermore, we denote the marginal distribution functions
by F1, . . . , Fd and the marginal densities or pmf by f1, . . . , fd.
Following [6], we define the d-dimensional copula C.

Definition 1. A d-dimensional copula C is a multivariate distribution function on
the d-dimensional hypercube [0, 1]d with uniformly distributed marginals.
If C is absolutely continuous, we can define the corresponding copula density by
c(u1, . . . , ud) =

∂d

∂u1...∂ud
C(u1, . . . , ud) for all u in [0, 1]d.

The fundamental presentation theorem for multivariate distributions was given by Sklar
in [20] and is the cornerstone of the copula theory.

Theorem 2 (Sklar’s Theorem). Let X be a d-dimensional r.v. with joint distribution
function F and marginals F1, . . . , Fd, then F can be expressed as

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (1)

with associated density or pmf

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd) (2)

for some d-dimensional copula C with copula density c.

How does this help us?

When thinking about simulating from some d-dimensional distribution function F , a rather
straight forward approach would be via the Rosenblatt transform as described in [17].
This takes into account the conditional distributions Fj|1,...,j−1(· | x1, . . . , xj−1) and their
inverse F−1

j|1,...,j−1(· | x1, . . . , xj−1) and produces a sample x1, . . . , xd, see Algorithm 1.
Finding the conditional distributions Fj|1,...,j−1(· | x1, . . . , xj−1) poses a challenge, especially
since we only have information on the marginal distributions and the correlation matrix.
But this means, we already have the inner part of the right-hand side of equation (1).
By deriving a fitting copula function C from the correlation matrix that models the
dependency between the variables well, we can adapt the Algorithm 1 to sample from the
copula (cf. Algorithm 2) and utilize the respective marginal quantile functions of each
variable to revert the samples back to the original scale.
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Algorithm 1 Rosenblatt transform

wj
iid∼ Unif(0, 1) for j = 1, . . . , d

for j = 1, . . . , d do
xj ← F−1

j|1,...,j−1(wj | x1, . . . , xj−1)
end for
return x = (x1, . . . , xd)

Algorithm 2 Adapted Rosenblatt

wj
iid∼ Unif(0, 1) for j = 1, . . . , d

for j = 1, . . . , d do
uj ← C−1

j|1,...,j−1(wj | u1, . . . , uj−1)
end for
return u = (u1, . . . , ud)

Unfortunately, we’re still facing the challenge of finding the copula function C.
In the following sections, we discuss a method to simplify the d-dimensional copula function
C to a construct of several bivariate copula functions by conditioning. We then elaborate
on how we can sample from the copula we constructed before and talk about some practical
choices we made along the way.
Remark. We will not be able to model the dependence structure perfectly, but as shown
in section 7, our approach produces strong results.

Pair-copula constructions

The main step of this approach is constructing a multivariate distribution, in particular
the sought-after copula distribution C, using bivariate building blocks. This depends on
conditioning, so we first introduce some theoretic background and notation on conditional
densities and distribution functions in terms of bivariate copulas. This section follows the
notations and definitions introduced in [6].

Using the definition of a conditional density

fi|j(xi | xj) =
fij(xi, xj)

fj(xj)

and the representation of a density f via the associated copula density as shown in equation
(2), we can express conditional densities fi|j and distribution functions Fi|j of bivariate
distributions in terms of their copula.

Lemma 3. Let (Xi, Xj) ∼ F be a bivariate distribution with associated copula C, then

fi|j(xi | xj) = cij(Fi(xi), Fj(xj))fj(xj),

Fi|j(xi | xj) =
∂

∂uj

Cij(Fi(xi), uj) |uj=Fj(xj) .

The proof of this lemma can be found in [6].
Traditionally, the conditional copula distribution is defined as

Ci|j(ui | uj) =
∂

∂uj

Cij(ui, uj)

and inserting this in the Lemma 3, we see that the following relationship holds

Fi|j(xi | xj) =
∂

∂uj

Cij(Fi(xi), uj) |uj=Fj(xj)= Ci|j(Fi(xi) | Fj(xj)).
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For a clearer notation we introduce the so-called h-function.

Definition 4. We define the h-function corresponding to a bivarite copula Cij as

hi|j(ui | uj) :=
∂

∂uj

Cij(ui, uj) for all (ui, uj) ∈ [0, 1].

This concludes the definition of the conditional copula distribution Ci|j and the representa-
tion of conditional densities fi|j and distribution functions Fi|j in terms of their associated
copulas.

Now, we want to motivate the usage of bivariate copula functions as building blocks by
illustrating that for three dimensions. The goal is to write the joint density f just in terms
of the marginal distributions Fi with densities fi and bivariate copula densities.

Definition 5. For the three r.v. X1, X2, and X3 with joint density f , we define a
pair copula decomposition of f as

f(x1, x2, x3) = c13;2(F1|2(x1 | x2), F3|2(x3 | x2);x2)

· c23(F2(x2), F3(x3))c12(F1(x1), F2(x2))f1(x1)f2(x2)f3(x3).

The derivation of this can be found in the appendix A. c13;2(·, ·;x2) denotes the density of the
copula associated with the bivariate conditional distribution (X1, X3) | X2 = x2. We can
generalize this notation for indices i, j and a set D ⊆ {1, . . . , d}\{i, j}, where Cij;D(·, ·;xD)
is the copula associated with the bivariate conditional distribution (Xi, Xj) | XD = xD.
This is in general not the same as the conditional copula distribution Cij|D(·, ·;uD).

So far, we have shown that by representing conditional densities fi|j by their associated
copula, as seen in Lemma 3, and conditioning in a clever way, we find a representation
of a three-dimensional density f just in terms of bivariate copulas and the marginal
distributions.
The last step in this process of introducing the pair-copula constructions is to general-
ize what we just did to any d-dimensional setting. For this, we start again with the
decomposition of the density f by recursive conditioning which yields

f(x1, . . . , xd) =

[
d∏

t=2

ft|1,...,t−1(xt | x1, . . . , xt−1)

]
f1(x1).

With this we can construct the canonical vine (C-vine) density.
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Theorem 6 (Canonical vine density). Decompose the joint density by

f(x1, . . . , xd) =

[
d−1∏
j=1

d−j∏
i=1

cj(j+i);1,...,j−1

][
d∏

k=1

fk(xk)

]
.

This is the result of recursively applying Lemma 3 to express ft|1,...,t−1 in terms of the
conditional distribution of (Xt−1, Xt) given X1, . . . , Xt−2. We can see that the structure
built by this formula starts at some index j and takes into account all the copulas
associated with the conditional distribution of (Xj, Xi), for an index i ranging from j + 1
to d, conditioned on the previous variables X1, . . . , Xj−1. To make this clearer we can
arrange all the bivariate copulas in a scheme:

c12 c13 c14 c15 . . .
c23;1 c24;1 c25;1 . . .

c34;12 c35;12 . . .
c45;123 . . .

. . .

and each row corresponds to an index j while iterating over the indices i.

Sampling with the copula

In this section we discuss, how this helps our goal in sampling from the copula and in turn
from the joint distribution F . We already have all the pieces, we just need to put them
together.
If we had samples x = (x1, . . . , xd) of a r.v. X ∼ F and transformed them using the
distribution function F , we would get samples u := F (x) = (F1(x1), . . . , Fd(xd)) in [0, 1]d

that follow the copula distribution C associated with F , meaning equation (1) would read
as

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) = C (u1, . . . , ud) .

So, if we do this in reverse, sample u from the copula C and set x = (F−1
1 (u1), . . . , F

−1
d (ud)),

then this sample follows the joint distribution F . [6] offers a nice algorithm, using the
C-vine structure described in Theorem 6, to sample from the copula C:

Algorithm 3 Sampling from a C-vine copula

wi
iid∼ Unif(0, 1) for i = 1, . . . , d

v1,1 ← w1

for i = 2, . . . , d do
vi,i ← wi

for k = i− 1, . . . , 1 do
vk,i ← h−1

i|k;1,...,(k−1)(vk+1,i | vk,k, ηk,i)
end for

end for
return ui ← vi for i = 1, . . . , d
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This algorithm uses the h-function we have already defined in 4 which describes the
conditional distribution of a copula C. The parameter ηk,i is called a copula parameter
that is used in the definition of the underlying copula. Implicitly, we had a parameter like
this throughout all sections, here we denote it explicitly to highlight that it only depends
on the indices k and i. In the following section, we discuss how this parameter looks like
in practice.
We mentioned before that, in general, Cij;D(·, ·;xD) and Cij|D(·, ·;uD) are not the same,
but now we defined the C-vine copula using the first and in the algorithm we use the
conditioned second quantity. This is no problem since in the case of C-vines, the following
relationship between the two quantities holds

Ci|1,...,i−k(ui | u1,...,i−k)

=
∂Ci,i−k;1,...,i−k−1(Ci|1,...,i−k−1(ui | u1,...,i−k−1), Ci−k|1,...,i−k−1(ui−k | u1,...,i−k−1))

∂Ci−k|1,...,i−k−1(ui−k | u1,...,i−k−1)
.

Approximations and practical choices

As motivated in the beginning of this section, we want the copula - better the C-vine
construction - to represent the dependence structure of the joint distribution. In our case,
this is given by the correlation matrix, where each entry describes the so called Pearson
product-moment correlation ρij between variables i and j, a measure of linear dependence.
Its definition as well as an estimation technique can be found in appendix A.
For the actual choice of bivariate copulas, we considered the Gaussian and Clayton copula.
The Gaussian copula function is symmetric, whereas the Clayton copula function exhibits
a strong tail dependency, as you can see in Figure 3, meaning they could represent
different types of dependence well. In appendix A, we introduce both copulas with their
specifications.
We decided to focus only on the Gaussian copula, since we encountered two main challenges
working with the Clayton copula. Firstly, in order to utilize the function optimally, we
would need to apply a rotation to adjust the tail dependency. Secondly, the function needs
Kendall’s τ , another measure of correlation between two variables, as a parameter which
wasn’t provided in the scope of this project. These restrictions pose starting points to
improve and further develop this method, we discuss this in section 8.
In the end, the implemented workflow of this approach follows these steps:

1. Take as input the statistical information containing the marginal distributions and
correlation matrix, as well as the number m of samples we want to generate.

2. Generate m samples u ∈ [0, 1]d according to the Algorithm 3 using the inverse
h-function of the Gaussian copula with parameter ηk,i = ρk,i, the correlation.

3. Transform each of the m samples using the quantile function of the marginal distri-
bution: x = (F−1

1 (u1), . . . , F
−1
d (ud)).

Theoretically, the inverse h-function is conditioned on variables 1, . . . , k−1 which influences
the choice of copula. Since we decided to solely use the Gaussian copula and since, with the
information we are given, we cannot make any assumptions on the conditional distribution
of variables Xi and Xk, we cannot expect to find the true copula to use in Algorithm 3.
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Therefore, we approximate the true copula by using a Gaussian copula and our choice of
copula parameter is the correlation ρk,i between Xi and Xk. With this approximation, we
are able to produce strong results which are discussed in section 7.

5.2 Bayesian Networks

After having discussed copulas in section 5.1, we now focus on our second statistical
approach, which is using Bayesian networks.
Bayesian networks have become a key tool in AI and statistical modeling due to their
efficiency in representing and reasoning with probabilistic information. Introduced by
Judea Pearl in 1982, Bayesian networks provide a structured way to manage complex
probabilistic distributions via directed acyclic graphs (DAGs) [16].

What are Bayesian networks?

Bayesian networks are graphical models that represent the decomposition of probability
distributions by DAGs and are used to estimate the joint distribution of variables. The
possibility to encode conditional dependence between the variables in these networks makes
them crucial in applications such as probabilistic and causal inference.
The paper “A Review of Bayesian Networks and Structure Learning”[22] guides the litera-
ture review. It provides an in-depth understanding of Bayesian networks, including the
underlying theory, inference problems, and learning algorithms.
Key concepts are the decomposition of probability distributions, d-separation for deter-
mining conditional independence in DAGs, and a variety of inference problems such as
estimating parameters and learning network structures from data.
The decomposition of the joint probability distribution p(X1, . . . , Xd) according to the
DAG is given as follows:

p(X1, . . . , Xd) =
d∏

j=1

p(Xj | pa(Xj))

where pa(Xj) represents the parents of Xj and is the smallest subset for which the decom-
position holds.
The second concept, d-separation, is a graphical criterion for determining conditional
independence in a DAG. Two nodes X and Y are d-separated by the set S if the set S
blocks all paths between X and Y . The conditional independence is formally denoted as
X ⊥ Y | S.
Another concept that we use is inference, which is the computation of the posterior distri-
bution of variables, given some evidence. There are two main types of inference: predictive
inference, which predicts the probability distribution of a future or unobserved variable
based on current evidence, and diagnostic inference, which determines the probability of
some cause or past event based on observed evidence.
Our project focuses on predictive inference in the Bayesian network. The predictive infer-
ence process begins with collecting evidence, which updates the probabilities of unobserved
variables in the network. A variable elimination prediction technique is an accurate infer-
ence algorithm that calculates the marginal distribution of a query variable by summing
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over non-evidence variables. The network can provide accurate predictions by applying
variable elimination to adjust the probability distribution based on the evidence. This
approach exploits the structural and conditional dependencies within the network.
We use the Hill Climbing Algorithm to help us in the development process. The hill-
climbing algorithm [2] is a heuristic optimization algorithm used in the Bayesian network’s
structure learning. It starts with an initial solution, an initial network, and then iteratively
makes small changes to the network. Each time, it chooses the one that brings the most
improvement according to a predetermined scoring function. This process continues until
no further progress can be made, resulting in finding a local optimum. The method is par-
ticularly effective when dealing with large and complex data sets, as it is computationally
infeasible to fully explore all possible network configurations.

How does the implementation look?

This section describes how we wanted to generate synthetic data from Bayesian networks.
In developing this, we followed an example outlined by Martins et al. [13], which emphasizes
preserving the statistical properties of the original data set through the use of Bayesian
networks and DAGs. Our model begins with a correlation matrix and detailed statistical
information that form the foundation of our approach. We first use the correlation matrix
to group the variables into smaller clusters that exhibit strong correlations between its
variables but not to the other clusters. Then, we create smaller DAGs for each cluster using
conditional probability distribution (CPD) based on the statistical information provided.
However, we encountered challenges with loops within the DAGs, which Bayesian networks
cannot deal with. We try to resolve this by replacing CPD with the Hill Climb Search
algorithm to ensure the necessary acyclic structures. Furthermore, the generated synthetic
data shows identical values across all samples. We found that this is due to the deterministic
predictions of the Bayesian network which lead to a lack of variability in the data.
The literature review also reflects several key challenges that we have encountered and
potential solutions. The literature suggests that a synthesized full Bayesian approach
combined with posterior predictive distributions is essential to introduce the necessary
variability and properly quantify uncertainty [13]. Our initial implementation may not
adequately capture the statistical variability required to generate robust synthetic data.
In order to improve on this approach, we need to compare it with those proposed in
the literature and analyze the differences and similarities in the data sets used in a full
Bayesian approach. We should also investigate using posterior predictive distributions and
penalizing priors to identify specific adjustments and improvements that need to be made
to our approach.

5.3 Parametric Approach

Given the challenges we faced using Bayesian networks, we explore parametric methods
based on the numpy library as an alternative. The parametric approach ensures that the
data maintains the statistical properties required to construct accurate models.
First, we initialize a structure to store the generated data. Sequentially, we include specific
operations like traversing each variable in the statistical data set and then extracting its
basic statistical attributes such as median, quartiles, minimum and maximum values, and
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data type. Additionally, we want to make sure that the generated data contains a realistic
percentage of missing entries by taking into account the missing percentage of the data.
The synthetic data is generated based on normal, binary, or exponential distributions.
We use the mean and standard deviation from the statistical data for the normally
distributed variables and in case the standard deviation is not given we use the quartiles
to approximate it. The correlation matrix is then transformed into a covariance matrix to
adjust it to the method. We input the covariance matrix, standard deviation, and mean
into the numpy.random.Generator.multivariate_normal method to generate samples
of multivariate normal distributions. For binary distributions, we use the median as the
binomial distribution probability and for exponential distributions, we use the inverse
of the median as the rate parameter. If no specific distribution is specified, a normal
distribution with a mean of the median and a standard deviation of 1 is used by default.
We constrain the generated data to the specified minimum and maximum values and
convert them to the appropriate data type, either integer or float. Afterwards, missing
values are inserted and shuffled into the data to achieve the given rate of missing values
for the variables.
By maintaining the statistical properties of the original data set and introducing variability
through random sampling, the approach effectively generates synthetic data. While the
generation is robust and flexible, it is limited by the functionality provided by the numpy
library.

6 Generative Artificial Intelligence Approaches
In recent years, transformer-based LLMs have fundamentally changed the fields of GenAI
and Natural Language Processing (NLP). By massively scaling model size and data, these
models continued to achieve new state-of-the-art performances on various NLP tasks [5].
Motivated by these developments, we have explored the capabilities of GenAI models on
the project’s task of synthetic numerical data generation solely from statistical descriptions.
As mentioned before, this marks a novel application of GenAI models as they are usually
applied in settings where real data is available and is the starting point for synthetic data
generation [8, 9].
One major concern that has been raised from the start is the mismatch between the
fundamental nature of transformer-based LLMs with the task of generating truly random
numbers and sequences of numbers. Transformers like the GPT family have been trained
on Next Token Prediction, meaning they predict the next token, a representation of a
word or part of a word, based on the previous context. In our use case, however, we are
interested in sampling data points from a distribution and such data should be independent
and identically distributed (i.i.d.). Furthermore, LLMs are challenged by tasks that involve
numbers and mathematical understanding [19]. This can lead to situations where using
large models like GPT-4o the model tends to use external tools like a random number
generator instead of producing the output fully by itself. Overall, we expect the current
generation of GenAI models to not be a perfect match for our use case yet, but considering
the rapid developments in this field, future innovations might address these points.
In the following we will discuss the different approaches and models we have tested as well
as issues that we have encountered.
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6.1 Methodology

Given the high resource requirements of using GenAI models, we have opted to only
investigate prompting as a tool to apply the models to our task. In contrast to the
previously common approach of fine-tuning a model to a specific task, prompting does not
require us to modify the underlying model by updating its parameters nor to have a data
set of task examples to fine-tune the model on.
Other ideas that we have considered during the research stage of the project included
Retrieval Augmented Generation (RAG). While it can improve performance and reliability
on knowledge-intensive tasks by retrieving input-relevant information and adding it to the
model input, it does not benefit our use case. This is particularly true since we do not
know what kind of information could assist with our task and therefore do not have a data
set from which to retrieve information. We have also discarded a Neurosymbolic approach
to the problem, where we intended to use a LLM to translate the statistical input data
to executable Python code to generate synthetic data. This approach is limited by the
possibilities of using Python and e.g. the numpy library for generation and ultimately
performs the same steps as the Parametric Approach in section 5.3 with additional LLM
overhead. Thus, we focused on prompting LLMs for the task.

Standard prompting approach

We can view prompts as the glue between the statistical input data and the models. Since
LLMs have been mainly trained to understand and continue natural language sentences,
interpreting raw statistical information in table format is a challenging task and might even
fail. Therefore, we have defined handwritten prompt templates which enclose the statistical
information and numbers in natural language sentences, differentiating between prompt
templates that include multivariate information like a correlation matrix and templates
that do not. In addition to the statistical information a prompt for conversational style
LLMs needs an instruction about the task that it should perform. Examples of prompt
templates for the univariate and multivariate case can be found in Table 2.

Sample {n_samples} data points from a normal distribution with mean {mean} and standard deviation
{std}.

Sample {n_samples} data points from the following multivariate {n_variables}-dimensional joint
distribution. The joint distribution is given by the marginal distribution for each variable and
their correlation matrix at the end. Variable {number_var} follows a normal distribution with mean
{mean} and standard deviation {std}. [...] The correlation matrix is given by {corr_matrix}.

Table 2: Examples of uni- and multivariate prompt templates.

One significant milestone in NLP was the discovery of Emergent Abilities in LLMs which
were not present in previous models [23]. Most notably, few-shot prompting enabled
models to be able to perform previously unseen tasks by having a few examples of the
task inside the model prompt [5].
As a natural step, we have also added few-shot examples to our handwritten prompts, as
few-shot prompting can improve the models ability to understand the task and therefore
its performance. In addition, defining concrete examples can lead the model to produce
the output in the desired format, in our case arrays containing data samples. The few-shot
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examples have been handcrafted using the Python library numpy, similar to the parametric
method in section 5.3. Examples of full prompts can be found in appendix B.
Lastly, with few-shot prompting becoming a popular approach for using LLMs, the
sensitivity of the models to the prompts has become a major topic. Specific wording, the
structure of the prompts as well as the choice of few-shot examples can have a significant
effect on the models performance for a task [18]. This has lead to the development of the
field of Prompt Engineering where the input space of possible prompts is systematically
explored. Although we have not actively applied these techniques to the prompts used
in this approach, we explored Prompt Engineering in the following chapter on LLM
frameworks.

DSPy: A modern framework for LLM programs

As LLMs are being used more widely, new tools and frameworks have been developed that
systemize and simplify typical workflows with LLMs. For this project, we have decided to
utilize the framework called DSPy [12] developed and maintained by the NLP group at
Stanford University.
On the one hand, this framework allows us to define a “LLM program” for the task
by breaking it down into a workflow of subtasks, for which we each prompt the model
separately, visualized in Figure 1. Compared with our handwritten prompts, we let the
model transform the statistical input data to textual descriptions by itself and we added
an option for asking the model to correct its generated synthetic data, which is turned off
by default.

Figure 1: Workflow of data sampling DSPy program in BPMN.

On the other hand, the framework provides tools to automatically optimize few-shot
example selection and prompt instruction formulation for each of the defined subtasks.
With our handcrafted few-shot examples from the previous section used as train and
development sets as well as an evaluation metric for the synthetic data following the
evaluation method in section 7, we let the framework compile optimized DSPy programs
for the models GPT-3.5-turbo and GPT-4o for uni- and multivariate style prompts.
For instruction wording optimization we investigated the COPRO teleprompter from
the framework, which internally prompts the LLM to generate diverse variations of
the signatures of DSPy modules, parts of prompts, and scores their performance on a
development set. Examples for DSPy definitions and prompts can be found in appendix B.
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Model choice

For this project, we have only investigated closed-source solutions including OpenAI’s
GPT family models and Google’s Gemini family models over API access with their default
parameters including model temperature. By providing this report and our code base, we
hope to achieve good reproducibility of the experiments and results.
Initially, we have planned to also include open-source models like Llama 3 and DeepSeek-
Math. We hypothesized that models exposed to more math and numerical data during
pretraining would outperform models of similar size on our task, because of their superior
performance on other math related tasks. However, during this project were unable to
test these models and we cannot confirm this hypothesis.

6.2 Limitations of Language Models

During the development of the GenAI solutions, we have encountered several limitations
specific to a Language Model approach. These limitations have been more significant in
our use case, since we do not apply LLMs on typical language related NLP tasks but on a
statistical data sampling task requiring numeric understanding and precision of input and
output formats. In the following, we give a brief overview of the limitations and how we
addressed them.

Output token limit

Typically when discussing token limits of LLMs, the focus lies on the available context
length of the models - the amount of tokens you can feed into the model for one prompt.
However, in our case the maximum number of output tokens posed a challenge as embedding
numbers using tokenizers is rather costly, requiring multiple tokens for a decimal point
number. This resulted in a limited amount of data points that can be generated with a
single prompt.
We addressed this issue by reducing the amount of samples generated per prompt. Figure
2 shows the process for adjusting the sample size n based on an output token estimation
procedure, currently only implemented for the OpenAI models. Given a sample size n,
we estimate the total generated output tokens by utilizing the tokenizer used by the
OpenAI models. If the amount of estimated output tokens exceeds the maximum output
token limit, which is 4096 for these models, we reduce the sample size n such that it
only generates within the maximum token limit. After generation we check if the number
of generated samples matches the requested amount by the user. If the target sample
size is not reached, the sample size n will be updated and the process loops back to the
estimation step. This procedure will be continued until the original target sample size has
been reached and since we are in an i.i.d. data setting it does not cause issues.

Unexpected artifacts in generation

LLMs can tend to generate unwanted artifacts or explanatory text in its output, which
causes the output parsing to fail. Certain artifacts like omitting parts of the generated
data with “...” or marking json code with quotations can be model specific, especially with
models from the GPT family.
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Figure 2: Process for prompting with different sample sizes

By using regular expressions to filter out unwanted text or artifacts, we tried to reduce
the number of errors that were caused by this LLM property.

Wrong output format

To parse the generated synthetic data points and to evaluate them, we require a specific
json format of the model completion. In spite of instructing the model to generate the
desired array format as well as providing few-shot examples in the prompt, it sometimes
fails to produce the format causing the output parsing to fail. As an example, we want all
of the n-dimensional data points to be inside of a single array. However, at large n it can
happen that the models output each point individually and not inside a single array.
As a workaround measure against these errors, we instruct the models to try up to k = 5
times if parsing errors occur.

Semantic errors

Lastly, due to the difficulty of the task for LLMs, we observed semantical errors of the
models. This included outputting data points of the wrong dimensionality or failing the
first DSPy subtask of describing the statistical input data causing the entire DSPy models
to essentially generate random outputs. These issues highlight again the limits of current
GenAI tools and their unreliability in performing this task.

7 Results
In this section we present and discuss the findings of our synthetic data generation
approaches. First, we provide a comprehensive overview of the evaluation metrics using
the supported univariate and multivariate parameters, followed by detailed results of the
implemented solutions for both statistical and GenAI approaches. Finally, we compare
the efficacy of these approaches to determine the most effective method for our synthetic
data generation use case.
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7.1 Evaluation

Methodology

The application currently supports a predefined list of univariate and multivariate sta-
tistical parameters which the user can provide. The univariate parameters include the
following: mean, median, q25, q75, min, max, standard deviation, distribution, datatype,
and missing percentage. The multivariate input is given in the form of a correlation
matrix for the whole input data set. The distributions that are currently supported by
the application include Gaussian, binomial, and exponential.

We differentiate between four types of evaluation metrics for both univariate and multi-
variate parameters:

1. The first evaluation type is calculating the deltas of the numerical univariate param-
eters, such as mean and standard deviation, for each feature, as well as calculating
the deltas of the input correlation matrix and the correlation matrix of the generated
synthetic data. This delta metric provides an insight about how far or close the
synthetic data is from the data described in the input.

2. The second evaluation type is checking if non-numerical input and synthetic univariate
parameters like distribution type match or not. Since deltas calculation only works
for numerical parameters, the matching flag helps to determine the non-numerical
parameter differences between the input statistics and the synthetic data statistics.

3. The third evaluation type is calculating the distance between the input correlation
matrix and the one corresponding to the output data, using the Frobenius norm.
The Frobenius norm provides basic insights about the magnitude of the delta of the
entries of the input and synthetic correlation matrix. The lower the Frobenius norm
is, the more similar the synthetic data is in terms of correlation to the original data.

4. The fourth evaluation type is calculating the relative scores for a subset of the
statistical parameters, namely the mean, standard deviation, and Frobenius norm of
the correlation matrices. Calculating the relative scores of the statistical parameters
indicates how well each parameter is modeled in the synthetic data. Note that the
relative score can be any real number, and is not limited to the range [0, 1], but the
overall performance measurement is based on how close the relative score is to 1.
For instance, a relative mean of 1 indicates that the synthetic data and the original
data has relatively the same mean. A relative mean that is less than 1 indicates
that the synthetic data’s mean is relatively lower than the origignal data’s mean,
and a relative mean that is greater than 1 indicates that the synthetic data’s mean
is relatively larger than the original data’s mean. The following formula defines how
the relative mean, standard deviation, and Frobenius norm are calculated. We first
define the following parameters: n = number of features, si = synthetic measurei,
ki = input measurei. The formula is then given as:

relative measure =
1

n

n∑
i=1

si
ki
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Data set

The test data set is provided by PwC, and it describes different data features for various
risk drivers associated with borrowers, focusing on features such as the borrower’s unique
identifier (ID), the specific month and year of the recorded data (Time Series), and a trust
score indicating the borrower’s reliability (Business Relation Client). It also includes the
Cash Flow Ratio, which measures how many times the borrower can cover their short-term
obligations with their cash flow, and the geographical location of the borrower aggregated
at the country level (CMS Country). This data aids in assessing and managing the risk
associated with lending to different borrowers based on financial and geographic indicators.
The data set includes 28 features in total. We focus on features that are distributed
across one of the following distributions: normal, binary, or exponential. For our testing
procedures, we generate data using every method with three variations of the given data
set: all features variation, 10 features variation, and 5 features variation. For each variation,
we generate 6 different synthetic data sets with 10, 20, 50, 100, 500, and 1000 samples.
In the following sections, all evaluations are done using the full set of features, which is
28. Only the first and last evaluation types, namely the deltas and the relative scores, are
presented in the following sections.

7.2 Statistical Approaches Results

The results of both the copula method and the parametric method for synthetic data
generation demonstrated their robustness and reliability in generating statistically correct
synthetic data. One advantage of these statistical approaches is that they had no constraints
on generating large sample sizes. This indicates their suitability for a wide range of
applications where large data sets are involved, ensuring accurate and robust synthetic
data generation. Table 3 shows the relative scores of the different statistical methods
for two sample sizes: 100 and 1000. The relative score for the copula and parametric
approaches are close to 1, which means that both methods are performing well for synthetic
data generation. For small and large sample sizes, the copula method seems to generate
data that is statistically more similar to the original statistical information than the
parametric method. Also, it is noticeable that the parametric method seems to always
generate synthetic data that has relatively smaller univariate statistics than the copula
method.

nsamples = 100 nsamples = 1000

mean std Frobenius mean std Frobenius

Copula 1.128 0.931 0.9857 1.18 0.9288 0.9377
Parametric 0.8425 0.8944 0.978 0.8177 0.8817 0.9846

Table 3: Relative scores of statistical approaches

Table 4 shows the results of generating 1000 samples for five correlated features using
the copula method. For features 1-4, the deltas of the median, q25, q75, min, mean, and
std are very negligible, which indicates that these univariate parameters of the input and
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synthetic data are almost the same. On the contrary, sometimes there is a significant
difference between the input and synthetic statistics, as shown for feature 5.

median q25 q75 min max mean std
Feature 1 -0.73 0.29 0.25 3.72 -0.73 -0.07 -0.01
Feature 2 -0.01 0.01 0.01 0.20 9999999998 0.02 0.00
Feature 3 0.07 0.03 0.04 0 0 0.00 0.75
Feature 4 0.00 -0.00 -0.00 0.47 -0.05 -0.01 -0.01
Feature 5 -1029984 273163 322561 10959526 9982933055 -171212 7390

Table 4: Generation of 1000 samples using Copula

7.3 GenAI Results

Generally, the results of the GenAI approach heavily depend on the model choice since we
are using one predefined prompt. Some of the models like GPT-4o generated statistically
correct data for the three relative scores while others like GPT-3.5-turbo generated
synthetic data that does not properly resemble the original data set. Table 5 shows the
relative scores for the three models that we tried for this task with sample sizes 10 and 50.
Note that the GPT-3.5-turbo model could not generate 50 samples for multiple correlated
features. We can see that the latest GPT model, namely GPT-4o, outperforms the other
models. Although there are token limit restrictions, GPT-4o and Gemini-1.5-flash models
were able to generate 50 samples. We also noticed that although the token limit solution
was implemented for the GPT models, GPT-3.5-turbo still can not generate correctly
formatted and complete output when the sample size exceeds 50. The GPT-4o model
outperforms the other two models since all its relative scores are very close to 1. It is also
evident that GPT-3.5-turbo and Gemini-1.5-flash generate data that are far away from
the original data’s statistics. For instance, the relative std scores of the 10 and 50 samples
generated by Gemini-1.5-flash show that this model cannot comprehend the notion of
standard deviation, unlike GPT-4o.

nsamples = 10 nsamples = 50

mean std Frobenius mean std Frobenius

GPT-4o 0.8588 1.097 0.9528 1.103 0.9342 0.973
GPT-3.5-turbo 2.113 3.689 0.581 NA NA NA
Gemini-1.5-flash 0.913 0.0255 0.961 0.937 0.2569 0.9727

Table 5: Relative scores of GenAI approaches

There are a few aspects of the GenAI approach that should be taken into account for
further analysis. First, the effectiveness of using few-shot prompting for synthetic data
generation is not examined deeply because our main objective of using such prompting
technique is to provide the model with the correct format of the output, and not to improve
the performance of the model. It can be the case that the LLM sometimes reuses the same
exact numbers that are present in the few-shot examples of the prompt. In addition, we
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also need to take into account the possibility that the LLM models accessed over the API
use a random number generator. In this case, this approach should be seen as a hybrid
between LLM generation as well as programming with random number generators.
Lastly, we have compared the DSPy models with models using our handcrafted prompt
templates and noticed the fragility and unreliability of the DSPy models. They often failed
the first subtask of describing the statistical input data, resulting in generating essentially
random data. In the case of using GPT-4o, the optimized DSPy model did not include
any few-shot examples, as seen in the prompt in Table 10, meaning that adding even a
single example hurt the performance, which is a rather unintuitive result.
Because of these findings, the DSPy approach is not included in further evaluations. Other
examples for optimized DSPy prompts as well as examples for the mixed results achieved
with prompt instruction optimization using COPRO can be found in appendix B.

7.4 Discussion

Given the results mentioned in the previous sections, it is evident that the statistical
approaches achieve higher scores and are more deterministic than the GenAI approaches.
Table 6 shows a summary of the relative scores for all the different generation methods
implemented in this report. Note that the sample sizes are 10 and 50 for all the methods.
We notice that for small sample sizes, the scores for the statistical approaches are slightly
lower than the scores for large sample sizes. On the other hand, the GPT-4o model seems
to be better than copula and parametric method in generating data sets with small sample
sizes.

nsamples = 10 nsamples = 50

mean std Frobenius mean std Frobenius

Copula 0.837 0.7509 0.9712 0.9729 0.9244 0.9794
Parametric 0.9582 0.7217 0.9563 0.7907 0.9083 0.973

GPT-4o 0.8588 1.097 0.9528 1.103 0.9342 0.973
GPT-3.5-turbo 2.113 3.689 0.581 NA NA NA
Gemini-1.5-flash 0.913 0.0255 0.961 0.937 0.2569 0.9727

Table 6: Comparison of relative scores

Another important aspect that is important during the evaluation phase it to calculate
the amount of time each generator takes to generate the synthetic data. Table 7 shows
a comparison of the generation time for the different statistical and GenAI methods.
Generally, statistical methods takes much less time for the generation of small sample sizes
than the GenAI methods. The fastest generator is the parametric method, with nearly 1.31
seconds for generating 1000 samples. In fact, GenAI generation is considered expensive
in terms of time. For instance, the time taken to generate only 10 samples using GenAI
can generate more than 400 samples using statistical methods. This makes it evident that
statistical methods are more practical than the GenAI methods given the importance of
the time asset for businesses.
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nsamples 10 20 50 100 500 1000

Copula 1.25 5.80 9.60 16.73 70.40 140.80
Parametric 0.89 2.19 1.30 0.96 0.98 1.31

GPT-4o 68.24 83.33 190.80 351.76 NA NA
GPT-3.5-turbo 42.32 NA NA NA NA NA
Gemini-1.5-flash 39.19 33.62 42.30 NA NA NA

Table 7: Comparison of generation time in seconds

8 Future Work
In this section, we discuss possible adjustments and next steps that could improve our
proposed methods.
As hinted upon in section 5.1, there are a few possible improvements to be made to the
copula approach. The first would be to implement further copula functions and see if
they perform better. We suggest looking into the Clayton copula since it can model
non-symmetric dependencies between variables. Using rotations of the variables could help
fitting them to the dependence structure in the data. Further considerations can be found
in A. Furthermore, since using just one type of copula might not be sufficient, we also
suggest optimizing over the assignment of each copula type. Meaning, one could generate
a relatively small sample of data (e.g. n = 100) for each possible assignment, evaluate the
generated data as described in section 7 and choose the assignment producing the best
results.

One possibility to extend on our proposed methods could be to combine the statistical and
GenAI approaches into one integrated solution, utilizing the strengths of both through
a boosting mechanism. However, we lack a concrete suggestion for what such a solution
could look like.

Regarding GenAI, more prompting techniques like Chain-of-Thought could be applied to
our handwritten prompt templates. One example could be to formulate the correlation ma-
trix into a Chain-of-Thought-style interpretation of its content, making it more digestible
by models than appending a complete correlation matrix to the prompt. Simplifying the
correlation matrix by setting small correlation values to 0 and accepting some inaccuracy
could further improve the performance of GenAI and also statistical models.

Lastly, the evaluation metrics can also be extended to more qualitative characteristics.
For instance, criteria like naturalism, consistency, realism, and usefulness of the synthetic
data could provide more insightful analyses about how valuable the generated synthetic
data is and how close it resembles the real data. In addition, a better single evaluation
score can be defined for reflecting the overall performance of a generator.
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9 Conclusion
This report addresses the task of synthetic data generation solely from statistical infor-
mation of original data sets and explores various methods to produce statistically correct
synthetic data. We investigated both statistical and GenAI approaches, including the
copula method, parametric method, and prompting techniques using modern LLMs. Based
on our evaluation, we concluded that the best overall generator for this task is the copula
method as it generated synthetic data whose properties are closest to the input statistical
information. Although the parametric method generated data faster, it had worse scores
than the copula method. Among the GenAI models, the GPT-4o model from OpenAI
performed best and placed third overall, followed by Gemini-1.5 Flash. GenAI models
struggled to generate data in the correct format for large sample sizes and more difficult
settings with many input variables.

With our developed tools and experiments, we believe that we can support data-driven
research and applications, aiming to solve the issue of data scarcity in practice. In cases
where enterprises might not be willing to expose their original data for privacy and security
reasons, but might be willing to share their data’s statistical information, synthetic data
could be generated and used. Our findings contribute to the field by offering first practical
insights and give an outlook on future developments and possible extensions.
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Appendix

A: Statistical Approaches

Derivation of pair-copula decomposition in 3 dimensions

For the three random variables X1, X2, and X3, we can factorize their joint density into

f(x1, x2, x3) = f3|12(x3 | x1, x2)f2|1(x2 | x1)f1(x1). (3)

Firstly, to determine the conditional density f3|12(x3 | x1, x2), we will apply Sklars Theorem
2 to represent the conditional density f13|2(x1, x3 | x2) in terms of its associated conditional
copula density, denoted by c13;2(·, ·;x2):

f13|2(x1, x3 | x2) = c13;2(F1|2(x1 | x2), F3|2(x3 | x2);x2)f1|2(x1 | x2)f3|2(x3 | x2). (4)

Now, by standard rules of conditioning and plugging in equation (4), we find the following
representation

f3|12(x3 | x1, x2)
def
=

f13|2(x1, x3 | x2)

f1|2(x1 | x2)

(4)
= c13;2(F1|2(x1 | x2), F3|2(x3 | x2);x2)f3|2(x3 | x2).

(5)
Lastly, we represent the conditional densities f2|1(x2 | x1) and f3|2(x3 | x2) by their
associated copula functions as shown in Lemma 3

f2|1(x2 | x1) = c12(F1(x1), F2(x2))f2(x2) (6)
f3|2(x3 | x2) = c23(F2(x2), F3(x3))f3(x3) (7)

Combining equations (4), (5), (6), and (7) and inserting this into (3) yields a so-called
pair copula decomposition of the joint density.

Definition 7. We define a pair copula decomposition of a 3-dimensional density f as

f(x1, x2, x3) = c13;2(F1|2(x1 | x2), F3|2(x3 | x2);x2)

· c23(F2(x2), F3(x3))c12(F1(x1), F2(x2))f1(x1)f2(x2)f3(x3).

Correlation measures

The Pearson product-moment correlation between two r.v. Xi and Xj is defined as

ρi,j := Cor(X − i,Xj) =
Cov(Xi, Xj)√

V ar(X1)
√

V ar(Xj)

and can be estimated by the following formula

ρ̂i,j =

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2

with xi =
1
n

∑n
k=1 xki.
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Bivariate copulas

We consider the Gaussian and Clayton copulas since they can model different types of
dependence structures. The Gaussian copula function is symmetric and the Clayton copula
function exhibits a strong tail dependency, that means that for very large values in both
variables, or very small ones, the density is much larger. Their densities are depicted in
Figure 3. To introduce both copulas, we follow [1].

Figure 3: The graphic on the left shows the Gaussian copula density with parameter
ρ = 0.5 and the graphic on the left the Clayton copula density with parameter δ = 1.2.

The bivariate Gaussian copula has distribution function

C(ui, uj; ρij) = Φ2(Φ
−1(ui),Φ

−1(uj); ρij) (8)

where ρij is the copula parameter, Φ2 the 2-dimensional standard normal distribution
function and Φ−1 the quantile function of the 1-dimensional standard normal distribution
N (0, 1). The corresponding h-function is given by

hi|j(ui | uj; ρij) = Φ

Φ−1(ui)− ρijΦ
−1(uj)√

1− ρ2ij


and its inverse by

h−1
i|j (ui | uj; ρij) = Φ

(
Φ−1(ui)

√
1− ρ2ij − ρijΦ

−1(uj)
)
. (9)

The copula parameter ρij is given by the correlation between the two variables Xi and Xj ,
so in case of our project, we can pull this information directly from the input data.
The bivariate Clayton copula has distribution function

C(ui, uj; δi,j) =
(
u
−δi,j
i + u

−δi,j
j − 1

)−1/δi,j
(10)

with copula parameter δi,j. For δi,j → ∞, perfect dependence is obtained and δi,j → 0
corresponds to independence. The corresponding h-function is given by

hi|j(ui | uj; δij) = u
−δij−1
j

(
u
−δij
i + u

−δij
j − 1

)−1−1/δij
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and its inverse by

h−1
i|j (ui | uj; δij) =

((
ui · u

δij+1
j

)− δij
δij+1

+ 1− u
−δij
j

)−1/δij

. (11)

The copula parameter δij is given as a function of Kendall’s τ between the variables Xi

and Xj:

δ =
2τ

1− τ
∈ [0,∞) ⇐⇒ τ =

δ

δ + 2
∈ [0, 1].

Kendall’s τ is a measure of dependence between two vectors, describing the concordance
and discordance in the signs of each entry. Here, this measure is not provided, making the
use of the Clayton copula unappealing. But there are possibilities to estimate Kendall’s τ .
For example, in the case of two normal distributions [6] describes an exact relationship
between τ and the correlation:

τ =
2

π
arcsin(ρ),

which could serve as an approximation.
Furthermore, the allowed domain for τ in the case of the Clayton copula is bounded to [0, 1],
but in practice it takes values in [−1, 1]. To resolve this dilemma, we suggest introducing
a rotation of the variables in the bivariate copula density. For further information on this,
consult [6].

B: GenAI Prompts

In the following, we give examples of GenAI prompts that are used in the application.
Please find the complete list and further details in the project code.

Sample 10 data points from the following multivariate 5-dimensional joint distribution. The joint distribution is
given by the marginal distribution for each variable and their correlation matrix at the end. Variable 1 follows a
normal distribution with mean 2.67 and standard deviation 1.48. Variable 2 follows a normal distribution with mean
0.26 and standard deviation 0.13. Variable 3 follows a binary distribution with parameter 0.07, so the mean is 0.07
and the variance 0.07. Variable 4 follows a normal distribution with mean 0.28 and standard deviation 0.24. Variable
5 follows a normal distribution with mean 3892822.94 and standard deviation 5126277.04. The correlation matrix is
given by [[1.0, 0.21, 0.07, -0.07, -0.07], [0.21, 1.0, 0.1, 0.23, -0.07], [0.07, 0.1, 1.0, -0.06, 0.1], [-0.07, 0.23, -0.06, 1.0,
-0.04], [-0.07, -0.07, 0.1, -0.04, 1.0]]. You must follow the format of the following examples.

Examples:
Sample 20 data points from the following multivariate 2-dimensional joint distribution. The joint distribution is
given by the marginal distribution for each variable and their correlation matrix at the end. Variable 1 follows a
normal distribution with mean -3.42 and standard deviation 2. Variable 2 follows a normal distribution with mean
38.01 and standard deviation 1.73. The correlation matrix is given by [[1.0, 0.58], [0.58, 1.0]].
[[2.2846, 41.7095], [-1.7491, 36.5811], ...(omitted)... [-1.3983, 40.7073]]

Sample 10 data points from the following multivariate 4-dimensional joint distribution. The joint distribution is
given by the marginal distribution for each variable and their correlation matrix at the end. Variable 1 follows a
normal distribution with mean 2 and standard deviation 1.41. Variable 2 follows a normal distribution with mean
11.5 and standard deviation 1.22. Variable 3 follows a normal distribution with mean -1.1 and standard deviation
1.34. Variable 4 follows a normal distribution with mean 5.8 and standard deviation 1. The correlation matrix is
given by [[1.0, 0.46, 0.32, 0.35], [0.46, 1.0, 0.24, 0.24], [0.32, 0.24, 1.0, 0.15], [0.35, 0.24, 0.15, 1.0]].
[[-0.4329, 10.7886, -2.5406, 5.5736], ...(omitted)... [0.3122, 9.7824, -1.0206, 6.1308]]

Table 8: Example prompt for multivariate case style 1 (2-shot). Omitted data points in
few-shot examples.
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Write a short and easy to understand textual description of the single distribution described by the statistical
information. Each new line of the statistical information is a new dimension of the distribution.
—
Follow the following format.
Statistical Information: statistical information about a single distribution. each new line is a new dimension of the
distribution
Reasoning: Let’s think step by step in order to ${produce the description}. We ...
Description: short and easy to understand description of the distribution
—
Statistical Information:
descr type mean std corr
NaN binary 0.94 NaN None
Reasoning: Let’s think step by step in order to produce the description. We have a single dimension in the distribution,
which is binary. The mean value of this binary dimension is 0.94, and there is no standard deviation or correlation
information provided.
Description: This distribution represents a binary variable where the value is 1 most of the time, with an average
occurrence of 94%.
—
Statistical Information:
descr type mean std corr
NaN normal -3.2 2.0 None
Reasoning: Let’s think step by step in order to produce the description. We have a single dimension described by a
normal distribution. The mean of this distribution is -3.2, and the standard deviation is 2.0. There is no correlation
information provided, which is expected since there is only one dimension.
Description: This distribution is a normal distribution with a mean of -3.2 and a standard deviation of 2.0.
—
Statistical Information:
descr type mean std corr
NaN exponential 55.0 NaN None
Reasoning: Let’s think step by step in order to produce the description. We

Table 9: DSPy prompt for subtask “describe statistical data” (univariate, 2-shot,
GPT-3.5-turbo).

Sample data points from the described distribution.
—
Follow the following format.
Description: the description of the distribution
N Samples: the exact number of data points to sample
Reasoning: Let’s think step by step in order to ${produce the sampled_data}. We ...
Sampled Data: no text or explanations. must only contain an array filled with the sampled data points. starts
with “[” and must end with “]” like [3.1, -1.9] for two 1-dimensional points and [[0.27, 3.11], [-1.21, 8.31]] for two
2-dimensional points.
—
Description: This distribution consists of four dimensions. The first dimension is a normal distribution centered
around -80.23 with some variability. The second dimension is another normal distribution centered around 49.24.
The third dimension is a binary distribution with an average value of 0.40. The fourth dimension is an exponential
distribution with an average value of 3.30. These dimensions are somewhat correlated with each other, meaning
changes in one dimension might be related to changes in another.
N Samples: 10
Reasoning: Let’s think step by step in order to produce the sampled_data. We

Table 10: DSPy prompt for subtask “sample data points” (multivariate, zero-shot,
GPT-4o).
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Positive example:
Original: Sample data points from the described distribution.
Optimized: Use probabilistic sampling to select data points based on the distribution described.

Mixed example:
Original: Write a short and easy to understand textual description of the given statistical information.
Optimized: Instruction #11: Infuse creativity and storytelling elements into the textual description of the statistical
information, enhancing engagement and memorability.

Faulty example:
Original: Evaluate whether the given data points follow the described distribution. Make corrections if necessary.
Also check if the number of data points match the defined number and if not add or remove points.
Optimized: The improved instructions for the language model would be to ——–

Table 11: Examples of instruction optimization with DSPy COPRO on parts of the
prompts (GPT-3.5-turbo).

C: User Interface of the Web Application

Figure 4: The initial welcome page.
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Figure 5: The file-upload of our application.
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Figure 6: The file structure of our code base.
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Figure 7: A sample of the generated data that our application produces.
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