

TUM Data Innovation Lab Benchmarking Matrix for Automated Machine Learning

Björn Magnus Eschment, Aleksandr Zuev, Natyra Bajraktari, Dominik Eichhorn

Technical University Munich

Munich, 22.07.2021

Team

Dominik Eichhorn

TUM Management & Technology

Natyra Bajraktari

TUM Data Engineering and Analytics

Aleksandr Zuev

TUM Data Engineering and Analytics

Magnus Eschment

TUM Management & Technology

Introduction

What are future outlooks for Automated Machine Learning?

With its high potential AutoML is expected to have a Compound annual growth rate (CAGR) of 43% from 2020 to 2030^[3].

Our Definition of AutoML

Automated Machine Learning is the automation of the work of a Data Scientist which in the end creates a ML Pipeline.

Introduction

General information about the partner

- Global consulting and accounting firm
- Operating in different industries
- Over 280,000 employees

Motivation of the project

Replaceability of Data Scientists

Faster, simpler and cost efficient solution compared to conventional approach

Introduction

Project goals by PwC to fulfill the requirements

3

Δ

Research on existing tools

Develop a benchmarking matrix

2 Selection of top four AutoML tools

Apply all four tools to an open-source data set from the domain of manufacturing

ាំាំ

Building handcrafted ML pipeline & Comparison

Additional Achievement

- **1** Theory about AutoML
- **2** Data Exploration
- 3 Imbalanced Data Handling
- 4 Different AutoML Tools
- **5 Our Benchmarking Tool**
- 6 Results
- 7 Conclusion

What does AutoML do?

AutoML fully automates the process of

- **L** Building multiple ML pipelines
- Selecting the ML pipeline which performs best w.r.t. to some loss function

Following questions

What is an ML pipeline?

How to find the optimal ML pipeline?

What is an ML pipeline?

- Unconfigured ML pipeline $P \in \mathcal{P} = \mathcal{A}_d \times \mathcal{A}_f \times \mathcal{A}_m$
- Configured ML pipeline (P, θ) consists of an unconfigured ML pipeline $P \in \mathcal{P}$ and its hyperparameters $\theta \in \Theta_P$

How to find the optimal ML pipeline?

Data scientist approach: Sequential

- 1. Configuration Optimization: Determine the optimal hyperparameters for a set of unconfigured ML pipelines w.r.t. some loss function.
- 2. Pipeline Selection: Out of these configured ML pipelines, determine the one which minimizes the loss function.

AutoML approach: Combined Pipeline Selection and Configuration

Determine simultaneously the ML pipeline and its corresponding hyperparameters, which minimize the k-fold cross validated loss function.

$$(P^*, \theta^*) \in \underset{\substack{P \in \mathcal{P}, \\ \theta \in \Theta_P}}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^k \mathcal{L}\left((P, \theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{test}^{(j)}\right)$$

Which optimization techniques does AutoML use?

- (Objective function's) gradient based optimization techniques not applicable
- Use Black Box Optimization: grid search, random search, Bayesian optimization

Bayesian optimization

- Surrogate model: relationship between hyperparameter values and loss function
- Acquisition function: based on the surrogate model, determines the "information gain" of evaluating the loss function at a given hyperparameter value
- Procedure:
 - 1. Evaluate the loss function at a hyperparameter value
 - 2. Fit/update the surrogate model
 - 3. Update the acquisition function
 - 4. Using the acquisition function, determine the next hyperparameter value for loss function evaluation and start over

Data Exploration

General information on the data set

Dataset selection

- Supervised learning
- Not a time series data
- Open source
- Manufacturing context

Steel Plates Faults dataset

- University of California Irvine repository
- 27 features
- 1941 observations
- Multi-class classification
- Imbalanced class distribution

07/21 - Technical University Munich

Data Exploration

Distribution of specific variables

07/21 - Technical University Munich

14

Top-9 hierarchical clusters of features

Absolute correlation coefficient is used as distance

Further analysis of variables

Data Exploration

-1

kness Index x minosity minosity sity sity sity

Imbalanced Data Handling

Which strategies can be applied for imbalanced data?

^{*} the histograms are just an example for illustration, not the real data histograms

Stratified 5-fold Cross Validation

Random Oversampling

- Three settings:
 - 1. No stratification no oversampling (snon)
 - 2. Stratification no oversampling (syon)
 - 3. Stratification oversampling (syoy)

Performance Metrics

What other challenges do the imbalanced datasets bring?

M Imbalanced Dataset Issue

More prediction errors on the minor (less frequent) classes

The Standard classification metrics e.g Accuracy cannot be interpreted properly

High Accuracy achieved only by predicting the major class

Performance Metrics Cont.

Which metric is reported in our experiments?

Metric	Formula	Reasons				
Balanced Accuracy	$\frac{\sum_{i=1}^{N} Recall_{class_i}}{N}$	 Same importance to each class (no domain knowledge) Understand how well the model find samples on average 				
*Recall	$rac{TP}{TP+FN}$	 how well the positive class is predicted, out of all actual positive class samples. 				

AutoML Tools

Which AutoML tools were taken into account?

	Initial list of 23 researched tools
--	-------------------------------------

ALTERYX	Auto- Sklearn	Azure	H ₂ O AutoML
 Commercial toolkit: automatic ML pipelines creation for classification / regression, best model selection 	 Open source toolkit: automatic feature engineering, hyperparameter tuning, best model selection 	 Commercial toolkit: automatic ML pipelines creation for classification/ regression, time series, best model selection 	 Open source toolkit: automatic data preprocessing, training/tunning several models, best model selection

Benchmarking Aspects

How to evaluate the tools?

Tool		engineering					
	Missing value imputation	Error/outlier detection	Feature scaling	Imbalanced data handling	Data encoding	Feature generation	Dimensionality reduction
Alteryx	1	×	×	-	~	×	×
Auto-sklearn	1	×	1	1	1	1	 Image: A set of the set of the
Azure	1	×	1	1	1	1	 Image: A set of the set of the
H_2O	1	×	×	~	 Image: A set of the set of the	×	 Image: A set of the set of the

Tool	Task		k	# ML models	Optimization	Ensemble	Model export
	Classification	Regression	Time-series	- -			
Alteryx	 Image: A second s	 Image: A second s	×	4	-	×	×
Auto-sklearn	 Image: A second s	 Image: A second s	×	29	Bayesian	 Image: A set of the set of the	 Image: A set of the set of the
Azure	 Image: A second s	 Image: A second s	 Image: A second s	14	Bayesian	 Image: A set of the set of the	 Image: A set of the set of the
H_2O	 Image: A second s	 Image: A set of the set of the	(✔)	10	Grid search	 Image: A set of the set of the	 Image: A set of the set of the

Tables 1, 2: Comparison of different views among AutoML tools

Benchmarking tool

Input of data into the benchmarking tool

	Licence Commercia Open Source	š≡ 🕵 al ce	GUI, i.e. code No Optional Yes	.*= %	Feature enginee No Optional Yes	ering (automatically)	implemented (e.g 🖇		Time-serie No Optional Yes	es modelling pos∛⊟		Variety of im High Low Medium	plemented m	¥= %			
Tool	Licence	GUI	Support	General Specific OS	S Requirements	Operating in	Accepted Data Sources:	Data pro (automa implem	eprocessing atically) ented	Feature engineering (automatically) implemented	Туре	AutoML Fund	tionality Learning Tasks	Time-series modelling possible	Variety of implemented models	Saving best model possible	Exporting best model to python possible
alteryx	Commercial	Yes	Yes, within 2 days	only on Wi	indows	Locally installed Alteryx App	Both, spreadsheet and data lake	Yes		No	Supe	ervised	Classification, Regression	No	Low	Yes	No
auto-sklearn	Open Source	No	No	only on Lir	านx	Python	Both, spreadsheet and data lake via SQLAlchemy	Yes		Yes	Supe	ervised	Classification, Regression	No	High	Yes	Yes
azure	Commercial	Yes	Yes, within 2 days	None		Azure Cloud	Both, spreadsheet and data lake	Yes		Yes	Supe	ervised	Classification, Regression, Time Series	Yes	Medium	Yes	Yes
h2o	Open Source	Optional	No	for GUI: Ja installed	va sdk has to be	Python, R	Both, spreadsheet and data lake via SQLAlchemy	Yes		Optional	Supe	ervised	Classification, Regression, Time Series (Optional)	Optional	Medium	Yes	Yes

Benchmarking tool

Output from the benchmarking tool

	Licence 🎉	GUI, i.e. co	ode 🚝 🍢	Feature engineering (automatically) implemented (e.g 🎘 🏹			듣 🍢 🛛 Tim	Time-series modelling pos			nplemented m	∛⊒ 🍢				
	Open Source	No		Optional			Op	Optional		Medium						
	Commercial	Optional		No			No	No		High						
		Yes		Yes			Yes	Yes		Low						
			General							AutoMI Fun	ctionality					
			General							Automici a	ceronality					
Tool	Licence GUI	Support	Specific C	S Requirements	Operating in	Accepted Data Sources:	Data preproc (automatical	essing Feature engineeri y) (automatically)	ing Typ	e of Learning	Learning Tasks	Time-series modelling	Variety of implemented	Saving best model	Exporting best model to pythe	on
	·	.	*		·	spreadsheet (excel,	implemented	implemented	-			possible	models	possible	possible	-
h2o	Open Source Opti	onal No	for GUI: J	ava sdk has to be	Python, R	Both, spreadsheet	Yes	Optional	Sup	ervised	Classification,	Optional	Medium	Yes	Yes	
			installed			and data lake via					Regression,					
						SQLAlchemy					Time Series					
											(Optional)					

Handcrafted ML Pipeline

ТШ

Building our handcrafted ML pipeline

Insights from Exploratory Data Analysis	What we did
Variables have different ranges	Standardization of numerical variables
Numerical and categorical variables	
Groups of highly correlated variables	Factor Analysis of Mixed Data

SVM with Gaussian RBF kernel

Results

Mean balanced accuracy across 5 folds

Handcrafted ML pipeline

Comparing results of **syon** vs **syoy**: **Handcrafted without** vs **with imbalanced data handling**

AutoML

Comparing results of **syon** vs **syoy**: Internal AutoML imbalanced data handling vs Manual imbalanced data handling

Results

Change from syon to syoy in recall per class

Impact of Random Oversampling before vs after

Recall of the *majority* class *decreases*, The recall of the *minor* class *increases* and vice-versa

Conclusion

Limitations

Learnings

Similar performance except Alteryx

Similar performance with human Data Scientist solution only with data handling beforehand Limited potential for AutoML especially for unsupervised learning and for time series data No full potential of AutoML due to missing domain knowledge

Recommendations

Combination of AutoML and domain knowledge from Data Scientist

User friendliness: Azure

Thank you for listening and the opportunity to work on this project!

References

References

PricewaterhouseCoopers - Künstliche Intelligenz – die zehn wichtigsten Technologietrends 2018. URL: https://pwc.to/3B9Zu9y (visited on 07/15/2021).

Gartner - Top Trends on the Gartner Hype Cycle for Artificial Intelligence, 2019. URL: https://www.gartner.com/smarterwithgartner/top-trends-onthe-gartner-hype-cycle-for-artificial-intelligence-2019/ (visited on 07/15/2021).

PricewaterhouseCoopers - About us. URL: https://www.pwc.de/en/about-us. html (visited on 07/13/2021).

Marc-André Zöller and Marco F Huber. "Benchmark and survey of automated machine learning frameworks". In: *Journal of Artificial Intelligence Research* 70 (2021), pp. 409–472.

Radwa Elshawi, Mohamed Maher, and Sherif Sakr. "Automated machine learning: State-of-the-art and open challenges". In: arXiv preprint arXiv:1906.02287 (2019).

Giannis Poulakis. "Unsupervised AutoML: a study on automated machine learning in the context of clustering". MA thesis. $\Pi \alpha \nu \varepsilon \pi \iota \sigma \tau \eta \mu \iota o \Pi \varepsilon \iota \rho \alpha \iota \omega \varsigma$, 2020.

Ahmed Alaa and Mihaela Schaar. "Autoprognosis: Automated clinical prognostic modeling via bayesian optimization with structured kernel learning". In: *International conference on machine learning*. PMLR. 2018, pp. 139–148.

Yi-Wei Chen, Qingquan Song, and Xia Hu. "Techniques for automated machine learning". In: ACM SIGKDD Explorations Newsletter 22.2 (2021), pp. 35–50.

Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2016. Chap. 16, pp. 419–429.

Jason Brownlee. Tour of Evaluation Metrics for Imbalanced Classification. Apr. 2021. URL: https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/ (visited on 07/13/2021).

Margherita Grandini, Enrico Bagli, and Giorgio Visani. *Metrics for Multi-Class Classification: an Overview*. Aug. 2020. URL: https://arxiv.org/abs/2008.05756 (visited on 07/13/2021).

Hossin M and Sulaiman M.n. "A Review on Evaluation Metrics for Data Classification Evaluations". In: International Journal of Data Mining Knowledge Management Process 5.2 (2015), 01â€"5. DOI: 10.5121/ijdkp.2015.5201.

Shalabh. Lecture Notes 4 : Stratified Sampling. URL: http://home.iitk.ac.in/ -shalab/sampling/chapter4-sampling-stratified-sampling.pdf.

D. Opitz and R. Maclin. "Popular Ensemble Methods: An Empirical Study". In: Journal of Artificial Intelligence Research 11 (1999), 169â€"198. DOI: 10.1613/jair.614.

Alteryx Intelligence Suite. URL: https://www.alteryx.com/de/products/ alteryx-platform/intelligence-suite (visited on 07/13/2021).

Alteryx Product Pricing. URL: https://www.alteryx.com/de/products/platform-details/pricing (visited on 07/13/2021).

Alteryx AutoML. URL: https://help.alteryx.com/20212/designer/automl (visited on 07/13/2021).

Matthias Feurer et al. "Efficient and Robust Automated Machine Learning". In: Advances in Neural Information Processing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015, pp. 2962-2970. URL: http://papers.nips.cc/ paper/5872-efficient-and-robust-automated-machine-learning.pdf.

Matthias Feurer et al. "Auto-Sklearn 2.0". In: arXiv:2007.04074 [cs.LG] (2020).

auto-sklearn — AutoSklearn 0.12.6 documentation. URL: https://automl.github. io/auto-sklearn/master/index.html (visited on 07/07/2021).

Microsoft Documentation - Azure Machine Learning. URL: https://docs.microsoft. com/de-de/azure/machine-learning/concept-automated-ml (visited on 07/13/2021).

Azure Machine Learning Pricing. URL: (https://azure.microsoft.com/dede/pricing/details/machine-learning/) (visited on 07/13/2021).

07/21 - Technical University Munich

H_2O Overview. URL: https://h2o-release.s3.amazonaws.com/h2o/rel-xu/5/docs-website/h2o-docs/index.html (visited on 07/13/2021).

References

Steel Plates Faults Data Set. July 2021. URL: http://archive.ics.uci.edu/ml/datasets/steel+plates+faults (visited on 07/07/2021).

Marie Chavent et al. "Multivariate analysis of mixed data: The R Package PCAmixdata". In: *arXiv preprint arXiv:1411.4911* (2014).

David Meyer and FH Technikum Wien. "Support vector machines". In: *The Inter*face to libsvm in package e1071 28 (2015).

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. *The elements of statistical learning*. Vol. 1. 10. Springer series in statistics New York, 2001.

James Bergstra and Yoshua Bengio. "Random search for hyper-parameter optimization." In: Journal of machine learning research 13.2 (2012).

Links to sources in the presentation

[1] https://datasolut.com/automl/

[2] https://www.gartner.de/de/artikel/5-trends-bestimmen-den-gartner-hype-cycle-for-emerging-technologies-2020

[3] https://www.globenewswire.com/news-release/2020/02/11/1982792/0/en/Automated-Machine-Learning-Market-is-Forecasted-to-Post-14-511-9-Million-by-2030-P-S-Intelligence.html

References

Appendix

What is an ML pipeline?

- Sets of data preprocessing (d), feature engineering (f) and model building algorithms (m):
 - $\mathcal{A}_{d} = \left\{ A_{d}^{(1)}, \dots, A_{d}^{(n_{d})} \right\}$ • $\mathcal{A}_{f} = \left\{ A_{f}^{(1)}, \dots, A_{f}^{(n_{f})} \right\}$ • $\mathcal{A}_{m} = \left\{ A_{m}^{(1)}, \dots, A_{m}^{(n_{m})} \right\}$
- Each algorithm $A_v^{(r)}$, the *r*-th algorithm in \mathcal{A}_v , $v \in \{d, f, m\}$, can be configured by (algorithm) hyperparameters λ_v^r from the domain $\Lambda_{A_v^{(r)}}$
- Unconfigured ML pipeline $P \in \mathcal{P} = \mathcal{A}_d \times \mathcal{A}_f \times \mathcal{A}_m$
- For an unconfigured ML pipeline $P = (A_d^{(r)}, A_f^{(s)}, A_m^{(t)})$, the corresponding hyperparameter domain Θ_P is given by $\Theta_P = \Lambda_{A_d^{(r)}} \times \Lambda_{A_f^{(s)}} \times \Lambda_{A_m^{(t)}}$
- Configured ML pipeline (P, θ) consists of an unconfigured ML pipeline $P \in \mathcal{P}$ and its hyperparameters $\theta \in \Theta_P$

k-fold cross-validation

- Feature space X, space of the target variable Y
- Dataset $\mathcal{D} = \{(\vec{x}_i, y_i) | i = 1, ..., n, \vec{x}_i \in X, y_i \in Y\}$
- Loss function \mathcal{L}
- Given a dataset D and a Loss function L, the performance of a configured ML pipeline (P, θ) can be evaluated using k-fold cross-validation as follows:
 - Partition \mathcal{D} into k equal-sized folds, $\mathcal{D}_{valid}^{(1)}, \dots, \mathcal{D}_{valid}^{(k)}$
 - Then set $\mathcal{D}_{train}^{(j)} = \mathcal{D} \setminus \mathcal{D}_{valid}^{(j)}, j = 1, ..., k$
 - For each 1, ..., *k* compute $\mathcal{L}((P,\theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)})$, the value of the loss function achieved by the configured ML pipeline (P,θ) , when trained on $\mathcal{D}_{train}^{(j)}$ and evaluated on $\mathcal{D}_{valid}^{(j)}$
 - Finally, take the arithmetic mean of $\mathcal{L}\left((P,\theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right)$ over all k folds
 - Thus, the *k*-fold cross-validated empirical loss of a configured ML pipeline (P, θ) is given by:

$$\frac{1}{k} \sum_{j=1}^{k} \mathcal{L}\left((P,\theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right)$$

Pipeline Selection

Given a set of configured ML pipelines $\mathcal{P}_{\theta} = \{(P, \theta)^{(1)}, \dots, (P, \theta)^{(p)}\}$ and a dataset \mathcal{D} , determine the optimal configured ML pipeline among \mathcal{P}_{θ} in terms of minimal *k*-fold cross-validated empirical loss. This can be written as:

$$(P,\theta) \in \underset{(P,\theta)\in\mathcal{P}_{\theta}}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^{k} \mathcal{L}\left((P,\theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right).$$

Configuration Optimization

Given one unconfigured ML pipeline *P* with corresponding (pipeline) hyperparameter domain Θ_P , determine the optimal (pipeline) hyperparameter value in terms of minimal *k*-fold cross-validated empirical loss. This can be written as:

$$\theta^* \in \underset{\theta \in \Theta_P}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^k \mathcal{L}\left((P,\theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right)$$

Pipeline Selection and Configuration Problem

Given the set of all possible unconfigured ML pipelines $\mathcal{P} = \mathcal{A}_d \times \mathcal{A}_f \times \mathcal{A}_m$ and a dataset \mathcal{D} , determine simultaneously the pipeline and its corresponding (pipeline) hyperparameters, which minimizes the *k*-fold cross-validated empirical loss. This can be written as:

$$(P^*, \theta^*) \in \underset{\substack{P \in \mathcal{P}, \\ \theta \in \Theta_P}}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^{k} \mathcal{L}\left((P, \theta), \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right).$$

Pipeline Selection and Configuration Problem (cont'd)

Treat choice which algorithm in each step of the ML pipeline to use as additional categorical metahyperparameters λ_d , λ_f , λ_m . Let $\lambda_d = r$ denote that the *r*-th data preprocessing algorithm of \mathcal{A}_d is chosen for the data preprocessing step inside a pipeline (analogously feature engineering (*f*) and model building (m)). Then the complete hyperparameter space for the pipeline selection and configuration problem Λ , can be written as:

$$\Lambda = \{1, \dots, n_d\} \times \{1, \dots, n_f\} \times \{1, \dots, n_m\} \times \left(\times_{r=1}^{n_d} \Lambda_{A_d^{(r)}} \right) \times \left(\times_{s=1}^{n_f} \Lambda_{A_f^{(s)}} \right) \times \left(\times_{t=1}^{n_m} \Lambda_{A_m^{(t)}} \right).$$

Based on this the pipeline selection and configuration problem can be rewritten as:

$$\lambda^* \in \underset{\lambda \in \Lambda}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^{k} \mathcal{L}\left(\lambda, \mathcal{D}_{train}^{(j)}, \mathcal{D}_{valid}^{(j)}\right).$$

Grid search vs. random search

Performance Metrics

Metric	Formula	Description
Precision	$\frac{TP}{TP+FP}$	Represents the fraction of the samples predicted as pos- itive that actually belong to the positive class. It tells us how much we can <i>trust</i> the model when it predicts a
		sample as Positive.
Recall	$\frac{TP}{TP+FN}$	Represents how well the positive class is predicted, out of all actual positive class samples. It tells us how well the model can <i>find</i> all the positive samples.
F1-Score	$\frac{2*(Precision*Recall)}{Precision+Recall}$	Looks for a balanced measure between precision and re- call and represents the harmonic mean between them.

Results

Set up of the experiment

- 3 settings:
 - snon, syon yield imbalanced train set
 - syoy yields balanced train set
- Handcrafted ML pipeline: Comparing syon and syoy means to handcrafted without and with imbalanced data handling
- AutoML:
 - If train set imbalanced, AutoML applies internal imbalanced data handling
 - Under syoy (our external imbalanced data handling), the AutoML tools do not apply their internal imbalanced data handling
 - Comparing results of syon and syoy means comparing results with the internal imbalanced data handling of AutoML to our external imbalanced data handling