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What is PreciBake?

PreciBake is an Al company, that among other things, works on
automatic baking program selection.




What is behind this technology?
Or: The life cycle of a data scientist at PreciBake

1. The data scientist gets an almost infinite stream of incoming
data and lets someone label it.

2. He trains a model, applies it, watches it excitedly.
3. Then: Performance drops!
4. Repeat.



What happened?

Q: Why does the performance drop after some time?
A: The input distribution is slightly different to the distribution of
the training data, e.g.

» the class distribution changed (it is carnival and no one wants
pretzels, everyone wants 'Krapfen’)

» the image data changed (the camera got dirty or the lighting
changed)

» maybe even new products are being baked

Solution(?): lteratively feed new data to the model for training.



The problem: Catastrophic Forgetting

Solution(?): lteratively feed new data to the model for training.

— Model will overfit on recent data and loose performance on old
data!

This phenomenon is called Catastrophic Forgetting.



Our Benchmark Dataset: COReb0

» 50 objects grouped into 10 classes
> each in 11 different settings

> images per object are frames of 15s films, delivering 300
images each



Our task: Continual Learning

How can our model adapt to new conditions without forgetting
previously learned knowledge.

And can we even improve our model by feeding in more and more
data without training it from scratch?

The research field that deals with this kind of issues is called
Continual Learning.
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State of the Art

Catastrophic forgetting has mainly been addressed with three types
of different approaches:

» Ensembles: Accumulate different classifiers for different tasks
— Learn++

» Regularization: Protect parameters which are important for
previous tasks
— Synaptic Intelligence

» Memory: Keep fractions of old data and feed in gradually
— Gradient Episodic Memory
— Memory Replay



Aim of Regularization
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Failure of Regularization




Gradient Episodic Memory
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Memory Replay




Memory Replay

Joined Training

Improved Method:

Fastfilrainings | Recoverd Time
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Results on COReb0 dataset

Val Accuracy

Average validation accuracy on all previously learned tasks
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The PreciBake Dataset

32k pictures of 12 classes over a period of 9 months



Results on PreciBake Data

Average validation accuracy on all previously learned tasks
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Motivation

Reduce annotation effort by using unlabeled data from the oven'’s

camera.
Oven deployed

Existing data
f, t
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f |
Task 1: supervised Task 2: semi-
training supervised training
Memory data labeled unlabeled
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Network and Loss Design

Feature space

ResNet-18 conv.
layer output

Network output

> > > Label
Avg. Pool + FC FC cross- | Prediction
entropy
N
H' x W' x 512 Classes
DEmbbedding

VBTN

L = Lrw + LvAT + LCenter + LcE



Feature Space Regularization: Lrw (unsupervised)

Random walks based on similarity graphs

Intuition: " Points forming tight structures over the feature space should
hold similar labels.”

(fo)2

(foh



Feature Space Regularization: Lrw (unsupervised)

Random walks based on similarity graphs

]NC><NC

Realization: Similarity matrix [ € [0, 1 , where N, denotes the

number of classes.

(fo)2




Feature Space Regularization: Lrw (unsupervised)

Random walks based on similarity graphs

Realization: Similarity matrix [ € [0, 1]Ne*Ne where N denotes the
number of classes.




Feature Space Regularization: Lyar (unsupervised)

Virtual Adversarial Training
Intuition: " Points close in the input space should be close in the feature

space.”

B,
Lyatr = g D(fa(xi), fo(xi + €aqv)),
i=1
where fy denotes the feature space embedding, D denotes the

Kullback-Leibler divergence, and B, denotes the batch size of unlabeled
data.



Feature Space Regularization: Lcenter (Supervised)

Centering of clusters in feature space
Intuition: " Penalize points that are far from their class center.”

B,
ECenter - Z Hfg(X,) - Cyng
i=1

where fy denotes the feature space embedding, ¢,, denotes the y;th class
center in feature space, and B; denotes the batch size of labeled data.
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Validation Results

Lce + Lvar

Lce + Lcenter

Lcg + Lcenter + Lvar
Lce + Lcenter + LrRW
Lce + Lcenter + Lvat + Lrw
Lce + Lrw

Lce + Lyar + LrRw
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Validation Results
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Validation Results

Reduced prediction error from 0.0175 to 0.015 (ca. 15%).
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Center Loss Performance

Explanation: Joint supervision of cross-entropy and center loss
increases inter-class distance and smoothens intra-class variation
respectively.
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Thank you for your attention.

4% PreciBake



Appendix 1: Formulas Synaptic Intelligence

EN,' =L;+c Z Q;((A;(y

Al = 0k(t;) — Ok (ti—1) denotes how far ¢ moved

R Ve S -
Q, = Zj:o T measures how much 8, contributed to a drop

in the loss with

o(t;) t;
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Appendix 2: Formulas Lrw and Lyat

Minimize Lcg (fg)+Lsst, (fg)
where f, denotes the feature space layer,

Lgst. = Lvat + Lrw,

Lyar = 3 e, KL(fg(x) — fo(x +€)),  (local consistency)
Lpw = 3.1 o a; H(I,T?) (global consistency)
(1) = pl—=) . (1’*(1—>r))1 . (@—p)

where T(?~2) ¢ [0,1]¥*M, N, number of classes, M batch size,
FET’) denotes the transition probability from p; to z;,

H(I,T) is the average cross-entropy between the rows of I and I'.

H(I,T) = -3 Y% logT®)
T'P>2) = Softmax(AT)
T@=P) = Softmax(A)
@7 = Softmax(B)

Ay =~ fo(2i) - pjl?

Bij = —|fo(x:) — fol;)II®

pj = NL( Ez,edass(j) fﬂ(zi)



Appendix 2: Lgrw and Absence of Classes

Problem: Lgrw unstable wrt. absence of classes.

(fo)2




