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Abstract

The purpose of the project is to find a work around method to alleviate the observable decrease in
performance of our classification network when applied to data gathered from the customer (data
usually sampled from different environments, e.g lighting, time). In this report, we purpose an
image translation network which can reuse the network trained on the original data. Moreover,
this image translation can be applied to all future incoming customer data without compromising
the performance to a degree.

To accomplish such a goal, we have first designed a ResNet model to simplified the original
classification network, then built transfer learning models, lastly we modified the regularisation
term to help the loss converges. The emphasis of the report is the current known relevant
methods of building an image translation network, mostly different types of GANs. We have
applied the most promising models on the data provided by the PreciBake company, and closely
compared data before and after image translation network.

After performing experiments with different GAN models, it is hard to say that any model is
superior to others. It is safe to assert that each model has its strength in specific role, and the
accuracy depends on many other factors combined (e.g augmentation method). One finding
of our investigation into the topic is that the data augmentation step can greatly biased our
final accuracy. It is well justified to invest time on finding a good augmentation method. As
the network tend to overfit the training data. Regularisation term may also plays a role when
tuning the network.

To summarize, our work mainly looks at GAN structured image translation networks. Currently,
all GANs networks improve the performance of the classification network, but still are not able
to raise the accuracy on the customer data to the level of the original data. To further improve
this, we may need to have well collected data-sets, and insightful data augmentation methods.
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1 Introduction

Deep neural networks have recently driven the progress in various classification tasks for super-
vised and organised data. Supervised learning means that we have data consisting of samples
and respective labels. Unfortunately, we find often that if we put the well-trained models into
use in real world, the performance is worse than expected because the data from real world are
messy and unorganised. Furthermore we encounter novel conditions which never occurred in
the training process.

If we observe data it is per se unlabeled. With the increase in amount and capabilities of sensors
there is a huge increase in the amount of unlabeled data. Thus, one approach would be to try
to label all unlabeled data manually to come back to the supervised case. If we decide however
to use the unlabeled data directly we speak form unsupervised learning. A scenario that occurs
often in practice is the coexistence of labeled and unlabeled data, which we call semi supervised
learning. It promises to make use of vast amounts of unlabeled data for our tasks.

As training a model for a new task from scratch takes a long time we would always like to
exploit previous knowledge. Luckily, this works great for a lot of tasks. For example the
geometric shapes bounding objects are similar across multiple domains. It might be even the
case that the pre training data domain and our actual domain have a latent relationship and
differ for example only in their lightning. In this essay, we focus on the ability of generalizing a
model to conditions, which are different from the ones encountered during training, referred as
transfer learning. And with the techniques based on transfer learning [14], we try to solve the
problem, which encounters in real world and industry.
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2 Motivation

2.1 PreciBake’s Challenge - Our Problem

PreciBake is an Artificial Intelligence (AI) and sensor technology company providing software
and hardware solutions to the professional baking industry. To achieve this goal, PreciBake
came up with the concept of a virtual baker which functions as AI-empowered assistance system
for ovens. It simplifies usability, processes and amplifies quality at the Point of Sale (POS) and
bakery. After a successful learning phase, the Virtual Baker recognizes the product in the oven,
automatically selects the baking program, and adjusts it independently as needed. It recognizes
the actual amount of products in the oven and adjusts the baking program accordingly. [1]

However, sometimes the models were trained with organized and collected data have difficulties
in recognizing sorts of different bread in real world due to the changes of light condition, camera
angles, shapes of dough and so on. It is consuming both time and efforts if we collect data
from new conditions, have to label it and finally retrain the model. As such we would like
to constantly improve the model by constantly acquired unlabeled data. Specifically we look
for methods that help to adapt pretrained models based on unlabeled data from a divergent
situation.

2.2 Data and Task

For our Datalab project we are given data from two different domains of data which are
the labeled PreciBake labor data called ”precibake data” or ”domain Y ” and unlabeled data
of the ”real” world or ”fieldtest data” resp. ”domain X”. Each domain has ten different
classes of baking products: ”Apfelecke”, ”Baguette”, ”Baguettebrötchen”, ”Buttercroissant”,
”Kaiserbrötchen”, ”Laugenbreze”, ”Laugenstange”, ”Laugenzopf”, ”Pain au Chocolate” and
”Tomatenstrudel”. Our task is to build a model which is able to classify the unlabled samples
in the fieldtest domain.
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Figure 1: One image of each class of precibake data

Figure 2: One image of each class of fieldtest data
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2.3 Transfer Learning

The classical supervised learning scenario of machine learning, if we intend to train a model
for some task and domain Y, we assume that we are provided with labeled data for the same task
and domain. Consequently, our model is trained to solve the problem in this specific domain.
Shown in figure 3:

Domain Y
Domain X

Domain XDomain Y

M
odel Y

M
odel X

Traditional Machine 
Learning Approach

Training and testing 
on the same domain

Figure 3: Classical ML

Transfer learning allows us to deal with these scenarios by leveraging the already existing labelled
data of some related task or domain. With the model solving the source task in the source
domain,the idea of applying it to our problem of interest as can be seen in figure 4.

Practically, the more knowledge we are able to transfer from source setting to our target task
or domain, the better the methods which we used are.
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Figure 4: Transfer Learning

2.4 Solution approach

Our Semi-Supervised Learning Approach is the following: We first used the labelled data to
train a classifier. Afterwards we trained a transfer model with our unlabeled data and the
labelled data to find a mapping from the unlabeled domain to the labeled one. At the end we
used the mapping to transfer an image to the other domain and then we classified it using the
classifier model. For the classification task we trained a ResNet18 [10] with the training data of
our precibake dataset and tested it on the test data of the same domain.
The transfer models were trained with the training data of both domains (precibake and fieldtest
data). They are Generative Adversarial Network (GAN) based and try to project the images of
the domain X into domain Y .
Afterwards, we applied the transfer models on the test images of fieldtest data to transfer them
to the domain of precibake data.
Then, we tested the transfer models using our ResNet18 model to see if they lay now in the
distribution of precibake data. We also tried to augment the precibake data (as can be seen in
3.1.3) to get more variance in the distribution such that it might get close to the distribution of
the other domain. Besides, we applied Virtual Adversarial Training, which provides a new loss
function and generalizes the model to make it more adaptable.
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3 Background

3.1 Classification

3.1.1 Introduction

The goal of the project is to perform image classification on photos taken under variate light
condition. For classifying the data that are labelled and sampled form the source domain, the
ResNet18 model is used. Deeper networks are difficult to train, therefore we follow the idea
provided in this paper [10] to reformulate the layers. Furthermore, to fasten the model training,
we utilize the ResNet pre-trained model by fixing the first few feature extraction layers and
adapt the deep layers based on our custom data.

3.1.2 ResNet

The ResNet helps improving our model performance and avoid the problems brought by adopt-
ing deep neutral networks. One observation is that deep neural network may have degrading
performance compared to that of shallow network, even when more layers usually means more
capacity of the network. In the deeper network, the additional layers may not better approx-
imates the mapping than its shallower counter part, but rather act like an identity function
which directly map input to output. The residual block is therefore introduced to make deep
neural networks perform at least as good as shallow networks can. In a traditional plain block,

y = F (x)

where F stands for stacked neural network layers.

In a residual block,we optimise instead the function:

y = F (x) + x

The above equation can easily represent the identity function by setting F (x) = 0.

Among all the models currently available, we choose Resnet for its efficiency.

ResNet Structure The training part consists of three parts: data-loading, training, and
tuning. Due to the characteristics of out training samples, lighting conditions are highly weighted
when classifying the object, which is not desired. We want to build a model use mostly the shape
and contour to distinguish different type of bread. This feature of the data set motivates us to
carefully choose the augmentation method, since the augmentation methods can affect the final
accuracy significantly.
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In the data-loading part, instead of the standard data augmentation methods, we additionally
use a pytorch project named Augmentor [4] to adjust color and lighting conditions in order to
generate more training samples from the data-sets. The details of the augmentations will be
explained in the following subsection.

In the training part, we do standard Adam batch gradient descent with Adam and minimise
the mean squared error . Both the learning rate the the size of the epochs are treated as the
hyper-parameters to be decided in the tuning part.

3.1.3 Augmentation

As only a few training samle of domain X are available, Augmentation is essential to gain more
robustness of our model. Besides, those images are from the precibake lab and made under
specific light conditions and camera angels. Therefore, it does not cover all possible conditions.
But we need our model to be invariant under different light conditions and angels. Thus, will
motivate us to include rotations and color transformations in the augmentations. Moreover, the
classes have different amounts of images. This yields to an unequal weight of each class on the
accuracy of our ResNet18 model. Thus, we will have an equal amount of images in each class
after augmentation.
We will see in the section Experiments which augmentations we considered to use and which
ones we actually used.
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3.2 Image Translation

3.2.1 Introduction

As explained in ”Methods”, we need to have for the Semisupervised-Learning Task besides a
classifier model also a transfer model which shifts the data to the domain on which the classifier
is trained.

We have two different approach groups which we tested. The first group (cycleGAN like ap-
proaches) aims to learn a mapping directly form domain X to domain Y whereas the second
group (UNIT model) aims to map from domain X to a latent space Z and then to domain Y .

3.2.2 Generative Adversarial Networks (GAN)

GANs [6] have recently achived impressive results on a wide range of tasks, from text2image,
image editing, representation learning to time series prediction. We focus on the use in domain
adaptation. The basic idea behind GANs is to lean a generative models based on game theory. In
the most general case we train a generator network G(z, θ) that takes in noise vectors z and aims
to reproduce samples from the true distribution pdata(x). The opponent of the generator is the
discriminator network D(x). In the curse of training the discriminator is trained to distinguish
samples from the real distribution pdata(x) from the samples generated by the discriminator ±.
The generator is conversely trained to fool the discriminator. D and G play the two player
minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Epz(z) [log (1−D(G(z, θ)))] (1)

In our setting we consider however mappings between two domains X (data from the laboratory)
and Y (data from the field test). We can draw samples from X and Y according to the marginals
PX and PY . As we want to perform semi supervised learning in the laboratory space X is suffices
to consider a one sided mapping. Thus we need to learn a Generator GY X s.t. GY X(Y ) has the
same distribution as X, i.e. PGYX(Y ) = Px. In addition we learn a discriminator DX hat aims
to distinguish real samples x ∼ PX from translated samples GY X(y). Thus our GAN objective
can be rewritten as:

Lgan(GY X , DX , X, Y ) = Ex∼Px [logDX(x)] + Ey∼PY [1− log (DX(GY X(y)))] . (2)

In recent years a broad variety of GAN models emerged. In the subsequent chapters we introduce
several advanced concepts such as cycleGANs.
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3.2.3 Wasserstein Generative Adversarial Network (WGAN)

Let G(z) be a generator that generates for any random vector z ∼ Pz generates samples {G(z)}
that follow the resultig distribution PG. WGANs [2] aim to learn a generator network G(z) that
minimizes the Wasserstein distance between the distribution of generated samples PG and the
real data distribution Pr, i.e. we seek minGW (Pr,PG). The Wasserstein distance, also refered
to as earth movers distance, is defined as:

W (Pr,PG) = min
γ∈Π(Pr,PG)

E(x,y)∼γ [‖x− y‖] , (3)

where Π(Pr,PG) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and PG.Imagine Pr and PG as two piles of earth. One can think intuitively of γ(x, y) as
indicating how much earth must be transported from x to y in order to transfer the one earth
pile Pr into the other earth pile PG. The Wasserstein distance can be intuitively grasped as the
”cost” of the optimal transport plan. Unfortunately it is intractable to compute the minimum
in 3. Using the Kontorovich-Rubinstein duality [21] we can however reformulate the Wasserstein
distance:

W (Pr,PG) = sup
‖f‖L≤1

Ex∼Prf(x)− Ex∼Pθf(x), (4)

where we take the supremum over all 1-Lipschitz functions f : X → R and θ are the parameter
of the generator G, in our case the weights of the neural network. Let d() be the l2 metric in
the input space. Thus the generator G produces samples G(z, θ) ∼= Pθ. We say a function
f : X → Y is Lipschitz continuous, if there exists a real constant K > 0 s.t. for all x1, x2,∈ X:

d(f(x1), f(x2)) ≤M · d(x1, x2). (5)

If instead of 1-Lipschitz functions we consider K-Lipschitz functions we end up with K ·
W (Pr,PG). If we assume that all members of the function family {fw}w ∈ W are K-Lipschitz
for some K we could solve:

W (Pr,PG) = max
w∈W

Ex∼Prfw(x)− Ex∼Pθfw(x). (6)

Assuming that the supremum in 4 is attained this yields a calculation of W (Pr,PG) up to a
multiplicative constant. This leads us to the value function of the WGAN:

min
G

max
D∈D

Ex∼PrD(x)− Ez∼PzD(G(z)), (7)

where D is the set of 1-Lipschitz functions. Here we take the previous function f as discriminator
D. We refer for a more detailed derivation to the paper [2]. It is worth to mention that the 1-
:ipschitz constraint on f is enforced by clipping maximal weight values, i.e. the weigths of the
discriminator are kept within a certain range (−c, c), where c is a hyperparameter. As a result of
the enforced 1-Lipschitz constraint probelms suc as poor image quality or non convergence might
arise, when c is not tuned correctly. This issues have been adressed by suggested improvement
of the WGAN. One notably improvement is the gradient penalty (GP) method calles WGAN-
GP, which exploits the fact that a differentiable function f is 1-Lipschitz if and only if its
gradients have norm at most 1 everywhere. Instead of weight clipping WGAN-GP penelizes the
discriminator model if the gradient norm moves away from the target norm value 1:

L = Ex̃∼PGD(x̃)− Ex∼PrD(x) + λEx̂∼Px̂
[
(‖∇x̂D(x̂)‖ − 1)2

]
, (8)
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where we sample x̂ = tx̃+ (1− t)x with t ∈ [0, 1], i.e. along the line between both samples.

The WGAN-GP has however weaknesses as well. Unlike the weight clipping te gradient penalty
can not penalize everywhere within a finite number of training iterations. This means the GP
term is only applied to x̂ which we sampled, which might leave significant parts of the support
domain uninvestigated. [22] illustrate this at the example of the ovserved data point which are
distributed accoring to Pr and follow a underlying manifold. At the beginning of the training
stage we find however that PG can very distant from the true data manifold, thus x̂ being far
apart from the true distribution. Thus the Lipschitz continuity over the manifold of Pr is not
until the generator G becomes sufficiently good. [22] propose to solve this by additionaly laying
a Lipschitz continuity condition over the manifold of the real data x ∼ Pr. In order to penalize
violations of the Lipschitz continuity 5 they propose the folling soft consistency term (CT ):

CT |x1,x2 = Ex1,x2
[
max

(
0,
d(D(x1), D(x2))

d(x1, x2)
−M ′

)]
. (9)

arguments from the paper [22]

Thus they propose the consistency regulation:

CT |x1,x2 = Ex∼Pr
[
max

(
0, d(D(x

′
), D(x

′′
))
)

+ 0.1
(

0, d(D−(x
′
), D−(x

′′
))
)]
. (10)

Combing this with the objective function for the discriminator of WGAN-GP we get the new
objective function:

L = Ex̃∼PGD(x̃)− Ex∼PrD(x) + λ1Ex̂∼Px̂
[
(‖∇x̂D(x̂)‖ − 1)2

]
+ λ2CT |x1,x2 . (11)
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3.2.4 Cycle-Consistent Adversarial Networks (cycleGAN)

CycleGANs were introduced by [24] for problems where the goal is to learn a mapping between
a source domain X and a target domain Y . Our goal is to train the generator such that it
generates images PG(x) that are indistinguishable from the samples from domain Y according
to PY . We use a architechture as displayed in (a) in ??. This means that in addition to the
generator G : X → Y we have a generator F : Y → X. In both domains we have a discriminator
DX respectively DY that tries to distinguish samples from the domain from fake samples. The
idea behind cycleGANs is that we wish for F (G(x)) ≈ x and vice versa G(F (y)) ≈ y, i.e. if we
map a sample to the other domain and map it subsequently back we want to be close to our
initial sample. This is illustrated in picture (b) and (c) in ??. The cycleGAN loss consists of

Graph credit to [24]

Figure 5: cycle gan

three summands. Firstly we formalize the already motivated circularity constraint:

Lcycle(GX,Y , GY,X) = Ey∼Py‖y −GX,Y (GY,X(y))‖1 + Ex∼Px‖x−GX,Y (GX,Y (x))‖1. (12)

Similar to the normal GAN setting we have the adversarial loss LGAN from the discriminators
DX and DY aiming to distinguish true and fake samples. As a third term we consider the
identity constraint. If we apply the generator GXY to a sample from domain Y we we want
GXY to perform an identity mapping. As we consider both directions we get:

LID(GX,Y , GY,X) = Ex∼Px‖x−GY,X(x)‖2 + Ey∼Py‖y −GX,Y (y)‖2 (13)

Thus we use the full objective:

L = LGAN + Lcycle + LID (14)

to train our generator. The discriminator is again trained to detect fake samples. The cycle
consistency constraint is a form of regularisation and prevents as such over fitting. The cycleGAN
structure with two generators and two discriminators as well as the cycle consistency term where
used in many of our experimental architectures. The idea of having two domains and generators
in between gives rise to a variety of methods with a similar circular constraint. Instead of the
circular constraint they consider for example the distance between samples in both domains.
The the subsequent chapters we give an overview over several methods.
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3.2.5 Geometry-Consistent Generative Adversarial Networks (GcGAN)

Motivation Again the goal is to learn a mapping from domain X to domain Y , but GcGAN
or Geometry-Consistent Generative Adversarial Networks (for One-Sided Unsupervised Domain
Mapping)[5] has the advantage over cycleGAN that it does not need to learn a mapping from
domain Y to domain X as illustrated in figure 4. The geometric idea behind GcGANs is that it
should map an image in the same way as it would map a transformed image.

Explanation GcGAN uses a geometric transformation function for having a metric of the
perfomance of the generators. This is done in the following way: First, a generator tries to
generate from an image x of domain X an image y′ of domain Y . Then, this image will be
transformed with the geometric transformation function f to f(y′). Afterwards, the same image
of domain X will be transformed using f to x and then be translated to domain Y using another
generator. Finally, the transfered image ỹ′ will be transformed using the inverse function of f to
f−1(ỹ′). Then we compare ỹ with f−1(ỹ′) and f(y′) with ỹ′. This comparison is described in
mathematical terms in the paragraph ”Loss functions” as Lgeo.

Geometric Transformation There are multiple definitions for geometric transformations.
For our case it is necessary that a geometric transformation has an inverse function[15]. Since
we need it to be able to determine Lgeo. Then it is important to classify those transforma-
tions because we want to choose our hyperparameters according to different classes of geometric
transformations. For example one can classify them by the dimension of their operand sets or
by the properties they preserve[23]. We will do the latter one as it is more useful in our ap-
plication. Hence, we use the classes translation, rotation, affine transformation and perspective
transformation for our choice of a geometric transformation function.

Loss function The loss function of the GcGAN model has multiple terms:

LGcGAN = λgeoLgeo(GXY , Gf(X)f(Y ), X, Y ) + Lgan(GXY , DY , X, Y ) + Lgan(Gf(X)f(Y ), Df(Y ), X, Y )

+Lidentity(GXY , X, Y ) + Lidentity(Gf(X)f(Y ), X, Y )

(15)

with

Lgeo(GXY , Gf(X)f(Y ), X, Y ) = Ex∼PX (‖GXY (x)− f−1(Gf(X)f(Y )(f(x))‖)
+Ex∼PX (‖Gf(X)f(Y )(f(x))− f(GXY (x))‖),

(16)

Lidentity(GXY , X, Y ) = Ey∼PY (‖GXY (y)− y‖), (17)

λ > 0 is a weight factor of the geometric loss.
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Lgeo checks whether the is invariant under a geometric transformation f or not (as described
above in more detail).

Lidentity aims to ensure that the generator would generate the same picture y if it gets as
an input a picture y from domain Y .

Lgan(GXY , DY , X, Y ) as described in the section GANs.

Graph credit to [5]

Figure 6: Illustration of the difference between GcGAN and CycleGAN[5]
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3.2.6 Distance constraint Generative Adversarial Networks (distanceGAN)

Graph credit to [5]

Figure 7: distance constraint gan

The geometric idea behind distance constraint
GANs, outlined by [3], is that the distance
between two samples yi and yj in domain
Y should be approcimately preserved af-
ter mapping to domain X, thus d(yi, yj)a ·
d(GY X(yi), GY X(yj))+b, where d() yields the
distance between two points, a is a linear coef-
ficient and b the occurring bias. We denote by
µX , µY the means of distances of all possible
pairs of samples (xi, xj) ∈ X and (yi, yj) ∈ Y.
Let σX , σY denote similarly the standard de-
viation of this distances. Then we can define
the pairwise distance consistency loss:

Lpairdis (GY X , X, Y ) = Eyi,yj∼Py [|φ(yi, yj)− ψ(yi, yj)|]

(18)

φ(yi, yj) =
1

σY
(‖yi − yj‖1 − µY )

(19)

ψ(yi, yj) =
1

σX
(‖GY X(yi)−GY X(yj)‖1 − µX)

(20)

Instead of using pairwise distances and stan-
dard deviations we could apply the same logic
to individual samples. This means specifi-
cally that we expect the difference between
the left and right (or upper and lower half)
of a picture to be the same in both domains.
This approach has the advantage that the
precomputation of the statistics is consider-
ably faster than for the pairwise case as we consider each picture only once. Let for this
L,R : Rh×w → Rh×

w
2 . We denote by µ̃X , µ̃Y the means of distances of the left and right (upper

and lower) half of the picture, i.e. µC = 1
n

∑
j‖L(xj)− R(xj)‖1 xi ∈ X and yi ∈ Y. Let σ̃X , σ̃Y

denote similarly the standard deviation of this distances.We define the self distance consistency
loss:
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Lselfdis (GY X , X, Y ) = Eyi,yj∼Py [|φ(yi, yj)− ψ(yi, yj)|] (21)

φ(y) =
1

σ̃Y
(‖L(y)−R(y)‖1 − µ̃Y ) (22)

ψ(y) =
1

σ̃X
(‖L(GY X(y))−R(GY X(y))‖1 − µ̃X) (23)

In our implementation we perform precomputation for all the occuring statistics, i.e. µX , µY , σX , σY
of our data.

3.2.7 U-Net

For the generator of our Cycle GAN like approaches we used the U-Net [16] for several reasons.
First of all, it does not have any fully connected layer. Therefore, we are able to use any size of
an image. This helps to train our model in a much faster way as we can change the image size
during training. This enables us to start with small (downscaled) images and get first results
for the parameters. Afterwards, we refine them by bigger (less down-scaled) images. And at
the end, we can use the original images. Besides, U-Net combines the information from the
downsampling path with the information of the upsamling path (as can be seen in figure 3).
Thus, it combines information from the location in the image with the context of this location.
This helps the generator to segment the images well.

In comparison to the generator used in [17] U-Net is a way faster Generator.
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Graph credit to [16]

Figure 8: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied
feature maps. The arrows denote the different operations. [16]

3.2.8 UNIT Model

Introduction Unsupervised Image-to-Image Translation Network (UNIT) is introduced by
Ming-Yu Liu, Thomas Breuel, Jan Kautz with codes and additional results available in this
paper [12]. UNIT model aims to solve the problems where we have two groups of data taken
under different domains, and we want to transform an image from one domain to another. The
problem get complicated when we do not have one to one correspondence between pictures that
are relevant. UNIT model tries to learn a joint distribution between two distribution. The UNIT
framework is based on generative adversarial networks (GANs) section3.2.2 and variational auto-
encoders (VAEs).

In the previous sections of this documentation, cycle GAN section3.2.4 and distance GAN
section3.2.6 have been introduced and detailed explained. UNIT model bases on the idea of
competing GANs, but also makes advanced assumption about the intrinsic structure of the data
set. With the additional information, the choice of the generator can be narrowed down without
downgrading the performance of our network.

The supporting assumption underlying the UNIT model is that both the training space (domain
X) and testing space (domain Y) share one same latent space (named Z). We can consider the
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latent space as the extracted essence of the object that stays invariant in either domain. In
this view, pictures in both space X and Y are representations of the same object under different
environments. To see this idea in real-life applications, the latent space can be the human with
certain face features and the space A and B can then be different races or ages.

Figure 9: Illustration of the unit model with latent space assumption

Graph credit to [12]

In part(a): X1, X2 corresponds to training and the testing domain. Z is the latent space we
assume to exist.
In part(b): E represents the auto-encoder, G is the generator, D has the goal to distinguish
whether the given image is generated by the encoding from domain X1 or X2.

The shared latent space assumption allow us to perform image to image translation, by first
encode the input into the latent space and then apply the generator that are specific to the
desired domain.

Framework of the UNIT Model The shared latent space assumption is implemented by
the design of the weight sharing structure of the network in combined with the variational
auto-encoders. The auto-encoder is performing the task of representing an given image by a
one-dimensional array. This array intuitively count the relative weight of the each feature in this
image. We use variational auto-encoder which tries to bring the distribution of these generated
arrays to that of Gaussian random variable. This array can be treated as a representation of the
image in the latent space Z. To ensure a smooth transition, the last few layers of the encoders
E1, E2 and the first few layers of the encoders G1, G2 are fixed by sharing the weight of the
network between both domain X and Y .

A side note that an implementation of weight-sharing structure does not guarantee Z produce
latent encoding of semantic meanings. However, we can use adversarial training to produce
latent space that connect the encoders and generators of these two domains.

Losses in the UNIT model If we follow the idea that there exists a latent space, it is inferred
that the image translation must satisfy the Cycle-Consistency constraint. To be more specific,
an image in domain X, should barely vary after being encoded to domain Z , translate to domain
Y , and then transform back to domain X by reversing the process. Noticeably, cycle-consistency
is also a constraint for cycle GAN in previous section.
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In the unit model, the goal is to optimise 6 losses, 3 losses in each direction of transformation
(space X to Y and space Y to X ). The three losses in one direction is the the loss from the
discriminator of the GAN, the KL divergence of the VAE and loss from the cycle-consistency.

Figure 10: Formula of the losses in UNIT model

Graph credit to[12]

3.3 Using GANs for Classification

The previously outlined GANs provide the ability to transform pictures from domain X to
domain Y , where we perform classification with a pretrained model, i.e. a Resnet. A different
approach is to use the GAN discriminator for classification. Our domain adaptation problem is
a classification problem with K classes. We denote by li the class label of sample xi, thus our
labelled data have the form (xi, li). We begin by considering the standard classification problem
with K classes, thus a sample x is classified into one of K. Therefore we train a model taking
x as input and output of a K−dimensional vector of logits [`1, . . . , `K ]. Applying the softmax
function we derive the probabilities of x belonging to class j as:

pmodel(li = j|x) =
exp(`j)∑K
i=1 exp(`i)

(24)

The model is trained by minimisation of the cross entropy between the label data and the model
predictive distribution pmodel(l|x).

Graph credit to
https://towardsdatascience.com/semi-

supervised-learning-with-gans-9f3cb128c5e

Figure 11: using the discriminator for classifica-
tion in a semi supervised learning setting

If we now consider a multi-domain classifica-
tion problem we might want to use the dis-
criminator of the GAN for classification. The
standard architectural choice [18] [22] is to
pick a discriminator with (K + 1) outputs,
where output j corresponds to the probability
of class j and the K+ 1th output corresponds
to the probability of being a fake samples pro-
duced by the generator, i.e. an sample that
is detected as being mapped from the source
domain. The resulting loss for the discrimi-
nator D can be decomposed into the loss for
labelled samples(LDl ) and unlabelled samples
(LDul), LD = LDl +LDul. The supervised loss for
our classifier is given as:

LDl = −Ex,l∼pdata(x,l) log pmodel(l|x, l < K+ 1)
(25)

and the unsupervised loss for the discrimina-
tor is given as:

LDul = −Ex∼pdata(x) log [1− pmodel(l = K + 1|x)] + Ex∼G log [pmodel(l = K + 1|x)] . (26)



3.3 Using GANs for Classification 19

Thus we obtain the total loss of the classifier:

LD = −Ex∼pdata(x) log [pmodel(l|x)]− Ex∼G log (pmodel(l = K + 1|x)) . (27)

Here we decomposed the total cross entropy loss into the stand supervised loss LDl and a unsu-
pervised loss LDul that corresponds to the standard GAN value as can be seen from substituting
D(x) = 1− pmodel(l = K + 1|x):

LDul = −Ex∼Px logD(x)− Ez∼noise log (1−D(G(z))) (28)

which results in our domain adaptation problem between domains X and Y with respective data
distributions PX and PY to:

LDul = −Ex∼Px logD(x)− Ey∼Py log (1−D(G(y))) . (29)

To train the generator [18] recommend to use feature matching in the discriminator, thus the
generator matches expected features of generated and real samples. Let Dr denote the r-th layer
in the discriminator, the generator minimizes the expected feature loss:

LG = ‖Ex∼PxDr(x)− Ey∼PyDr(G(y)).‖22 (30)

Alternatives are to use the classic GAN generator update rule. For the special case of WGANs
[22] suggest to use the penultimate layer in the update rule of the generator and the following
objective function for the discriminator:

LD = −Ex∼pdata(x) log [pmodel(l|x)]− Ex∼G log (pmodel(l = K + 1|x)) + λCT |x′,x′′ , (31)

with CT |x′,x′′ as defined above.

We conclude by the observation that our classifier with K + 1 logits as output is indeed over
determined. This is due to the fact, that subtracting a general function f(x) form each logit, i.e.
li(x)← li(x)−f(x),∀i ∈ {1, . . . ,K+ 1} does not change the output of the softmax distribution.
Thus it is possible to fix any logit to zero, w.l.o.g. we set lK+1(x) = 0. Then LDul is again similar
to the supervised loss with K classes and the classifier D(x) is given as:

D(x) =

∑K
k=1 exp(`k)(x)∑K

k=1 exp(`k)(x) + 1
. (32)

In order the use the discriminator in our precibake setting we apply again a cycleGAN idea that
is outlined in picture 12.

Totably the generator is training with the same loss function as in the normal cycleGAN, thus
with the weighted sum of self constraint, adversarial constraint and cycle distance constraint:

LG = LGAN + Lcycle + LID (33)

and for the discriminator a version of 31.
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Figure 12: cycleGAN like architecture with 2 generators and discriminators that we use for
classification. As we are only interested in classifying the samples in the labor domain it is
sufficient to have a discriminator DX with the ability to classify and a normal discriminator
DY .

3.4 Adversarial Training

3.4.1 Motivation

[19] pointed out that neural networks learn input output mappings that are to a significant
extend discontinuous. They show that it is possible to make a network misclassify an image
by adding an for humans imperceptible perturbation. For a specific noise level ε > 0 there is
a perturbation deviating by less than ε form the original sample that maximises the networks
prediction error. An example can be seen in picture 13.

Multiple methods have been proposed to compute the optimal perturbation. However most of
this approaches rely upon the knowledge of the label of the prospective sample. For our task we
face however a large amount of unlabeled data, that we also want to make use of. One method
to do so is virtual adversarial training.
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Graph credit to [7]

Figure 13: Example of adversarial training.

3.4.2 Unlabeled Data - Virtual Adversarial Training (VAT)

As we do not know correct labels for unlabeled data, [13] proposed a new regularisation technique
which is a method that trains the output distribution to be isotropicaly smooth around each
input data point by selectively smoothing the model in its most antiisotropic direction.

Virtual adversarial direction aims at the most antiisotropic direction. In contrast, adversarial
direction introduced by Goodfellow et al [8] at an input data point is a direction of the per-
turbation that can most reduce the models probability of correct classification, or the direction
that can most greatly deviate the prediction of the model from the correct label.

As showed in the figure 14 below , after several updates, the VAT can classify and generalise
the model quite well.

3.4.3 Loss Function

To quantify the direction, VAT define the local distributional smoothness (LDS) to be the
divergence- based distributional robustness of the model against virtual adversarial direction.

Let D[p, p′] be a non-negative function that measures the divergence between two distributions
p and p′, for example, the cross entropy. And xl is the input data, y is the output label .Then
loss function of Adversarial Training is

Ladv(xl, θ) := D[q(y|xl), p(y|xl + radv, θ)] (34)

radv := argmaxr;||r||≤εD[q(y|xl), p(y|xl + r, θ)] (35)

Based on Adversarial Training ,let x∗ represent either labeled data xl or unlabeled data xul
,then the object function is now :

Ladv(x∗, θ) := D[q(y|x∗), p(y|x∗ + rqadv, θ)] (36)
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Graph credit to [13]

Figure 14: The local distributional smoothness (LDS)

rqadv := argmaxr;||r||≤εD[q(y|x∗), p(y|x∗ + r, θ)] (37)

Actually, there is no direct information about q(y|x∗) and the current estimate p(y|x, θ̂) can be
a great replace for it.Thus ,we can get the virtual adversarial perturbation which represented
by local distributional smoothness as below:

LDS(x∗, θ) := D[p(y|x∗, θ̂), p(y|x∗ + rqadv, θ)] (38)

rqadv := argmaxr;||r||≤εD[p(y|x∗, θ̂), p(y|x∗ + r)] (39)

The regularization term proposed is the average of LDS(x , ) over all input data points:

Rvadv(Dl, Dul, θ) :=
1

Nl +Nul

∑
x∗∈Dl,Dul

LDS(x∗, θ) (40)

Putting everything together [13] propose the following loss function,

l(Dl, θ) + αRvadv(Dl, Dul, θ) (41)

and it is obvious that VAT is a training method with the regularizer Rvadv. This methods is
particularly useful as in reality there are orders of magnitude more unlabeled than labeled data,
thus it is desirable to exploit them as well.

We use VAT to train the discriminator. Thus l(Dl, θ) denotes the loss function of the discrimi-
nator in the version as classifier of true and fake samples from the current domain or in addition
as classifier of the respective kind of pastry.
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4 Experiments

4.1 Augmentation

Augmentation

Domain Y T(X) Domain X

Figure 15: Illustration of the effect an Augemantation might have on the data.

Domain Y is from the PreciBake lab and domain X from the customer’s site (later known as
fieldtest). As one can see in figure 10, the effect of augmentation should be that it generates
more variance such that the augmented domain Y would be closer to domain X. We also assume
that our transfer models (in figure 10: T(X)) would shift domain X closer to domain Y. This
would yield to the results that the ResNet18 model, which is trained on the augmented domain
Y, would have a higher accuracy on the test data of domain X. We will see later for which
transfer model and for which augmentations this will be the case.

Different Augementations In the following list are different augmentations presented. The
accuracy during testing of each augmentation is displayed on the righthand side. We first used
7 different ways to edit an image, which were all ways we wanted to include in an augmentation.
As the accuracy of this Augmentation was significanty low in comparison to train the ResNet18
on the non augmented data, we had to exclude some factors. After excluding only one factor
which did not change the color and realizing that it does not lead to a higher validation accuracy,
we started by using only one factor and to add one after the other to see which factors have
an significant impact on the validation accuracy. Thereby, we can recognize that the bright-
ness has an effect on the validation accuracy in ”Augment6”, ”Augment8”, ”Augment9” and
”Augment10”. This yielded to a relatively high min- and max-factor for the brightness.
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Table 1: All Augmentations, which we testet, where we replaced ”rotation”,”factor”,”left” and
”right” with ”rot”, ”f”, ”l” and ”r” for readibility.[4]

Augmentation
Name

Augmentations used Highest
Accuracy in
Validation

Augment p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.410587

Augment1 p.skew(probability = 0.5)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.413448

Augment2 p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.430615

Augment-
onlyCrop

p.crop-rnd(probability = 1, percentage-area = .99) 0.9099

Augment-
onlyCrop2

p.crop-rnd(probability = 1, percentage-area = .9) 0.9013

Augment3 p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)

0.9099

Augment4 p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)

0.9056

Augment0 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)

0.9084

Augment5 p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)

0.8026

Augment6 p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-brness(probability = 1, min-f = 0.5, max-f = 0.5)

0.7024
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Augment7 p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.905579

Augment8 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.2, max-f = 0.2)

0.2375

Augment9 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.01, max-f = 0.01)

0.2303

Augment10 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.75, max-f = 0.75)

0.5866

Augment11 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9) p.flip-
rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.85, max-f = 0.85)

0.8169

Augment12 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.95, max-f = 0.95)

0.818312

Augment13 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-brness(probability = 1, min-f = 0.95, max-f = 0.95)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.832618

Augment14 p.skew(probability = 0.5)
p.rotate(probability=0.7, max-l-rot=10, max-r-rot=10)
p.crop-rnd(probability = 1, percentage-area = .9)
p.flip-rnd(probability = 1)
p.rnd-contrast(probability = 1, min-f = 0.5, max-f = 0.5)
p.rnd-color(probability = 1, min-f = 0.5, max-f = 0.5)

0.702432
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Selection of Augmentations As it is important to have a high accuracy on both data sets
(precibake and fieldtest) we cannot use an augmentation which best epoch did not have an
accuracy better than 70 per cent. Therefore, we choose only those augmentations which have
an accuracy better than 70 per cent and which increase the variance of the model. This means
that we also exclude augmentations which do not change the color, brightness or contrast of a
picture.
Hence, we will in the following only use the Augmentations ”Augment5”, ”Augment6”, ”Aug-
ment7”, ”Augment11”, ”Augment12”, ”Augment13” and ”Augment14”.

Illustration of Augmentations We will now show eight images of every augmentation with
which we trained the ResNet later. Here we see that every augmentation looks different as well
as each of image within the augmentation has differences to its neighbor. Still, they were all
augmented from the same image of the class ”Apfelecke”. So, we see in each augmentation a
variance of different angels, skews and crops of the original picture, depending of the augmen-
tation we look at. There is a difference in the light conditions like contrast, brightness and
color between different augmentations as well but not within an augmentation. Different aug-
mentations may therefore not have more variance in light conditions but the changes of light
conditions may cause domain Y to be closer to domain X. See 6.2 for ideas to include variance
in light conditions as well.

Figure 16: Original image of Apfelecke

Figure 17: Augmentation5 of an image of Apfelecke
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Figure 18: Augmentation6 of an image of Apfelecke

Figure 19: Augmentation7 of an image of Apfelecke

Figure 20: Augmentation11 of an image of Apfelecke

Figure 21: Augmentation12 of an image of Apfelecke
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Figure 22: Augmentation13 of an image of Apfelecke

Figure 23: Augmentation14 of an image of Apfelecke

4.2 Choice of Hyperparameters

GcGAN Geometric consistency leaves two hyperparameters to be tuned. Either can the
geometric transformation or λgeo be changed. Therefore, we chose the following models to be
trained:

Table 2: Hyperparameters GcGAN

Name Geometric Transformation λgeo Details

rot 90 l10 Rotation 10 90 degrees
rot 180 l20 Rotation 20 180 degrees
per l20 Perspective 20 Points (0,0),(0,28),(28,0),(28,28)

to Points (0,0),(0,26),(26,0),(50,28)
rot 90 l20 Rotation 20 90 degrees
rot 180 l10 Rotation 10 180 degrees
per l10 Perspective 10 Points (0,0),(0,28),(28,0),(28,28)

to Points (0,0),(0,23),(23,0),(28,28)

DistanceGAN We have to choose whether we use self or pairwise distance. As mean and
variance in both domains are precomupted there is no direct impact of this hyper parameter
upon the run time.
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Table 3: Hyperparameters distanceGAN

Name Details

dis self self distance
dis pair pairwise distance

Illustration of different Transfer Model Approaches In table 4 we see an image of Apf-
elecke being transferred to domain Y using different transfer models of GcGAN and distance-
GAN. We can see for the model per l10 that it is important to choose good hyperparameters for
the geometric transformation because in this case the geometric transformation uses only have
of the images it transforms to.

Table 4: Image from Apfelecke Transferred using different Models

Model Name Picture Description

fieldtest Original image of Apfelecke

dis self
Image of Apfelecke transferred with dis-
tanceGAN

dis pair
Image of Apfelecke transferred with dis-
tanceGAN

per l10
Image of Apfelecke transferred with Gc-
GAN using a persepective Transformation

per l20
Image of Apfelecke transferred with Gc-
GAN using a perspective Transformation
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rot 180 l10
Image of Apfelecke transferred with Gc-
GAN using a rotation

rot 180 l20
Image of Apfelecke transferred with Gc-
GAN using a rotation

rot 90 l10
Image of Apfelecke transferred with Gc-
GAN using a rotation

rot 90 l20
Image of Apfelecke transferred with Gc-
GAN using a rotation

UNIT The UNIT framework produce two generators in each direction of transformation,
abbreviate as x2y and y2x. We can observe from the life cycles of the networks saved to deduce
what the network internally trying to optimise. The most noteworthy difference between training
space and testing space is that the training space has cold blue lightingwhile for the test space,
the lighting is warm orange like.

In the first 10000 iterations, the generators trying to add random light blue lighting to mimic the
hue of the photos in the original domain. From the 20000 to 50000 iterations, the colour of the
generated graph is smooth and do not have abrupt change in lightness. From 50000 iterations
onward, the generator also tries to mimic the target distribution of the bread in the pictures
by adding or removing bread of the same kind. This behaviour should be avoided as the model
should devote to learn only background environmental changes.

Just like most neural networks, the learning rate and the number of epochs greatly influence the
performance of the out-coming performance. In the unit models, the parameter logiter controls
the frequency that the current generators is being recorded. When the training has just started
and the weight has just been initialised, it can be observed that our model is trying to mimic the
blue lighting in the training set. Our model shows the typical behaviours of under-performing.
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(a) domain X1 to X2 (b) domain X2 to X1

Figure 24: Under-performing Examples of the UNIT model

Over-fitting also occurs in image translation in a different form. A typical observation when
over fitting occurs is the network tries to remember not only the environmental parameters, but
also tries to manipulate the object distribution. In our case, we want the network to be able to
translate the light conditions from domain X to domain Y , but the network should leave the
object position intact since this feature is irrelevant in performing object classifications.
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(a) domain X1 to X2 (b) domain X1 to X2

Figure 25: Over-fitting Examples of the UNIT model

Below is the table for the hyper-parameters used in the UNIT model:

Table 5: Hyper-parameters UNIT model

Name Iteration Numbers step Comments

iter 10000 10000 under-fitting
iter 20000 10000 –
iter 30000 10000 –
iter 40000 1000 –

Discriminator for Classification We have to choose the weight factors of all individual
weight terms. We stick to the weight factors outlined in the papers who introduce the respective
methods. For the generator we choose the standard cycleGAN setting:

Table 6: Hyperparameters Generator

Name value Comments

loss identity A 5 identity loss domain X
loss identity B 5 identity loss domain Y
loss GAN A2B 1 GAN loss domain X to Y
loss GAN B2A 1 GAN loss domain Y to X
loss cycle ABA 10 cycle loss domain X to X
loss cycle BAB 10 cycle loss domain Y to Y

and for the discriminator we add the loss term and optionally a VAT loss term 7.
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Table 7: Hyperparameters Generator

Name value Comments

loss GAN A2B 1 GAN loss domain X to Y
loss class 1 cross entropy loss of kind of pastry
loss class vat 1 LDS with respect to kind of pastry

Virtual Adversarial Training Here we can choose which size of distortion ε and which
number of power iterations to compute the LDS we want to perform. We decide to use the default
values ε = 2.5, xi = 1e−6 and num iters = 1, where is the magnitude of maximal acceptable
noise, xi the start vector of the power iteration and num iters the number of iterations in the
power iteration. Furthermore opted to not to impose the adversarial training in each iteration
but rather every n-th iteration, which reduces the required training time significantly. We have
chosen n = 5.
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5 Results

In the following section we firstly present our results. We used the previously described models
to map the data from the fieldtest domain to the precibake domain. Subsequently we use the
pretrained ResNet and report the classification accuracy. A natural benchmark is the classifica-
tion accuracy of the ResNet on the unlabeled fieldtest data without any augmentation that is
drawn in 26 as horizontal line.

Surprisingly, ResNet does not have a higher accuracy on the classification on of any transfer of the
fieldtest images. Thus, we used augmentation. Here, we see different results regarding different
augmentations. When using Augment6 and Augment7, the UNIT model transfers (model 10 -
13) seem to perform much better than the model transfers, which did not use a latent space.
For Augment5, Augment11, Augment12, Augment13 and Augment14 the models, which did not
include a latent space seem to perform better (model 1-9). This may be caused by a change in the
contrast of the images (which is done in Augment5, Augment11, Augment12, Augment13 and
Augment14). The difference of the performances depends again on the augmentation and model
we look at. In Augment5, Augment7, Augment12 and Augment14 ResNet performs better on
the transferred images ot the best performing transfer models than it does without using an
augmentation on the not transferred images, e.g. the fieldtest domain. Also, in Augment5,
Augment12 and Augment14, ResNet performs better on the fieldtest domain without using a
transfer model. Non negligible is nonetheless, that except Augment7, ResNet performs worse
on the precibake domain, on which it is trained (or on its augmentations), than it does when
we do not consider an augmentation.

In figure 27, we only tested the performance of ResNet with one additional augmentation, e.g.
Augmentation5. But this time we used a different loss function for our model, e.g. the VAT
loss function. (see 3.4). In the figure we can see that UNIT does not work properly under
this classification model with and without an augmentation. Also, the threshold is lower as
the model performed worse on the fieldtest domain without using an augmentation, but it gets
better results in when it uses Augment5. This is the highest classification accuracy of any model
on the fieldtest domain. Nonetheless, no transfer model could improve the perfomance of the
ResNet model.
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6 Conclusion

Domain mapping Our Semi-supervised Learning approach yielded to better results on the
fieldtest domain. This was achieved by different transfer models and augmentations. Whereas
some augmentations may cause the classification network to perform worse on the domain on
which it is trained, it may lead to better results combined with the transfer model. Nonetheless,
we still need to tune the hyperparameters of the transfer models as the accuracy only got slightly
better or even worse depending on the augmentation. Using VAT gave us a higher improvement
when we trained the ResNet model with augmentation Augment5, but no transfer model could
improve it anymore.

We investigated several circular domain mapping methods, e.g., cycleGAN, GcGAN and dis-
tanceGAN. We transfered unlabeled pictures from the fieldtest domain and classified them sub-
sequently with the ResNet trained from the precibake domain. Comparing the classification
accuracy of the ResNet on the translated images we find that circular constraints yield an im-
provement in the classification accuracy compared to the plain ResNet for several augmentations.
We observed no significant difference from using self- or pairwise constraint distanceGAN. The
only difference as a differently long precomputation time. Thus, we can conclude that both are
a legitimate ways to enforce a circular constraint, however without specific advantages. Also
the different hyperparameter settings of GcGAN lead to comparable results. It can as such be
concluded that introducing a circular constraint and as such transferring the pictures improves
training accuracy, however the hyperparameters of the chosen GAN have only a minor overall
impact.

UNIT model is also a different form of the GANs with more designed structure. Over-fitting is
more noticeable in this model, when the iteration does not terminate after the network learn how
to transfer the environment variables. Theoretically, such a behaviour is expected as environment
variables are first to learn due to the huge impact they have on our data. We should prevent the
networks from alternating the locations of objects, by choosing a good iteration number from
experiments. Aside from iteration number, the step size is also another number we should attend
to. Currently, the step size does not change the behaviour of our image translation network.
When choosing a small step size, we can observe what the network tries to do in each step, and
is desired when we intend to debug the whole process.

We found that the chosen augmentation has a huge influence upon the observable classification
accuracy. Here, we saw that a change in colour, brightness or contrast influences the accuracy
a lot.

Using the Discriminator for classification We found that our simple summation of con-
straints did not result in a desirable performance. This underlines the fact that GANs are rather
hard to train, thus the composition of several losses might need further hyperparameter tuning.
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6.1 What has been learned?

A first immediate observation after the start of the project was the urgent need to use GPU’s.
However even using the Precibake GPU’s we encountered very long training times for the map-
ping between domains. Thus is was desirable to pay attention to every detail increasing the
experimental speed. A major speed up was the decision to use UNET as generator in the cycle-
GAN settings. As this network increases the size of the resulting figure this yields particularly
at the beginning of training shorter episodes. We further encountered the need to store pre-
computed results, for example the domain mean and variance for the distanceGAN. Another
method to speedup training was to compute the adversarial loss only every 5-th epoch. One
lesson we experienced are that GANs are hard to train. This is particularly true if we combine
different loss terms from different models where the weight terms of each individual term might
no suitable combination. We also found that the quality of labeled data is extremly important.

6.2 Future Work

There is still a lot of tuning of the hyperparameters necessary for our transfer models to perform
better. This can be done especially in the case of GcGANs as the performance of this model
transfer may depend on the geometric transformation which is chosen. If we are able to have
a generator which is invariant under a specific geometric transformation, which may be similar
to the mapping from domain X to domain Y this would yield to much better results in the
accuracy.

As the results depend a lot on the augmentation, we should also focus on finding a better
augmentation, which gives the data the right amount of variance. Therefore, we should expand
the variance of color, brightness and contrast.

As the best test result was achieved using VAT, we should also work more with it and try
different augmentations while using VAT as well as different transfer models to determine the
VAT loss.

Nonetheless, we can add more data to train a better classifier and to train a better transfer
model, which does not yet improve the accuracy without using augmentation. So if we would
add more data with more variance, we may not need to augment the data. Then, we might
add more product classes to the data and see if the model still performs well. After adding all
needed product classes this model could be used without the need of labeled data. This would
result in saving a lot of time. Thus, the customer will get and may be able to use its products
earlier.

A further direction of research could be to tune the weight factors of the loss terms in the
discriminator for classification setting. In our work we always used the picture space for clas-
sification, either with the ResNet or the discriminator in the cycleGAN setting. However, the
UNIT models has the shared space assumption between both domains, which applies directly
to our problem. Thus a future direction of work is to perform classification in the latent space.
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So far, we were given only two domains, whereas PreciBake has many different ovens in many
different locations. Thus an expansion of our approach to a multi domain adaptation problem,
particularly the issue of knowledge transfer between different field test domains is desirable.
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Figure 26: Classification accurracy of the, with different augmentations, pretrained ResNet for
different mapping models between fieldtest and precibake domain.
0 - domain Y , 1 - domain X, 2 - rot 90 l10, 3 - rot 180 l20, 4 - per l20, 5 - rot 90 l20, 6 -
rot 180 l10, 7 - per l10, 8 - dis self, 9 - dis pair, 10 - iter 10000, 11 - iter 20000, 12 - iter 30000,
13 - iter 40000
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Figure 27: Classification accurracy of the, with different augmentations, pretrained ResNet for
different mapping models between fieldtest and precibake domain using VAT.
0 - domain Y , 1 - domain X, 2 - rot 90 l10, 3 - rot 180 l20, 4 - per l20, 5 - rot 90 l20, 6 -
rot 180 l10, 7 - per l10, 8 - dis self, 9 - dis pair, 10 - iter 10000, 11 - iter 20000, 12 - iter 30000,
13 - iter 40000


