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Abstract

Object tracking is a technology used in different sectors, such as the food industry. While
object tracking is beneficial in many cases, such as inventory monitoring, it also comes
with several problems; one of which is containing many failure cases. These cases include
occlusions, frame drops, or re-identification of the objects. Furthermore, food items might
leave and reenter the scene, which needs a re-identification on that item. While the prob-
lems are easy to understand, solutions to these problems are not trivial. In fact, Simple
Online and Realtime Tracking algorithm (SORT) preserves and computes the tracking
information of the objects in the scene; however, they do not compute the appearance
information of the inventory. Since failure cases such as occlusion and frame drops are re-
lated to the appearances of the objects, this information should be processed to overcome
these cases. We propose that if we can include appearance information in our algorithm,
we can develop a robust one to solve many of these cases. Towards this end, we investi-
gate different modes of failure of the object tracking technology. We simulate occlusion,
frame drop, and re-identification cases using a 3D Computer Graphics software called
Blender. Finally, we offer three different algorithmic solutions to these issues, which are
PixProSORT, PixProSORT with cached feature vectors, and DeepSORT + PixPro. We
also evaluate these solutions with HOTA and its sub metrics and assess the results based
on this evaluation. We compare these solutions with SORT. We conclude that although
each proposed solution is better at certain use cases, PixProSORT with cached feature
vectors performs better than others for the re-identification case. Finally, we provide
future work for the proposed algorithms, such as improving the simulation dataset on
modes of failure, enabling them to work in a real-life inventory monitoring scenario.
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1 Introduction

Object tracking is one of the research areas of Machine Learning (ML) where the algo-
rithm tries to estimate the trajectory of an object as it moves around a scene [1]. It is
a challenging problem, due to several reasons such as altering visuals of the objects in
the scene or instantaneous movements that might be caused by the camera [2]. Although
there are several challenges, it is a research field that has been utilized in many different
industries such as motion-based recognition or surveillance. One of these research areas
is inventory monitoring, which is a technology to be used to track the flow of goods and
the assets of the facility [3]. Inventory monitoring can utilize different aspects of the
assets in the scene, such as the size of the inventory, or the age. In addition, it can also
track the number of goods in the inventory via object tracking. While the object track-
ing technology is helpful, there are many issues that might come with it. One of these
issues is the noise, which corrupts the data, that is created when the data is being saved.
Another issue might be the illumination due to a bright light source. Other problems
can be seen in Figure 1. While the effects of some of these issues started to disappear
thanks to better camera technology, some of them remain to be an issue. One example
to these problems that remains is object occlusion; because no matter how the camera
technology is improved, it is a challenge for the algorithms to capture an object that is
occluded. Furthermore, several datasets are designed, such as PETS [4] or KITTI [5], to
assist ML researchers to discover new algorithms to solve the remaining issues. Although
these datasets are helpful, they are not adequate if one wants to investigate a specific
problem; since these issues occur differently in every tracking scenario.

Figure 1: Different Object Tracking Issues [6].
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One of the fields of inventory monitoring is food tracking, which includes its own set of
issues alongside the problems that inventory monitoring has. Food tracking is crucial to
a facility in the food industry, since using object detection is not feasible, or affordable
for them since their inventory changes quickly. It is difficult for a food tracking algorithm
to track objects with similar appearance information since the algorithm tends to confuse
two of those objects as given in Figure 2; which is one of the problems that food tracking
contains. It is also cumbersome for the algorithm to track the age of the inventory, which
is a crucial factor in food tracking. Finally, it also lacks a specific food tracking dataset
that would be helpful to solve these issues.

We propose three different algorithms to tackle general object tracking problems that
exist in the food industry. These algorithms are PixProSORT, PixProSORT with cached
feature vectors, and DeepSORT + PixPro, and as the names of these algorithms suggest,
these algorithms are modifications of the baseline. To overcome the problems special to
food tracking, we propose a newly simulated dataset that covers a variety of food objects.
This dataset enables us to evaluate our proposed solutions with respect to the issues
related to food tracking.

Figure 2: A Food Tracking Example.

2 Background

2.1 SORT

To enable online inventory monitoring an algorithm that is very lightweight and robust
is needed. SORT developed by Bewley et al [7] fulfills a lot of the criteria needed for a
suitable tracking algorithm for inventory monitoring. The algorithm is able to work with
an update rate of 260Hz while maintaining comparable accuracy to state-of-the-art online
trackers.

The SORT algorithm is lightweight because the authors reduced the amount of informa-
tion used to track objects. The object tracking is done by modeling a linear velocity
model which only takes the bounding box of a detection as an input. SORT is a tracking-
by-detection framework that solves the problem of multiple object tracking [7] and is
divided into different parts: object detection, velocity estimation model, data association
and tracking.
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Figure 3: Flowchart of the SORT algorithm.

Detection The authors of SORT evaluated the model performance for different detec-
tors and decided to use the Faster Region CNN (FrRCNN) detection framework [8]. The
FrRCNN has two stages where in the first stage features are extracted and regions of
interest (ROI) are proposed and in the second stage the object in the ROI is classified.

Velocity Estimation Model The SORT algorithm uses a linear constant velocity
model which approximates the inter-frame displacement of each object. The bounding
boxes of detected objects oi,t are uniquely described by the horizontal and vertical center
coordinates ui,t, vi,t ∈ N, the aspect ratio ri which is constant over time and the area si,t,
here i denotes detection index at time t for i, t ∈ N. A combination of i and t uniquely
determines a detected object and it’s position. The state of a track Tk∈N ∈ Tt, where Tt

is the set of all tracks at time t ∈ N, is modelled as:

xk,t = [ui,t, vi,t, si,t, ri, u
′

i,t+1, v
′

i,t+1, s
′

i,t+1]
T ,

where it is assumed that oi,t is the detected object last assigned to Tk The velocity
components of the model are then solved optimally with a Kalman filter framework.
The predicted bounding box at time t + 1 of the object i at time t is then defined by
u

′
i,t+1, v

′
i,t+1 and s

′
i,t+1.

Data Association and Tracking To correct these predicted bounding boxes the cor-
rect bounding box has to be associated with the track. By iterating from time point t to
t + 1 the associated bounding boxes are found by applying the Hungarian Algorithm to
solve the bipartite matching problem for Tt and Dt+1, the set of detected objects at time
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t+ 1. The cost matrix is given by

costn,m = IOU(x′
n,t+1, om,t+1),

here x′
n,t+1 be the predicted bounding box of Tn at time t, om,t+1 be a detected object at

time t + 1 and IOU determines the intersection over union. A minimum IOU is intro-
duced to reject assignments where the overlap is less than IOUmin = 0.3.

A new Track Tk at time t + 1 is created when finding a detected object om,t+1 which
satisfies costn,m < IOUmin for all n. Tk is then initialised with the objects bounding box
and the velocity is set to zero with large covariance values to reflect its uncertainty.

A Track will be terminated if there happened no data association for tLOST frames. The
authors of SORT chose tLOST = 1.

Modes of Failure The low amount of information needed to perform the tracking task
makes the algorithm lightweight but it also leads to major drawbacks when applying it
for inventory monitoring.

The out of the box SORT algorithm is not able to re-identify objects, which can lead to
problems in inventory monitoring where objects will leave and reenter the camera view.
Also while workers maintain the inventory there is no way to prevent partial and full
object occlusion.

While also being lightweight the linear velocity estimation model is not able to grasp, with
respect to frame rate, complex or fast motion of objects. When objects in the inventory
are moved by workers or machines the velocity model might not be able to model the
motion performed by workers which can by default be very complex and unpredictable
for such a simple approach.

2.2 Datasets

Since this project aims to improve existing methodologies and compare novelty ideas to
established methods, a standardized dataset is needed to test and evaluate our models.
We have looked into several datasets, which provide multiple sequences of ground truth
data with bounding boxes for multiple object tracking: PETS, KITTI, Detrac, MOTChal-
lenge [6].

We have decided to use mainly the MOTChallenge dataset since it is well standardized
and provides a large collection of sequences. Another important factor was that it pro-
vides detections for all the sequences, which can be used in our methods whenever needed.

The authors also provide evaluation tools that can be used to compare novelty methods to
the existing ones while also providing sub-metrics such as recall and precision. A downside
was that it mainly focuses on pedestrian tracking while our project is focused on inventory
tracking. But we found this to be the case for most of the existing methods, and evaluation
on pedestrian data is necessary for comparison to established object tracking methods.
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2.3 Simulation

As mentioned in chapter 2.1 the limitations of SORT and evaluating their extent are
crucial when applying it for inventory monitoring. Since the potential datasets from the
previous chapter may cover object occlusion, objects leaving and reentering the view or
having fast-moving objects, with respect to the frame rate, it still is not possible to focus
solely on the evaluation of the extent of SORT’s limitations.

To circumvent the problem of finding suitable test data we use Blender which is a 3D
modeling and rendering software, we make use of it as a data simulation platform. This
has the advantage that we can simulate data such that it triggers the modes of failures of
SORT in a controlled environment. Using this approach makes detailed studying of the
algorithm possible and shines a light on the strengths and weaknesses when performing
inventory monitoring with SORT for certain scenarios.

Using such a data simulation platform not only allows flexibility in the amount and quality
of data but has also a controlled environment that can be quickly changed and reused for
future experiments without the need for human relabeling.

2.4 Evaluation

Since an important part of the project is to compare novelty methods to existing ones a
standardized method for multi-object tracking evaluation was necessary. The problems
with existing evaluation methods include; lack of standard tools, lack of evaluation results
of existing object tracking methods, over-emphasis of detection or association. To this
end, we have decided to use the HOTA [10] metric, based on the fact that it is tailored
to equally emphasize detection and association, and aligns with human visual evaluation.
Another important factor is that the HOTA metric also provides sub-metrics which allow
us to look into the precision and recall, or association and detection of the models sep-
arately and identify the problems with ease. The authors also provide standard tools to
easily evaluate standard formats of tracking data.

Sub-metric space of HOTA follows the lines of Detection and Association, and Recall and
Precision. Whereas the detection metrics are intuitive and are used as they are already
established in other works, a high association recall and a high precision mean, in this
context, the tendency of the model to break the trajectory of a single object into smaller
trajectories of multiple objects, or fusing the trajectories of multiple objects into a single
longer trajectory of a single object, respectively. Other than these metrics HOTA also
provides a localization error, which shows the spatial similarity of the detections with the
ground truth.

3 Simulation

As discussed above, we generate our own scenes using Blender. We choose Blender because
it is a free and open-source 3D computer graphics software toolset used for creating
animated 3D models. Blender also supports python scripting. The python scripts we
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developed are automated such that no blender manipulation is needed to reproduce the
rendered scenes and such that re-running the same script gives different scenes.

3.1 Blender

Blender environment A scene in Blender contains different 3D objects that can be
animated along a timeline. The mesh objects (unlike camera and light objects) in the
scene have different properties: the name in the scene, the mesh (vertices, edges, faces of
the object), the world transformation matrix (translation, rotation, scale), to name a few
important.

Rendering in Blender A camera is placed such that the camera view is what will be
rendered as simulated images. Once a scene is created, the Eevee renderer -a rendering
engine included in Blender- renders the frames of each scene with settings of our choosing
(image resolution, frame range, image format, etc). The images in our data consist of the
rendered frames.

Figure 4: Blender Viewport with selected mesh objects (mug, cake, donut, etc), light and
camera. The timeline shows the range frame and potential animations’ key-frames.

Figure 5: Rendered image using Eeevee. Figure 6: Camera view in Blender.
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Assets and BlenderKit The scenes we simulate using Blender must have different
objects to be tracked since we are interested in multiple object tracking. They also must
have different natures, and be varied in size, color and other visual features. In fact, we
want to test models that rely on visual features for tracking. For time efficiency and to
stay in the scope of our project, we do not impose on ourselves to create the single objects
from scratch: we use pre-modeled objects from BlenderKit.

Blenderkit is a partially free shared library with an open community. Creators upload
models that can be downloaded for free (58% of the dataset) with no limit on the number
of downloads. These models can be added to scenes and contain all data about the used
textures, the objects meshes, .. Thus, we use free models in relation to the food industry
downloaded from BlenderKit. Based on them, we create a common assets file of 21 objects
which are saved as assets objects in a blend file. This file is then used to load the necessary
objects for each scripted scene. We use the asset browser to manage object creation.

Figure 7: Created asset browser with
21 objects based on projects from
BlenderKit. The issue of texture shows
here.

Figure 8: Example of a rendered frame
using objects from the asset created
browser. The texture problem does not
show here.

Limitations of BlenderKit BlenderKit, obviously, alleviates our workload and the
quality of the free objects is quite high. We could also change the texture and colors
of some objects to look visually different and thus enrich more our assets file. However,
BlenderKit’s use is still limited. Firstly, we still needed to clean the models manually
(change gravity centers, delete dependencies in model collections, join objects ..). Sec-
ondly, we joined different parts of one model as one object to facilitate our scripting for
tracking. However, when joining detailed meshes with less detailed ones, we lose the cred-
ibility and realism of the final object. We had to not use models having this problem and
thus we had an even smaller number of objects created (since we only worked with free
models which was already a small set). Finally, texture data was unstable.

3.2 Dataset

For tracking multiple objects, we need the images where animated multiple objects appear,
a ground truth file that gives the tracks of each object visible in each frame and a detection
file that contains the tracks of each object visible in each frame with bounding boxes
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modified to be close to what a designed detector would give. For ground truth and
detection files, We respect the file structure used in the MOT15 [9] dataset.

3.2.1 Ground Truth

Extraction of bounding boxes In Blender, 3D objects’ vertices are projected on the
camera’s view space. Thus, for each vertex in a 3D object’s mesh, we can access its 2D
projection as well as the depth of each vertex to the camera (z-depth). A negative z-depth
means the object is behind the camera. Therefore, constructing a bounding box for an
object is the same as constructing a bounding box of its projected vertices on the camera
screen. Our objects are projected in a realistic manner (”perspective” projection).

z-depth Some literature states that the z-depth does not return depth information of
a vertex but the distance to the camera. We do a sanity check to verify if we need to use
another information to capture the depth of a vertex [11]. For the Eevee renderer, the
z-depth is the correct one we need. It is crucial to make such a check because z-depth is
needed to identify which of two objects that have intersecting bounding boxes is occluding
the other.

Total, partial and no occlusion When an object is only slightly occluded, a detector
should still be able to detect it. Therefore, we define three levels of occlusion: total partial
and no occlusion based on the percentage of occluded area pi of an object Obji’s bounding
box. Thresholds imposed on this percentage give the three-level occlusion decision. To
calculate the percentage of total occluded area pi of an object Obji, we proceed as follows:

• We identify potential occluding objects Occj of Obji:

- The bounding boxes of Occj and Obji must intersect.

- Occj’s z-depth must be lower than Obji’s (closer to camera).

• When many bounding boxes intersect with Obji’s bounding box and also intersect
between each other, it is necessary to add the intersection areas only once. By
intersection, we mean the intersection between bounding boxes and the areas are
the areas of bounding boxes.

• We normalize the total occluded area by Obji’s bounding box’s area.

Each track must contain the right bounding box. Thus, when an object is completely
occluded, we do not include it in the ground truth as track (pi > 0.7). When the object
is not occluded (pi < 0.3), we add it as a track and its bounding box is its complete
bounding box. If the bounding box is partially occluded (pi ∈ [0.3, 0.7]), then we need to
choose a new bounding box for only the non-occluded part of the object Obji 9. In order
to do that :

• We calculate the smallest biggest bounding box containing all the intersections of
Obji and its occluding objects. This box is contained in the Obji’s total bounding
box.
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Figure 9: An example of bounding boxes: Red boxes are full bounding boxes. Yellow boxes
are partial bounding boxes. The object Obji is the bread behind the occluding paper Occ1.
In (a), the bread does not have a bounding box (total occlusion). In (b), although a part
of the bread shows, pi is still too big (pi > 0.7 to consider partial occlusion). In (c), pi is
low and we add a track for the bread with the yellow bounding box.

• The partial bounding box that is affected to the track of Obji is the one that gives
the highest non-occluded area.

3.2.2 Simulate a Detector

The simulation of data as described above serves as ground truth data. To simulate the
output of a representative detector there is still the need to add noise to the simulated
data. This is done by removing bounding boxes with a probability 0.05 to simulate a false
negative detection. Furthermore, bounding boxes are added at random positions with
random size with a probability 0.05 to simulate a false positive detection. Last but not
least the shapes and positions of bounding boxes are changed with random noise to assert
that for the moving objects the simulated detector has different qualities of detections.
The probabilities were chosen to simulate the model performance of FrRCNN [8] used by
the SORT authors.

3.3 Failure Cases

Different failure scenes have been created using the tools that have been defined previously.
All of these scenes had laid on five main foundations:

• All of them were compatible with the ground truth extraction algorithm that gen-
erates labels suitable to the proposed algorithms in this report.

• All of them were created using the assets that are defined here.

• All of the assets in the scene followed a certain track that is provided to them.

• All of the scenes included both full and partial occlusion.

• All of these scenes included some sort of randomness in them, meaning that each
scene that is created is different from the others; enabling variety in the dataset.
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Failure Cases have been divided into two categories: Occlusion With a familiar object
and Occlusion with a foreign object.

3.3.1 Occlusion With A Familiar Object

In this failure case, the occluding object is familiar to the Food Tracking field. In other
words, the occluding object in this scene is an object that might appear in a real-life
scenario such as a donut, bread, etc. While the occluding object is stuck, other objects
are mobile. The mobile objects are occluded while moving in the upper right direction. In
order to create the scene, 11 different objects are selected randomly from the asset library.
10 of these objects are assigned as mobile while 1 of them is assigned as the occluding
one. By the nature of the movement, some of the objects are fully occluded while some
of them are partially occluded. This failure case is explored in three different scenarios:

• Occlusion Without Any FPS Change: This scene covers the failure case explained
above without any FPS Change in it.

• Occlusion With Frame Drops: This scene covers the same failure case with FPS
Changes in it.

• Occlusion With Lag: This scene covers the same failure case with including laggy
objects.

(See Appendix A for the scene)

Occlusion Without Any FPS Changes This scene is created by the failure case
given above. In order to create this scene, 40 frames are generated. The velocity of the
objects does not change and since there are no FPS drops or lags in the scene, steady
velocity is also observed by the human eye.

Occlusion With Frame Drops This scene is created by the same failure case, but it
contains frame drops. The frame drops are obtained by not recording every second frame
for some time. This approach is applied for 10 frames, meaning that only 5 of these frames
are recorded. Since 5 frames are lost, 35 frames are generated in this scene. In addition,
the velocity of the objects does not change. However, the human eye might perceive them
as they are accelerating in the frame drop time frame.

Occlusion With Lag This scene is created by the same failure case, but it contains
lag. The lag is obtained by just recording one frame out of 10 frames. Since only 1 frame
is recorded out of 10, 31 frames are generated in this scene. The velocity of the objects
does not change in this scene as well. The human eye can observe the lag.

3.3.2 Occlusion With Foreign Object

While occlusion with familiar objects is the general case for failure cases, the objects in
the scene might also occlude with foreign objects. While the reason for a foreign object’s
appearance is unclear, it might still appear. In order to investigate this occlusion, two
different scenarios are proposed:
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• Occlusion with a Palette Object

• Occlusion with a Cube Object

Occlusion with a Palette Object In this scenario, 13 different objects are selected
randomly from the asset library. They are placed orderly on top of a dinner table. In ad-
dition, a palette object occludes one of these objects. The occlusion is removed gradually,
enabling one to investigate full and partial occlusions.
(See Appendix B for the scene)

Occlusion with a Cube Object In this scenario, two objects that are familiar two
the real-life scenario are occluded by a cube object. However, this scenario is especially
different from the other ones. While the camera is stable in all of the previous failure
cases, it is rotating in this one. By the nature of the rotation, full occlusion and partial
occlusion can be observed in the scene.
(See Appendix B for the scene)

4 Tracking Algorithms with Appearance Information

SORT makes use of only motion information for association. Using appearance informa-
tion in the assignment matrix can solve the issues mentioned in Modes of Failure. In this
section, a common workflow of a multiple object tracking algorithm using appearance fea-
tures is introduced. A model named PixPro [16] is analyzed if it can be utilized to be the
feature extractor in the workflow. Subsequently, three modified methods are presented, in
which the pretrained PixPro model is integrated as the extractor. In the first model, the
assignment matrix of the SORT model is calculated depending on feature representations
of detections instead of the IOU method. In the second method, the feature representa-
tions of tracks are cached in memory, so that an object can be identified after occlusion.
In the last modified DeepSORT model, pretrain of deep association metrics is omitted.
Instead, feature information is extracted and stored for each detection for the Cascade
algorithm. For each method, a short discussion of encountered challenges is explained.

A common workflow of a multiple object tracking algorithm using appearance features
is shown in Figure 10. The first step is to run a detector to obtain bounding boxes of
objects. In the second step, a model extracts visual features of the bounding boxes. Then
we can get a matrix by computing the similarity or the distance among those features.
This matrix is used as the assignment matrix for the Hungarian algorithm. The bounding
boxes in the current frame are matched to the most similar ones in the previous frame. In
this way, a track for one object is maintained until it doesn’t appear in a certain number
of frames.

4.1 PixPro

Unsupervised learning has shown good performances in extracting visual representations
using contrastive learning [12]. Most of the previous works focused on instance-level pre-
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Figure 10: Workflow of a multiple object tracking algorithm using appearance features
[1].

text tasks, while the PixPro model introduces pixel-level pretext tasks for learning dense
visual features [16].

Figure 11: Architecture of the PixPro model [16].

The pixel-level contrastive learning means each pixel is treated as a single class and the
model is aimed to distinguish different pixels. As shown in Figure 12, two random crops
are obtained in an image, containing some intersection part. Those pixels whose distances
are within a threshold in two views are treated as positive pairs, while pixels with large
distances in two views are treated as negative pairs. We get two feature maps x and x’
after those two views are fed into the architecture in Figure 11. A contrastive loss is com-
puted based on the feature vectors of positive and negative pairs, where cosine distance
is used to get the similarity between two feature vectors of two pixels.

Furthermore, the PixPro model takes pixel-to-propagation consistency into consideration.
The contrastive learning method only encourages spatial sensitivity, which discriminates
spatially close pixels into different labels. This helps to make a prediction in boundary
areas between different labels accurate. But spatial smoothness is also very important.
Spatial smoothness encourages spatially close pixels to be similar since close pixels tend to
belong to the same label. In order to propagate the features of surrounding similar pixels
to a pixel, a pixel-to-propagation module(PPM) is added into the architecture. The PPM
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Figure 12: An illustration of the PixPro method, where two views are randomly cropped
from an image(outlined in black) [16].

computes the similarities between other pixels and the target pixel x and propagates the
features of other pixels to this target pixel x using the similarities as weights:

yi =
∑
j∈Ω

s(xi, xj) · g(xj) (1)

where j ∈ Ω means all pixels in the same view as xi. The similarity function s(. , .) is
cosine distance, namely dot product of two feature vectors. The Pixpro loss is computed
as:

LPixPro = −cos(yi, x
′
j)− cos(yj, x

′
i) (2)

where pixel i and pixel j are a positive pair in the original image. x′
i and yi are feature

vectors of pixel i computed from two different pipelines as shown in Figure 11. x′
j and yj

are obtained for pixel j in the same way as pixel i.

The features of the corresponding pixels in two crops of the same image are encouraged
to be consistent. In this manner, we don’t have to label anything manually and we
can assume the result can generalize to other objects. That’s the reason we pick up the
PixPro model to extract visual features with no need to train the model to specific objects.

We want to use the PixPro model as the feature extractor in the workflow in Figure 10.
To evaluate the PixPro model for extracting visual features, we do some visualization to
show the performance of it.

Pixel Level Visualization:

The output feature map x in the upper pipeline in Figure 11 contains 256 channels. The
Euclidean norm of the feature vector for each pixel in this feature map is already normal-
ized to 1 in the PixPro model. So we can directly compute the dot product between two
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pixels to get the similarity between them.

As shown in Figure 13, we take the center point of the person with a red T-shirt as an
example and compute the dot product of this point with all other pixels in the feature
map. The result is shown on the right side of Figure 13. The yellow point in the center
is the feature vector we take. We can see a rough shape of a person on the left side of
the feature map, which corresponds to the person in a black T-shirt in the original image.
There is a red wall behind the person in the black T-shirt. But the feature vector of
the person with a red T-shirt is more different from the red wall than the person with
a black T-shirt. It indicates that the visual features extracted by PixPro are invariant
to color. We also notice that the floor in the feature map is well distinguished from
people. If a relative bad detector is used, a false bounding box on the floor is very un-
likely to be matched to a bounding box of a person, since they are very different in the
feature map of PixPro. The result shows that the feature vectors of pretrained PixPro
contain semantic information and we can use them to compute similarities among objects.

Figure 13: Visualization of PixPro in pixel level.

Bounding Box Level Visualization:

We take two not consecutive frames containing objects with the same ids to do the vi-
sualization in bounding box level. The way is very similar to step (4) in Figure 10. The
feature maps are acquired by feeding frames into the PixPro model. For each bounding
box, the feature vector is the average of the feature vectors in the bounding box and
then normalized to a vector with the Euclidean norm of 1. Then an assignment matrix
is calculated using the dot product of feature vectors of corresponding bounding boxes.
This matrix is visualized in Figure 14. It’s clear that objects with id1, id2 and id4 are
most similar to themselves in another frame. But the object with id3 is similar to id1 in
another frame almost as much as it is to itself. This visualization shows that PixPro is
not 100 percent reliable. The Hungarian algorithm can still deal with the case in Figure
14 since it minimizes the overall cost, which is the negative value of this similarity matrix.
But PixPro can lead to unreliable results when the scene is more complicated with more
objects in it.
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Figure 14: Assignment matrix for bounding boxes in two frames, in which objects with
same ids are detected. In the heatmap, the horizontal axis represents frame 1 containing
objects from id1 to id4. The vertical axis represents frame 5 containing the objects with
the same ids. The bigger the values are, the more similar objects are in terms of visual
features.

4.2 Integrating PixPro in SORT model

As aforementioned, the SORT algorithm unitizes correction information from associating
objects in two adjacent frames. The Kalman filter then uses object location in frame t+1
as a new measurement for the object in frame t to update the states. In our proposed
PixProSORT model PixPro algorithm replaces IOU as the association criterion. The
flowchart of PixProSORT is shown in Figure 15.

As mentioned in the PixPro model combines pixel-level pretext tasks for learning dense
feature representations, which combines contrastive learning at the pixel level and a pixel-
to-propagation consistency task. The pretrained PixPro model can be applied at the
pixel level for learning visual representations [16]. As a downstream task of PixPro, the
pretrained encoder network is utilized to extract image features, which composed of a
backbone network adopting ResNet network and projection, which consists of two succes-
sive 1x1 convolution layers with a batch normalization layer and a ReLU layer in-between
to produce image feature maps of a certain spatial resolution. The part of pretrained
encoder is marked in the green box in Figure 11.

During the processing, the pretrained extractor reads each frame and outputs a feature
vector with a depth of 256. The spatial resolution varies depending on the resolution of
the input frame. For an input frame with the size of 640x480x3, the output shape of the
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Figure 15: Flowchart of PixProSORT model. The core Algorithm ”Intersection of Union”
in the SORT algorithm is replaced by PixPro method (box filled with pink color).

feature vector is 1x256x20x15. Given the coordinates of bounding boxes, the weighted
mean pixel value of each bbox is computed and stored. This process is illustrated in
Figure 16. For instance, in a frame with three detections and four predictions bounding
boxes, after the above process, We get two feature vectors of size 3x256 for detections
and 4x256 for tracks. The two feature vectors are then passed to calculate using cosine
distance, which is a method used by search engines and can be calculated by the in-
ner product of two normalized vectors. In this case, the output has a size of 3x4. The
next step is the implementation the Hungarian Algorithm same as in the SORT algorithm.

Figure 16: Procedure of computing feature representation of bounding boxes in the mod-
ified model.

There are different methods to find the pixel-level representation for a bounding box. For
example, we can use the pixel value of the middle point of a bbox. This method is suit-
able for objects which do not change their form during movement (e.g. tracking cars) or
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objects with unique colors. In our demo video, PixProSORT is applied to tracking pedes-
trians by computing the weighted mean pixel value. Each tile pixel value is weighted
by its area, then they are summed up and divided by the whole bbox area ( Figure 17).
The height and width of target detection influence the choice of compute method. The
feature representation of small detections in the PixPro model may be downsampled to
even just one pixel. Thus, different factors should be taken into account when choosing
the computational methods.

Figure 17: Computing weighted mean pixel value of a bbox.

In our demo video of MOT15 ETH-Bahnhof [15] training data, a pedestrian with a red
jacket located in the middle of the image can’t be tracked starting from frame 13 and his
index is switched after several frames (Figure 18). For this test, the method visualized
in Figure 17 is utilized. In further trials with the same datasets, we only change the
computing method for the bounding box identification. The pedestrian with a red jacket
can be tracked without interruption.

Figure 18: Pedestrian with red jacket fails tracking.

The phenomenon of losing tracking in the middle of an image appears also in other
datasets. This leads to arise doubt if the parameters of the extractor in the region give a
good feature representation. In addition the rightmost region of the image in the middle
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of the bottom half of Figure 16 is colored with red. This image visualized the output of
the feature vector of the image on the left side. From the real image, we can observe that
the rightmost region is not specific but rather similar to the background region.

Another way to improve the performance of this model is to use a different metrics learn-
ing method to measure the similarity. If the target object is large, the combination of
IOU and PixPro to calculate the cost metrics may also be reasonable. If the object is
small, the method is not suitable, since IOU lays a big burden on the initial states of the
Kalman filter.

The computing time of the modified model on the test dataset, which has a pixel value of
640x480, is quite acceptable. But for datasets with high resolutions, the computing time
extends. The model is then not suitable for real-time tracking.

4.3 PixProSORT with Cached Feature Vectors

Unlike vanilla SORT or vanilla PixProSORT, PixProSORT with cached feature vectors
does not delete unmatched tracks immediately. Each track has an attribute storing its age,
namely the number of frames since the last time this track is successfully matched to a de-
tection. The age of a track will be reduced to 0 if it’s matched to a detection and updated
by Kalman Filter. If the age of this track is bigger than the value max age, this track will
be considered to already leave the scene and deleted. If the age of an unmatched track is
smaller than max age, the track can still go through the Kalman Filter prediction process.

Figure 19: Flowchart of PixProSORT with cached feature vectors. The unmatched tracks
are not deleted until they don’t appear in the number of maximum age. The feature
vectors of matched bounding boxes are cached in memory for re-identification.

Another difference from the vanilla PixProSORT is that this algorithm caches the feature
vectors of bounding boxes in the track. After a matched track is updated by Kalman
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Filter, the feature vector of the bounding box in the current frame is cached in this track.
During the calculation of the assignment matrix, we take the smallest value of the dot
product between the feature vector of a detection and cached feature vectors of a track.
The smallest value means the most similar appearance of the cached bounding boxes in
this track to the current detection. If a track is occluded for a few frames, its cached
feature vectors can help it to match to current detection after it appears again in the
scene. In this manner, we can reduce the frequency of id switches, which is a big problem
for vanilla SORT and vanilla PixProSORT.

4.4 Integrating PixPro in DeepSORT model

The DeepSORT algorithm integrates appearance information to improve the performance.
The model can better handle the situation where the target is blocked for a long time,
which is solved by core algorithm cascade [7]. The appearance feature is extracted by the
depth correlation metric pre-trained on the large-scale pedestrian re-cognition dataset,
which needs to be learned offline in advance, and its function is to extract distinguishable
features. So the association can be made based on feature similarity besides overlap. Met-
ric learning aims to construct an embedding where two extracted features corresponding
to the same identity are likely to be closer than features from different identities. In the
bottom half Figure 20 flowchart of DeepSORT is visualized. Detailed procedure of com-
bination of the two key algorithms ”Matching Cascade” and ”IOU” can be checked here
[7]. The boxes filled with yellow color describe the offline training of a deep association
metric feature representation of the original DeepSORT algorithm used a novel cosine
metric learning [14]. Each object in the datasets for DeepSORT composes two parts in
a line. The first part stores the basic information such as the number of frames, index
and the location of bounding boxes. As a second part, the feature representation of the
object is then followed.

Since the pretrained extractor in PixPro model outputs the dense feature information of
an image, we can integrate it into DeepSORT. So that the pretrain of deep association
metrics can be omitted. Unlikely the datasets for original DeepSORT model, only the
basic information of each object is required. This means datasets of MOT can be directly
employed for testing. The PixPro model is integrated into ”Matching Cascade” algorithm,
which is visualized in Figure 20 with the green filled box. During the process, each frame
is passed through PixPro model and outputs a feature vector. Given the coordinates of
a bounding box the mean pixel value of the object is then computed, it is subsequently
saved as its feature for this object for further processing. The whole modification is al-
tered in the function of ”create detection” in the original DeepSORT model.

The advantage is obvious, the offline pretrain of deep association metrics for different
customer data is not the precondition for utilizing the DeepSORT model. Thence the
performance of the modified model depends on the PixPro model. As a result, it has the
same challenges described in the previous sections.
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Figure 20: Flowchart of DeepSORT integrated with PixPro model. In the boxes filled
with yellow color the method of cosine metrics learning in the original DeepSORT model
is described. The box filled with green color presents the modified model, in which the
PixPro is integrated in the core algorithm ”Matching Cascade” (filled with purple color).

5 Results

The tracking algorithms PixProSORT (Sec. 4.2), PixProSORT with cached features (Sec.
4.3) and DeepSORT with PixPro (Sec. 4.4) were tested alongside plain SORT [3] as a
baseline, using 2 different scenes; one from the MOT15 [6] dataset and one simulated in
Blender (Sec. 3.3.2). The evaluation of the trackers are available as HOTA [10] metric
and sub-metrics.

HOTA sub-metrics provided in this section are; detection recall, detection precision, asso-
ciation recall, association precision. Detection recall is how many of the detected objects
are correct whereas detection precision is how many of the objects are detected. As-
sociation recall can be regarded as the tendency of the model to correctly predict the
trajectories as a whole, and association precision is the tendency to correctly predict
shorter trajectories separate from each other. All these values are calculated against a
localization parameter α. With a high α value the detections need to be spatially closer
to the objects to be regarded as a true prediction, and vice versa. A localization sub-
metric is provided separately, which is the spatial closeness of true positives to the ground
truth data. So it is expected to be anti-correlated to alpha, whose increase decreases the
number of true positives. All these metrics are then combined into HOTAα metric. To
get the final HOTA score, this value is integrated over the range of α. The summary of
the metrics can be seen in figure 21.
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Figure 21: HOTA and sub-metrics[10]

5.1 MOT15 Scene

For this experiment, one scene in particular (ETH-Bahnhof) from the MOT15 dataset
was used. Figure 22 shows the results of the trackers SORT, PixProSORT, PixProSORT
with cached features and DeepSORT with PixPro respectively.

For this scene, the plain SORT algorithm proved to be better than the other algorithms
surpassing them in HOTA and all of its sub-metrics. The second-best performer was
the DeepSORT algorithm with PixPro. A more interesting comparison for this scene is
between PixProSORT and PixProSORT with cached features. By caching the features,
the algorithm successfully achieved increasing association recall metric, i.e. its tendency
to split a single trajectory to multiple sub-trajectories has decreased. But this behavior
also resulted in falsely combining trajectories of different objects into one single trajectory,
resulting in a decrease in association precision metric. Overall, the HOTA metric was not
significantly affected by the caching method for this particular scene.

5.2 Simulated Scene

In this experiment, the trackers SORT, PixProSORT, PixProSORT with cached features
and DeepSORT with PixPro were used to track objects in a simulated scene with Blender,
where the objects are often occluded. The evaluation metrics can be seen in Figure 23
respectively.

For the simulated scene, the PixProSORT was the worst performer. But different from
the MOT15 scene, PixProSORT with cached features performed significantly better than
the other methods. The takeaway is that, since the objects in the simulated scene were
often occluded, the re-identification introduced by the cache became an important factor,
so that the overall performance increased despite the drawback of the PixPro algorithm.
DeepSORT with PixPro surpassed plain SORT in this benchmark, by having higher recall
scores. As expected, the matching cascade algorithm of DeepSORT proved to be beneficial
in an occluded scene, albeit not as much as caching the feature vectors, providing a middle
ground between SORT and PixProSORT with caching.
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Figure 22: HOTA metrics on the MOT15 scene using SORT (a), PixProSORT (b), Pix-
ProSORT with cached features (c) and DeepSORT with PixPro (d) as tracking algorithms
respectively.

6 Conclusions

In this project, we analyze the advantages and disadvantages of SORT. We also inves-
tigate PixPro to understand how we can merge the visual representations PixPro offers
with SORT. We propose different modifications of SORT and compare them with the
baseline for the failure cases such as object occlusion and incorrect re-identification of
the objects. In addition, we simulate randomized scenes that include the aforementioned
modes of failure by using Blender.

PixPro is the backbone of all three modified algorithms since it enables them to extract
the visual representations, which is crucial for obtaining appearance information. While
PixProSORT enables SORT to receive this information, PixProSORT with cached feature
vectors enables PixProSORT to save the feature vectors extracted in the previous frames
to re-identify an object. Finally, PixPro integration with DeepSORT modifies the algo-
rithm to use feature representations without generating deep association metrics utilized
for appearance information.

The tests on the modified algorithms have shown promising results. PixProSORT with
cached feature vectors performs better on object re-identification than the other two coun-
terparts. There are several drawbacks to the proposed algorithms, as on MOT15 scenes,
the vanilla SORT algorithm performed better than them. However DeepSORT with Pix-
Pro algorithm proved to be a good middle ground between SORT and PixProSORT,
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Figure 23: HOTA metrics on the simulated scene using SORT (a), PixProSORT (b),
PixProSORT with cached features (c) and DeepSORT with PixPro (d) as tracking algo-
rithms respectively.

coming in second place in both experiments. Also, we assume that some of the bad scores
caused by PixPro occurred due to the model being pretrained on an unrelated dataset to
the ones used in the experiments.

Taking these outcomes into consideration, several steps might be applied to further the
research. First, finetuning on a newly created dataset could be applied. The dataset used
to train PixPro is ImageNet [17], meaning that although it is familiar to general objects,
it is not specifically for food tracking related ones. Thus, finetuning PixPro model with a
newly created food tracking dataset could improve the results. In addition, the simulation
dataset could also be expanded to cover more modes of failure. Finally, other evaluation
metrics, applicable to object tracking, could be investigated.
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Appendix

6.1 Appendix A: Occlusion with A Familiar Object

Figure 24: Partial Occluding Pizza Object With Familiar Objects
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6.2 Appendix B: Occlusion with A Foreign Object

Figure 25: Partial Occluding Cube Object With Familiar Objects

Figure 26: Partial Occluding Palette Object With Familiar Objects
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