MIDS) TUTI

TUM Data Innovation Lab
Munich Data Science Institute
Technical University of Munich

&
PreciBake GmbH

Final report of project:
Detecting Novel Objects with only Few
Examples

Authors Pinar Ayaz, Ulrika Bremberg, Mariia Koren, Rohan Menon
and Anna-Maria Weber

Mentor(s) M.Sc. Mathias Sundholm, M.Sc. Alexander Dolokov, M.Sc.
Maximilian Schreil, M.Sc. Sebastian Freytag

Project Lead Dr. Ricardo Acevedo Cabra

Supervisor Prof. Dr. Massimo Fornasier

Aug 2022

Abstract

Computer vision has grown tremendously over the past few years, and is now widely used
to simplify and increase the efficiency of many industries. Especially object detection, a
subfield of computer vision, has seen terrific growth over the past decade. Nevertheless,
most techniques still have a long way to go before they can bridge the gap between human
and computer vision.

Object detection advances can greatly benefit companies needing real-time inventory mon-
itoring. However, in order to train object detectors with a sufficient level of accuracy,
large datasets are required. Industry inventories typically contain hundreds or thousands
of unique objects, making it challenging to create and maintain high quality datasets.

As a solution to this problem, we propose a pipeline for detecting novel objects in an
image using only one query image as feature descriptor. As opposed to other state-of-
the-art methods in few-shot and zero-shot detection, we present an approach that utilizes
CLIP image embeddings as its unique feature. The pipeline includes an object localiza-
tion network, a matching component that compares the CLIP embeddings of detected
objects with the query image, and a captioning model that generates captions for the
detected bounding boxes. We demonstrate the model’s performance on the highly chal-
lenging Oktoberfest Food Dataset and Object365 Dataset, performing numerous tests
illustrating the importance of choosing relevant query images and object detection archi-
tectures. Through comprehensive experiments we demonstrate how our approach of using
CLIP embedding matching, along with few- and zero-shot object detection, can replace
expensive datasets with promising results.

CONTENTS

Contents

[Abstract

[I_TIntroduction

2 Related Work

[3 Methods and Pipeline]

[3.1 Object Localization|

[3.1.4 Meta learning)

[3.1.5 Included Object Localization Modell

[3.2 Non-Maximum Supression| . .

[3.3 Image Embeddings|

[3.4 Captioning|.

[4 Experiments and Results

[4.1.1 Objects365]

10
10
11
12
12
13
14

14
15
15
15
15
16
20
20
22

23

CONTENTS

[5.2 Meta Learning

[5.3 Other Object Localization Networks

6 Conclusion|

[A Appendix|

[A.2 Additional Figures|

24
24

24

1 INTRODUCTION 4

1 Introduction

Nowadays, the field of computer vision is not only a part of research, but also an impor-
tant part of many areas in industry. This project is done in cooperation with PreciTaste,
a company working on Al solutions for the food-tech and baking industry, developing ma-
chine learning models for image classification tasks, object detection and object tracking.
For instance, they provide a real time inventory monitoring system [I], designed for use
in bakery and restaurant settings.

The inventories in these environments might contain hundreds or thousands of unique
products, which in turn makes it difficult to construct relevant, high quality datasets.
The data itself can also change over time, for example with new packaging, or new items
that need to be added to the datasets. Therefore, these scenarios would greatly benefit
from recent advances in object detection. Consider the scenario visualized in Figure [1]
It succinctly shows the problem which detectors face when they encounter a novel class.
In this example, we used the object localization network DETR[2] to generate bounding
boxes predictions of the food items in the images, which we then compare with the ground
truth bounding boxes. The DETR model uses a ResNet model [3] pretrained on the COCO
dataset [4], a dataset which contains a Donuts as a class whereas the Avocados class in
Figure[1b/is novel. It is easier for the model to detect donuts since it has seen them during
training before. In contrast, the model does not recognize any of the avocados as objects,
as these classes are unfamiliar to the model.

Models should not only detect and classify specific objects, but also be able to generalize
well to new classes, as shown in the Figure We approach this issue by handing the
model a query image that can act as a feature descriptor of the object we are searching
for in a reference image. For example, given an image of a donut, the model should be
able to detect all donuts in a dataset matching the feature description, even when it was
not trained for this specific task.

=3 prediction 3 prediction
ground truth ground truth

Figure 1: Raw Bounding Box predictions for (a) COCO vs (b) non-COCO class performed
using DETR[2] on Objects365 Dataset][5]

2 RELATED WORK)

The goal of our project is to develop a universal object detection model that could detect
any type of object in an image at test time, given just one sample of the object of interest.
Our contributions demonstrate how CLIP embedding matching can be used along with
few- and zero-shot object detection to replace expensive datasets, with notable results.

In Section [2], we give a short overview of the theoretical background and existing work in
the areas of object detection, few-shot learning and zero-shot learning. Next, we present
our proposed pipeline and describe our own approach which is based on the idea of
utilizing CLIP image embeddings to perform a matching between the reference sample
and all objects in an input image in Section |3 Furthermore, we discuss our experiments
and results and present a comparison of the two types of object detection networks DETR
2] and OS2D [6] we used in our pipeline in Section[4] Eventually, in Section [f] we describe
our ideas for possible improvements of the proposed model and what approaches are worth
exploring in the future shortly. Finally, we summarize our findings in section [6]

2 Related Work

Object Detection. Object detection is one of the main tasks in computer vision, with
the goal of detecting and classifying instances of objects within images. This task, of
precisely estimating the concept and locations of objects in an image, is further divided
into subtasks such as face detection and object tracking. Some early famous detection
algorithms include Viola Jones Detection [7] (2001) or Histogram of Oriented Gradients
[8] (2005). The transition towards using Convolutional Neural Networks (CNN) as back-
bone architectures in object detection came with the introduction of Regions with CNN
features (R-CNN) [9] [10]. Since then, improved models have been suggested, some of
the most famous being Fast R-CNN [11] introducing innovations that increase the train
and test speed while also improving detection accuracy, Faster R-CNN [12] that use an
additional Region Proposal Network (RPN), and YOLO [13] that frame object detection
as a regression problem.

Modern object detectors can be divided into two categories: proposal-based (two-stage)
and proposal-free (one-stage) networks. Both Fast R-CNN and Faster R-CNN belong
to the proposal-based networks. These networks first pass the images through a feature
extraction module, that is fed to a region proposal extractor generating bounding boxes.
The region proposals are then refined and classified into different categories. In contrast,
the one-stage detector networks do not have the region proposal extractor, but instead
make the class prediction and bounding box coordinates in a single step. YOLO is an
example of such a proposal-free network, using a single convolutional network to both
perform class and bounding box predictions. Other single stage detectors include for
example SSD [14] and RefineDet [15]. Historically, the one-stage detector networks have
been more efficient, whereas the two-stage methods have achieved higher accuracy [16][17].

Common benchmarks in object detection tasks are the MS COCO [18], LVIS [19], or
CIFAR-10 [20] datasets.

2 RELATED WORK 6

Few-shot Learning. The vast improvements for using CNNs for object detection has
been partly dependent on training on extensive datasets, which can lead to over-fitted
models that may fail to generalize [21]. A solution to avoid these big and costly datasets
is to let the machine learning model learn to classify and/or detect objects of new classes
based on a few examples. This area of computer vision is called few-shot learning and
aims to mimic how humans learn to distinguish new objects quickly by examining a set
of very few examples [21].

The research has earlier been focused on few-shot classification, which is an easier task
than few-shot object detection (FSOD). FSOD models requires both recognition of the
object types, as well as localization of the object among millions of potential regions [22].
This implies that the classification methods cannot be directly transferred to solve the
few-shot detection problem. FSOD experiments can be divided into meta learning and
transfer learning approaches. In transfer learning, the final layers of a pretrained model
are finetuned with unseen classes while the rest of the model weights are kept frozen.
Some of these finetuning attempts include TFA [22], FSCE [23], and DeFRCN [24].

In contrast to transfer learning, the increasingly popular meta learning approaches aim
to acquire task-level meta knowledge that then can help the model quickly adapt to
new tasks and environments given very few novel, labeled, examples. Examples include
Meta-DETR [25], performing meta learning on image level while capturing inter-class
correlations among different support images, Meta-RCNN [26] extending Faster/Mask R-
CNN with meta learning, and Few-shot Object Detection via Feature Reweighting [21]
which combines a meta feature learner with a reweighting module.

Zero-shot Learning. The goal of zero-shot learning is to recognize objects that have
not been seen during training. In contrast to few-shot learning, zero shot learners do not
perform any fine tuning on novel classes. Instead, the knowledge learned in the training
set is intended to be transformed into the ability of classifying the testing set [27]. Just like
in few-shot object detection, it is more difficult to both detect and classify novel images
than it is to only perform image classification. However, due to its great usability, zero-
shot detection is a fast developing field in machine learning, and the number of proposed
methods has been increasing rapidly over the last few years [28][27]. Furthermore, zero-
shot detection is a closer step to mimic the human cognition of the world. The fact that
it is not dataset dependent makes it, potentially, very powerful in critical situations, such
as obstacle detection in autonomous driving.

Some type of semantic information is often used as auxiliary information in zero-shot
detection tasks. After training the models on labeled data, it is possible to help the
model identify new objects by explaining the appearance in text [27]. An example could
be to describe a leopard as a yellow-golden cat with dark spots to enable detection of it.

Recent attempts to tackle the zero-shot detector task include OLN [29] introducing a
classifier-free object proposer, DETReg [30] introducing a model that learns to both lo-
calize and encode object simultaneously during the pretraining stage, and ViLD [31]
distilling the knowledge from a pretrained open-vocabulary image classification model to
enable open-vocabulary detection.

3 METHODS AND PIPELINE 7

Image-text models. An increasingly popular approach to solve the need for extensive
image datasets for object detection and classification is to make use of the vast paired
image-text data accessible on the internet. Recent work such as CLIP [32] and ALIGN
[33] have trained image-text models using contrastive learning. More specifically, CLIP is
trained on 400 million image-text pairs with a wide variety of images and natural language
supervision, and demonstrates impressive results transferring to over 30 datasets. The
network is instructed in natural language to perform classification on a vast number of
datasets, without the need of directly optimizing for any new data. Further extensions
of CLIP are for example the previously mentioned ViLD model [31], and ZOC, a model
which compares the semantic meaning of an image to both its previously seen labels and
to model-generated candidate labels [34].

3 Methods and Pipeline

l

Object Image)
Input | Locali]ze:tion — S Embedgding —»[[Embeddig %t‘)'e:;?sd
Image NEEik bboxes Filtering filtered @rertion embeddings Matching selected)
detected bboxes detected bboxes
objects objects
embedding of
query image
Captions for
Imagg - Detected
Embedding Captioning |—— Obiject
Creation e
Query

Image

Figure 2: Proposed Pipeline

We developed a pipeline to detect novel objects in an input sample given only one example
image, which we will refer to as query image. Different to the models presented in section
we propose an approach whose unique feature is the usage of CLIP image embeddings.
The pipeline consists of several consecutive components: an object localization network
followed by a non-maximum suppression step to predict high-quality bounding boxes, a
matching component where the image embeddings of all predicted bounding boxes and
the query image are compared and matched, and finally, a captioning model which creates
captions for the selected bounding boxes. In the following sections, we will explain and
discuss all components in detail.

3.1 Object Localization

The first component of our pipeline is a region proposal network. The generation of bound-
ing box candidates is crucial, since only the predicted bounding boxes will be considered
in the next steps of the pipeline. Optimally, the object localization model would provide

3 METHODS AND PIPELINE 8

perfect bounding boxes for each object in an input image while ignoring the background.
However, in reality also poor and wrong bounding boxes are going to be predicted.

Since the localization of objects is a significant part of object detection, we put a lot
of emphasis on finding a suitable region proposal network. Searching for a robust and
efficient model, we reviewed multiple detection models, including zero-shot, one-shot and
few-shot detection networks. In this process, we also explored models using meta learning,
a completely different approach to the problem. At all times, we focused on models that
do not depend on text inputs, since our goal was to create a pipeline using images only.

3.1.1 Zero-Shot detection

The first method we explored was zero-shot detection. A zero-shot detection model returns
bounding boxes for all objects in an input image without receiving any further information.
This approach is highly challenging, following from the fact that it is an insoluble task to
define precisely what an object is and what is not. Thinking of a house, the object could
be the house itself, the roof and the walls, but also smaller parts like single tiles, bricks,
windows or the door. In particular, we reviewed the zero-shot detectors DETR and OLN,
including some extensions of the original DETR network.

DETR We explored a set-based object detector model called Detection Transformer
(DETR) [2] which combines a CNN backbone with a transformer architecture. As seen in
Figure 3| the DETR is a four-stage model consisting of a backbone, an encoder, a decoder
and finally several prediction heads. In the first part of the model, the backbone, a CNN
learns a 2D representation of the input image which is flattened and combined with a
positional encoding. This is used as an input for the transformer encoder. Together with
a number of learned positional embeddings, the output of the encoder is passed to the
decoder. Finally, the decoder passes one embedding for each positional embeddings to
a shared feed forward network (FFN). The FFN predicts bounding boxes with a class
label or with the label "no object”. DETR was trained using the COCO dataset. Object
detectors that were trained on predefined categories tend to overfit to those and might have
problems dealing with novel object categories that were not represented in the training
data.

[ittt F====-=7-"-====-=~

' backbone i encoder decoder il prediction Neads | m—
|

| setof image featuresii i

:IE

I

1

I

|

e g

encoder decoder
box

TIEE

h
ll
N I
T s il N L
h
| H no
' transformer h ‘ transformer object
|
class,
' FFN ass
1
1
1
1
1
1

Figure 3: The DETR Model [2]

3 METHODS AND PIPELINE 9

DETReg To reduce the dependence of the COCO dataset, we explored further ex-
tensions of DETR such as the class agnostic DETReg [30]. The central idea is that by
generating priors similar to supervised object detection, DETReg improves object detec-
tion by transferring pretrained knowledge. However, DETReg could not achieve the same
performance as DETR, and we realized that the dependence of COCO was not a real
issue in our case. Since the bounding box predictions are processed in another cleaning
and matching step where false bounding boxes can be filtered out, they do not need to be
faultless in the first place. Also, we do not further use the predicted labels in our pipeline,
which makes them irrelevant.

Deformable DETR It is also stated that DETR suffers from slow convergence in
the training, which the Deformable DETR model [35] solves by introducing a so-called
deformable attention module. After all, we decided against using this extension of DETR,
since we used a pretrained object location network instead of training it from scratch.

OLN In search of another class agnostic approach, we reviewed the class agnostic Object
Localization Network (OLN)[29]. Although the approach is rather simple, this model
outperforms other state-of-the-art methods on unseen categories. The model is a 2-stage
model consisting of a Feature Pyramid Network (FPN) [36] and a region-based stage. The
structure itself is similar to a Faster R-CNN [12], where the classifiers of both stages are
replaced with localization quality estimators. This adaption improves the generalization
to novel objects from other datasets.

The feature maps extracted by FPN[36] are used to predict top generated region proposals,
which are afterwards are fed into the regressor. We obtain IoU scores and bounding box
coordinates at the output. In the end, we got very decent bounding boxes which could
be used in the main pipeline, however based on the comparison with the DETR model [4]
we decided to use the DETR bounding boxes instead.

Figure 4: Visualization of test results for hot dog category (not presented in
COCO dataset) Test results from left to right: OLN, DETR, fine-tuned DE-
TReg.: DETR performs best, OLN can identify three out of five desirable objects with
high IoU, and DETReg also provides reasonably good bounding boxes for novel category,
but with low confidence.

3 METHODS AND PIPELINE 10

3.1.2 One-Shot Detection

To get more relevant bounding boxes compared to the zero-shot approaches, we reviewed
0S2D, a promising one-shot detector. In one-shot detection we are giving the model a
query image of the object that it needs to detect. Doing so, the model should be able to
predict better bounding boxes, since it is not searching in the dark, but instead knows
what kind of object to detect.

OS2D [6], combines the dense grid of anchor locations of a Faster R-CNN [12] and SSD
[14] object detectors. The key feature of this model is that detection and recognition are
performed jointly without the need to define a general object. Instead, a good feature
descriptor and transformation model are necessary.

input image A class image C input features A4 xw* xd class features h°xuC xd
_ e
("2. correlation AV 4
matching [bilinear resample]
Q KT xw” xd
[correlation computation]
\ y! gt

correlation tensor 1 xw x (A7w”)
1. feature extractor: ResNet , . .
[3. spatial alignment

| TransformNet |
transformation i xw” x P <~
parameters [gridsampler |

[2. correlation matching]

3. spatial alignment |

[4. computing outputs]

L i g
sampling grids A* x w* x (2h"w”)
(4. computing outputs AV AV
resampling correlations @ .
h

[selecting boxes] [pooling]
1

xw? xhT xw’”

e] -~
localization recognition localization boxes At xw x4 detection scores h** xw™ x 1

Figure 5: Inputs, outputs and main components of the OS2D model [6]

The components and the main architecture of the OS2D model are shown in figure[5] The
yellow detection boxes at the bottom left correspond to the peaks in the score map, while
the red parallelograms illustrate the corresponding affine transformations produced by
the TransformNet. As shown in figure [5|the OS2D architecture consists of four steps: (1)
extracting local features from both input and class images using a ResNet; (2) correlation
matching of features; (3) spatially aligning features according to successful matches; (4)
computing the localization bounding boxes and recognition score. [6]

3.1.3 Few-Shot Detection

Finally, our idea was to further improve the prediction of the bounding boxes by using
multiple query images instead of only one. As explained in [2| there are multiple few-shot
detection models. We decided to explore the RetinaNet [37] model with a ResNet-50
backbone, since it had an easy setup and is a well-cited object detection model.

RetinaNet RetinaNet is a one-stage detector, that is, a proposal-free network, that
utilizes focal loss to highlight class imbalance during training. Focal loss is in turn calcu-

3 METHODS AND PIPELINE 11

lated by applying a modulating term to the standard cross entropy, putting more focus
on hard negative examples.

In our tests, the model demonstrated good results when using 10 query images but did
not perform as well when only using three query images, as can be seen in Figure 77. As
the results of OS2D did not need as many images for a similar performance, we decided
to not continue working with RetinaNet.

Even though we decided to proceed with other object localization frameworks, it would
still be interesting to use a few-shot detector to perform experiments using a variable
number of query images. When using a single query image there is no way to improve
the level of generalization since the query becomes the visual descriptor to the model.
Multiple query images could help the model to generalize better and make it less sensitive
to the color and shape of objects. For example, the model could generalize and learn to
detect the class "donuts” given multiple query images of donuts of different colors. In
contrast, a one-shot detector might only be able to detect donuts with a specific frosting
color, depending on the query image that was provided.

3.1.4 Meta learning

Finally, we explored a completely other idea for the region proposal generation, namely
meta learning. Meta learning [38] is a sub-field of machine learning which embraces
any type of learning based on prior knowledge from other tasks. There are different
techniques to use meta learning, however, according to the no free lunch theorem [39],
there is no universal approach. During our research, we looked into some of the most
popular few-shot models using meta-learning, including Meta DETR [25], Meta R-CNN
[26] and Context-Transformer [40].

Since all the corresponding repositories of these models did either miss pretrained check-
points or code that was ready to use, we decided to implement our own model from
scratch. The architecture of the model was inspired by the paper: ”Few-shot object
detection via feature reweighting” [21]. However, in contrast to the original model, we
proposed an one-way class-agnostic localization detection network. In our setup, a query
image and support images (one per class) were used as inputs. The bounding boxes of
the query image corresponding to the objects were obtained from the support images.
In a first step, the extracted meta-features from query images and support features were
projected at the same space and multiplied channel-wise. This result was fed to the one-
stage detector, which directly regressed the bounding box location for each class given
the support images.

Due to time constraints, we could not finish training the model from scratch. Nevertheless,
the current results can be seen in Appendix Figure [I7] However, even though we did not
end up including meta learning in our final experiments, this might be an interesting
approach to improve the quality of the region proposals.

3 METHODS AND PIPELINE 12

3.1.5 Included Object Localization Model

For the previously explained reasons, we decided to include DETR as a zero-shot detector
and OS2D as an one-shot detector in our experiments.

DETR The DETR model in our experiments was trained on a subset of 80 COCO
classes. It predicts bounding box candidates and the corresponding certainty scores given
only the input image.

OS2D The OS2D network used in our experimental pipeline was trained on the Grozi-
3.2k Dataset, a dataset of labeled products in Swiss supermarket shelves [41]. In addition
to the input image, we feed a query image as an input, and receive the detected bounding
boxes and certainty scores as an output. The samples in this dataset were all captured
from a certain angle right across the shelves. Therefore, the objects to be detected are
clearly visible and do not differ from one another.

In both cases the detected bounding boxes and certainty scores are propagated to the
next module, the non-maximum suppression, in order to remove duplicates and increase
the quality of the predicted bounding boxes.

3.2 Non-Maximum Supression

A very common technique used to reduce redundant bounding boxes around an object is
Non-Maximum Supression (NMS). This problem arises because of how object detection
is performed using the localization networks mentioned in the previous sections. They
generate anchors of various shapes and sizes, although there is only one object existing
in the scene. core aspect of NMS is to define a probability threshold which allows us to
decide when to keep or discard a predicted bounding box. In the proposed pipeline, we
use IoU score between each of the predicted bounding boxes and the ground truth and
define a threshold for the same. Based on this, we discard bounding boxes that have a
low score. Note that the lower the IoU score, the farther away the bounding box is from
the ground truth.

Figure [6] shows a comparison bewtween all the bounding boxes predicted by DETR versus
when the NMS algorithm is applied to the model output. In this case, the goal is to detect
bananas object. We can make two major observations from Figure

1. The number of bounding boxes around the object is more than one,

2. Many of the predicted bounding boxes around the object are either around parts of
the object or are around other objects in the given scene.

Figure [6b shows the same input image but with NMS applied to it. This helps us in
optimizing our downstream pipeline by processing bounding boxes that strictly fall within

the defined threshold.

3 METHODS AND PIPELINE 13

§r|
~

-
-
(&
ra
|
L

\ K
i

4

.

SRl]|

W

|

Figure 6: (a) DETR output vs (b) DETR output with NMS
3.3 Image Embeddings

The centerpiece of our pipeline is the image embedding matching module. To detect if a
proposed bounding box shows the requested object or not, all bounding box candidates
are compared to the query image using CLIP image embeddings [32]. Originally, CLIP
uses an image and a text encoder to map image to text for zero-shot prediction. However,
we eliminated the text input and only used the CLIP image encoder since we wanted
to focus on working with image inputs for our zero-shot and few-shot experiments. The
in-built CLIP image encoder takes an RGB image as an input and resizes it using bicubic
interpolation and center crop. Finally, it generates an unique image embedding vector of

shape [768,1].

We compare the image embeddings of the region proposals b; with the image embedding
q of our query image using the two most commonly used distance metrics, euclidean
distance d, [1] and cosine distance d.

de(bi, q) = v/ (bi — q)? (1)

bi - q
de(biyq) = 1 — (2)
03] - [lql

In the last step, we perform a matching using a variable threshold. The threshold ts
calculates from the mean g and standard deviation o4 calculated over the computed
distances between the query embedding ¢ and all bounding box embeddings b;. The
sensitivity factor s indicates how many standard deviations are subtracted from the mean
to determine the threshold level [3]

ts = flg — S 04 (3)

4 EXPERIMENTS AND RESULTS 14

If the distance d(b;,q) between the query image embedding ¢ and the bounding box
candidate embedding b; does not exceed the computed threshold ts, they are predicted as
a match. With increasing sensitivity factor s, the threshold decreases and the matching
becomes more strict. We used several sensitivity factors in our experiments.

3.4 Captioning

The final stage of our proposed pipeline consists of an image captioning model that was
added in order to retrieve keywords for the detected bounding boxes from input images.
For this we used a pretrained ClipCap model [42] which generated a caption in natural
language for each matched bounding box.

ClipCap is based upon CLIP [32] and proposes a lightweight captioning approach, making
use of pretrained models for image and text processing. The key idea is to use the CLIP
encoding as a prefix to the textual captions by employing a simple mapping network over
the raw encoding, and then fine-tune a language model to generate valid captions. In
addition, ClipCap utilizes a transformer architecture for the mapping network to avoid
fine-tuning of the language model.

Due to time constraints, we could not fully explore how to utilize the outputs from the
ClipCap model. Therefore, this was not part of our final experiments. However, the ideas
related to the caption processing will be further discussed in Section

4 Experiments and Results

For our experiments, we settled to focus on the two object localization networks DETR
and OS2D, previously explained in Section Besides comparing the impact of using
different object localization networks, we tried to max out the model’s performance by
testing several parameter settings for the image embedding matching in our pipeline.
Doing so, we examined the importance of the used distance metric and the sensitivity
factor. We performed each experiment using subsets of two different object detection
datasets, namely the Oktoberfest Food Dataset and the Objects365 Dataset, which we
present in Section

Since our pipeline requires a query image in the embedding matching step, we decided to
use at least two query images per object class in order to minimize the impact of the query
image choice. Furthermore, in experiments using the one-shot object detector OS2D we
also need a query image to perform the detection itself. For simplicity, we made use of the
same image samples as already collected for the matching. For each query image used in
the one-shot object detection, we tested it with all available query images (usually two)
in the matching stage, meaning we ran the model for a single sample at least four times.

In the end, we performed a final experiment using the best-performing parameters and a
larger subset of approximately, 7000 images of the Objects365 Dataset.

4 EXPERIMENTS AND RESULTS 15

4.1 Datasets

To compare our experiments and evaluate the performance of our pipeline, we used two
highly challenging object detection datasets. The Oktoberfest Food Dataset and Ob-
jects365 Dataset differ significantly and are therefore suitable to examine strengths and
weaknesses of our proposed pipeline.

4.1.1 Objects365

The Objects365 Dataset [5] is a large-scale object detection dataset consisting of over
600 000 training images and over 10 million labeled bounding boxes. It is one of the
largest object detection benchmarks, containing 10 times as many bounding boxes as the
famous COCO dataset [1§]. In total, it consists of 365 object categories and eleven super
categories, such as foods and electronics. In this project, we are only interested in the food
category that contains 71 classes, ranging from fruit classes such as apple and avocado to
more broad categories such as dessert or pasta. The Objects365 Dataset provides a wide
variation of scenes and also a great variety of class objects within a class, which makes it
a very challenging dataset

4.1.2 Oktoberfest Food Dataset

The second dataset we used for our experiments is the Oktoberfest Food Dataset [43]. The
data was recorded at a beer tent at the Oktoberfest and consists of 15 different object
categories for food and drink items, such as Bier (Beer) and Pommes (French fries)16]
The dataset contains over 2500 hand-annotated object annotations for 1100 images. Out
of the 15 categories, none is identical to any of the COCO classes, but there are some
classes that are similar. For example, Curry- Wurst is similar to the COCO hot dog class.
However, it is noteworthy that the Oktoberfest Food Dataset varies from other object
detection datasets, since all images provide a bird’s-eye view.

4.2 Performance on Objects365 Subset Dataset

For our first experiments we used a small subset of the Objects365 Dataset. Focusing on 10
food classes, namely apple, bread, cake, cookies, donut, egg, french fries, hamburger, pizza,
and sandwich, we handpicked 10 images to construct the test set. Since the difficulty level
of the samples in the Objects365 Dataset is very high, we selected samples that are not
too difficult but still challenging. For clarification, in the original dataset an apple could
be hidden somewhere in the background of an image (see Figure|15/in Appendix), making
it even difficult for the human eye to detect it. In addition to that, we chose samples
where the target object looked similar each time to simplify the process of selecting query
images. For instance, the constructed class ”"egg” only contained sunny-side-up eggs
instead of samples with hardboiled eggs or egg shells.

4 EXPERIMENTS AND RESULTS 16

DETR mAP: 0.52

Cookies 1.00

Donut

Apple 0.71

Cake 0.52

Sandwich 0.50

Egg 0.46

Pizza 0.33

Bread 0.29

Hamburger 0.28

French Fries

Figure 7: DETR model mAP values evaluated per class of Objects365 Subset Dataset

As seen in Figures [7] and [§] we observed that DETR performed slightly better on the
objects365 subset, with an average mAP of 0.52 in comparison to the OS2D precision of
0.49. Both models perform very well on the donut class.

An interesting observation is that the OS2D model shows a drop in performance in com-
parison to the DETR models for multiple classes. This behavior is best to be seen for
the category apple. The detection of the apples in itself is difficult for OS2D, probably
due to the camera angle and the apples being ordered in tightly packed formations, in
comparison to a single apple which was used as a query image for the region proposals
which is. The DETR model seems to be able to both detect groups of apples as well
single ones, probably because it was trained on COCO where the bounding boxes have
demonstrated the possibility of this.

As can be seen in Figure [9] the ground truth boxes can either contain several apples or
single ones. This demonstrates an issue of consistency in our testset. We cannot control
how the bounding boxes are drawn, hence we cannot tell whether they are accurate as
ground truth boxes for the provided query image. As a result, the mAP score might seem
lower than it would be in reality.

4.3 Performance on Oktoberfest Food Dataset

The Oktoberfest Food Dataset, in contrast to the Objects365, is a smaller dataset with
over 1000 images split into 15 classes, ranging from food classes such as Burger and
Pommes to drink classes such as Cola (coke) and Wasser (water). Since this dataset

4 EXPERIMENTS AND RESULTS

0S2D mAP: 0.49

17

Donut

Hamburger

Cookies

Bread

Cake

Pizza

Sandwich

Egg

French Fries

Apple

0.40

0.38

0.48

0.45

0.56

0.88

Figure 8: OS2D model mAP values evaluated per class of Objects365 Subset Dataset

contains only classes that are not part of any standard dataset such as ImageNet, COCO
or Pascal-VOC, our assumption was that the performance of the zero-shot DETR model

should be, on average, worse compared to the few-shot model OS2D.

4 EXPERIMENTS AND RESULTS

18

Missed Bounding Boxes Wrong Bounding Boxes Query Image

Detected Bounding Boxes
- Y’

Query Image

Figure 9: Plot of failed detection of apples when running OS2D on the Objects365 Subset.
The ground truth bounding boxes might either contain of several apples, or of single ones,
making the prediction harder.

currywurst
bier_mass
kaesespaetzle
weissbier
breze

burger
pommes
brotzeit

cola
weisswein
wasser
apfelschorle
bier
jaegermeister

williamsbirne

Figure 10

DETR mAP: 0.12

0.43

0.17
0.17
0.15
0.11
0.11
0.08
0.03
0.02
0.00
0.00
0.00
0.00

: DETR model mAP values evaluated per class of Oktoberfest Food Dataset

4 EXPERIMENTS AND RESULTS

cola
kaesespaetzle
currywurst
bier_mass
pommes
wasser

bier

brotzeit

breze
apfelschorle
burger
jaegermeister
weissbier
weisswein

williamsbirne

Figure 11

0S2D mAP: 0.1

19

0.07
0.06
0.05
0.05
0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.70

: OS2D model mAP values evaluated per class of Oktoberfest Food Dataset

4 EXPERIMENTS AND RESULTS 20

The preliminary results of our hypothesis can be seen in Figure 10| and Figure 11| where
we can infer the following:

The average mAP score for DETR is lower compared to OS2D on the Oktoberfest Food
Dataset. OS2D is a few shot detector. This means that for detecting objects in a given
reference image, we provided the detector with two query images containing the object:
one captured from the dataset itself and the second from the internet. Thus, the few-shot
detector, through the query images already knows which feature descriptors are unique
for each given object class. This is not the case for DETR, which is a zero-shot detector,
thus explaining the lower score on novel classes.

The average mAP score for both DETR and OS2D are lower compared to the Objects365
Dataset. This can be explained by the quality of images, the size of both datasets and the
difficulty of some classes. Especially the performance on the drink classes was worse than
expected. A reason might be that it is a highly challenging task to predict bounding boxes
for the drink classes. The classes Willitamsbirne and Wasser are both clear liquids, served
in a transparent glass which makes them often undetectable. Additionally, the dark green
table and the lack of proper lightning considerably impede this task. It is worth noting
that the detectors perform well on classes such as Curry-wurst. This might be related to
the fact that it has feature resemblance to a hot dog which is a COCO class. However,
since also the performance of a non-COCO class like Kaesespaetzle is remarkably good,
detecting a dish served on a white plate might also be just a comparatively easier task
for state-of-the-art detectors.

4.4 Final Experiment

To test our best-performing model, we used DETR as an object detection model, Eu-
clidean distance, and a sensitivity factor of 0.5 for matching. Up to 100 images were picked
from each subclass of the food category of the Objects365 Dataset, which increased the
testset to a size of approximately, 7000 images. Since we randomly selected the images
for this dataset, it contained more difficult samples than the hand-picked subset we used
in our first experiments, which probably led to a lower performance.

Against the belief we had, the performance on classes that were also part of the COCO
Dataset was not increased, although the object detector DETR was trained on a subset
of COCO. As can be seen in Appendix Figure the average mAP on COCO classes is
0.49, in comparison the average mAP on non-COCO classes is 0.37 (Appendix Figure .
However, the mAP for the donut class has a considerably larger mAP of 0.86 than the
rest of the COCO classes that have a mAP 0.38-0.50, which be a reason for the higher
mAP. In fact, despite being non-COCO, 11 classes outperform all COCO classes.

4.5 Comparison between DETR and OS2D

As mentioned in Section [3.1.5, the OS2D model was trained on the Grozi 3.2k Dataset,
while DETR was trained on a subset of the COCO Dataset. As seen in Table[l]the pipeline

4 EXPERIMENTS AND RESULTS 21

DETR mAP: 0.38

Donut 0.86

Green Onion 0.12

Red Cabbage -0. 11

Figure 12: A comparison of the mAP values of the DETR model on Objects365 Dataset
of the best and worst performing classes.

COCO Classes mAP: 0.49

Donut 0.86
Banana 0.53
Hot dog 0.39
Sandwich 0.38

Figure 13: A comparison of the mAP values on Objects365 Dataset of the best and worst
performing COCO classes.

using DETR as an object detector surpasses OS2D in all metrics by a large margin. While
the DETR achieves an AP of 0.78 in its best configuration, OS2D only reaches an AP of
0.49. This behaviour was expectable, since the COCO Dataset resembles the Objects365
Dataset but not the Grozi 3.2k Dataset.

In contrast, the pipeline using OS2D outperforms the one using DETR on the Oktoberfest
Food Dataset, as Table |2|indicates. One possible explanation is that OS2D creates better
bounding boxes which affect the performance of the whole model. Since OS2D is a one-
shot detection model, alongside to the input image it receives a query image, which acts
as a guide for the model in terms of what to detect. In addition, the samples in the
Oktoberfest Food Dataset are similar to the samples from the dataset OS2D was trained
on. While the images in the Oktoberfest Food Dataset are all taken from a birds-eye-view,
the once in the Grozi 3.2k Dataset are taken completely from the front which leads to a
very similar image composition since all objects are clearly visible the specific angle.

4 EXPERIMENTS AND RESULTS 22

Non-COCO Classes mAP : 0.37

Candy 0.89
Dessert 0.71
Green Onion 0.12
Red Cabbage 0.11

Figure 14: A comparison of the mAP values on Objects365 Dataset of the best and worst
performing Non-COCO classes.

OLN | metric | sensitivity factor | AP | AR | F1

DETR cosine 0 0.70 | 0.26 | 0.38
DETR cosine 0.5 0.71] 0.26 | 0.38
DETR cosine 1 0.75 1 0.24 | 0.36
DETR cosine 1.5 0.78 | 0.21 | 0.33
DETR | euclidean 0 0.44 | 0.43 | 0.44
DETR | euclidean 0.5 0.52 | 0.39 | 0.45
DETR | euclidean 1 0.67 | 0.33 | 0.44
DETR | euclidean 1.5 0.76 | 0.26 | 0.39
0OS2D cosine 0 0.44 | 0.07 | 0.13
OS2D cosine 0.5 0.41 | 0.06 | 0.11
OS2D cosine 1 0.4 | 0.04 | 0.07
0S2D cosine 1.5 0.23 | 0.02 | 0.04
0S2D | euclidean 0 0.5 | 0.09 | 0.16
0S2D | euclidean 0.5 0.46 | 0.08 | 0.14
0OS2D | euclidean 1 0.47 | 0.06 | 0.11
0OS2D | euclidean 1.5 0.32 | 0.03 | 0.06

Table 1: Performance metrics comparison of Objects365 Subset Dataset

4.6 General Observations

In summary, we could proof that the pipeline we came up with and the approach of
using a matching of CLIP image embeddings works for zero-shot and one-shot detection.
However, to achieve a better performance and more robust results the pipeline needs more
fine-tuning. As the foregoing discussions showed, the choice of the object detector and
the query image are both crucial.

5 FUTURE WORK 23

OLN | metric | sensitivity factor | AP | AR | F1

DETR cosine 0 0.16 | 0.02 | 0.04
DETR cosine 0.5 0.16 | 0.02 | 0.04
DETR cosine 1 0.18 | 0.02 | 0.04
DETR cosine 1.5 0.17 | 0.02 | 0.04
DETR | euclidean 0 0.06 | 0.06 | 0.06
DETR | euclidean 0.5 0.09 | 0.06 | 0.07
DETR | euclidean 1 0.12 | 0.05 | 0.07
DETR | euclidean 1.5 0.13 | 0.05 | 0.07
0OS2D cosine 0 0.14 | 0.04 | 0.06
0OS2D cosine 0.5 0.15 | 0.04 | 0.06
0S2D cosine 1 0.17 | 0.04 | 0.07
0S2D cosine 1.5 0.24 | 0.04 | 0.06
0OS2D | euclidean 0 0.1 | 0.08 | 0.09
0OS2D | euclidean 0.5 0.13 | 0.08 | 0.10
OS2D | euclidean 1 0.17 | 0.08 | 0.11
OS2D | euclidean 1.5 0.23 | 0.07 | 0.11

Table 2: Performance metrics comparison of Oktoberfest Food Dataset

5 Future Work

5.1 Processing ClipCap Captions

As we stated in Section 3] we could not explore how to utilize the outputs from the
ClipCap model since we did not set metrics to measure its performance. This means that
even tough we set up the model to work in our pipeline, we did not generate captions
for the samples during our experiments. In this section, our ideas about how to integrate
ClipCap into the pipeline and evaluate meaningful results will be discussed.

First of all, ClipCap produces full sentences as captions, and only a few of the words in the
captions are relevant to our task. For example, in Figure [23] the words of interest for our
objects of pink donuts are: "pink”, "donut”, "frosting” and ”sprinkles”. We don’t need
the other words in the sentence. Therefore, we need a system that extracts the words of
interest from the caption sentences. For this task, we can first use a tokenizer to extract
all the tokens from the sentences. Then, we get word embeddings from a model such as
word2vec and also generate image embeddings for the object that the caption belongs
to with CLIP. After this, we can train a model with the caption’s word embeddings and
object’s image embeddings as input and the embeddings of the words of interest as the
target output. Of course, this idea requires us to have labeled data in the described
format, therefore could not be achieved in the given time frame.

6 CONCLUSION 24

5.2 Meta Learning

Since there was a time constraint, the meta-learning algorithm presented in the work
could not be sufficiently trained. The core idea is to revisit the architecture of the existing
outline. Specifically, the existing architecture allow identifying only one bounding box per
one class of support image, but could be generalized to recognize multiple bounding boxes.
Additionally, we would run the training process in the cluster environment. By training
on different datasets, we can induce different priors, trying other architectures, which
might be based on Meta-RCNN;, [26] and Meta-DETR[25]. Choosing different pretrained
backbone models, other than those offered in the work, can also bring about more visible
results.

In the end, Meta-Learning algorithms can be integrated into the final model to induce
class agnostic properties and facilitate generalization. Such models also have nice inter-
pretability and can be used to further explain the overall results produced by the pipeline.

5.3 Other Object Localization Networks

As stated before, the performance of our pipeline highly depends on the choice of the
object localization network. To achieve better results, a first step would be to improve
the prediction of the bounding boxes in the first step of the pipeline.

One interesting approach would be to extend and improve the models we have already
taken into account. The zero-shot detection models OLN and DetReg, mentioned in
3.1.1, might only need some fine-tuning to produce better results. According to the
previous discussion, DetReg’s architecture is based on DETR. It would appear that if
sufficient training time and proper hyperparameter tuning is given, it should be possible
to outperform the embedded DETR and therefore provide more meaningful bounding box
predictions.

Furthermore, there are models and approaches which we could not include in our research,
but are still worth mentioning, including anchor-free object detection models, such as
Center-Net[44], Corner-Net[45], CentripetalNet[46].

6 Conclusion

The aim of this project was to come up with an universal object detection architecture
that could detect any novel object in an image, being provided not more than one reference
sample. In contrast to other state-of-the-art methods, we presented an approach whose
unique feature is the utilization of CLIP image embeddings for a matching between the
reference sample and all detected objects in the input image.

There are three modules in our pipeline: an object localization network to detect all
objects in an input image, a matching component to compare CLIP image embeddings of

6 CONCLUSION 25

all detected objects with the reference image, and finally a captioning module to create
meaningful textual descriptions of the objects. During the process of assembling the
pipeline, we reviewed and evaluated multiple state-of-the-art object localization networks
and decided to use for our experiments zero-shot DETR model, and an one-shot detector
0OS2D model.

Besides comparing the impact of using those object localization networks, we tried to max
out the model’s performance by testing several parameter settings in our pipeline for the
image embedding matching. To evaluate the performance, we used two highly challenging
and different object detection datasets, the Oktoberfest Food Dataset and the Objects365
Dataset. Each of them introduced its own challenges, which enabled us to fully examine
the strengths and weaknesses of our approach.

In summary, we could prove that the pipeline we came up with and the idea of using a
matching of CLIP image embeddings works as a one-shot detector. However, as expected,
the pipeline needs more fine-tuning to achieve better performance and more robust results.
As the foregoing discussions showed, the choice of the object detector and the query image
are both crucial in our proposed set-up and must be considered carefully.

Finally, to improve our pipeline, more research must be done, especially on the object
localization network. On this matter, It might be worth investigating completely different
approaches, such as Meta-learning.

REFERENCES 26

References

[1]

2]

[10]

[11]

[12]

“Precitaste inventory management system,” 2021. [Online]. Available: https:
/ /www.youtube.com/watch?v=We_dFQhNDew

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-
to-end object detection with transformers,” in Furopean conference on computer
wston. Springer, 2020, pp. 213-229.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 7T70-778.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. DollAjr, “Microsoft coco: Common objects in
context,” 2014. [Online]. Available: https://arxiv.org/abs/1405.0312

S. Shao, Z. Li, T. Zhang, C. Peng, G. Yu, X. Zhang, J. Li, and J. Sun, “Ob-
jects365: A large-scale, high-quality dataset for object detection,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2019, pp. 8430-8439.

A. Osokin, D. Sumin, and V. Lomakin, “Os2d: One-stage one-shot object detec-
tion by matching anchor features,” in Furopean Conference on Computer Vision.
Springer, 2020, pp. 635-652.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple fea-
tures,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, pp. I-1.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), vol. 1. Teee, 2005, pp. 886-893.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580-587.

7.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A
review,” [EEE transactions on neural networks and learning systems, vol. 30, no. 11,
pp. 3212-3232, 2019.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEFE international conference on
computer vision, 2015, pp. 1440-1448.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information processing
systems, vol. 28, 2015.

https://www.youtube.com/watch?v=We_dFQhNDew
https://www.youtube.com/watch?v=We_dFQhNDew
https://arxiv.org/abs/1405.0312

REFERENCES 27

[13]

[14]

[15]

[16]

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEFE conference on computer vision
and pattern recognition, 2016, pp. 779-788.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in Furopean conference on computer vision.
Springer, 2016, pp. 21-37.

S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement neural
network for object detection,” in Proceedings of the IEEE conference on computer
viston and pattern recognition, 2018, pp. 4203-4212.

S.S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A survey
of modern deep learning based object detection models,” Digital Signal Processing,
p. 103514, 2022.

L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikainen, “Deep
learning for generic object detection: A survey,” International journal of computer
viston, vol. 128, no. 2, pp. 261-318, 2020.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Furopean conference
on computer vision. Springer, 2014, pp. 740-755.

A. Gupta, P. Dollar, and R. Girshick, “LVIS: A dataset for large vocabulary in-
stance segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
no. 0. Toronto, Ontario: Technical report, University of Toronto, 2009.

B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-shot object detection
via feature reweighting,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 8420-8429.

X. Wang, T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu, “Frustratingly simple
few-shot object detection,” arXwv preprint arXiv:2005.06957, 2020.

B. Sun, B. Li, S. Cai, Y. Yuan, and C. Zhang, “Fsce: Few-shot object detection
via contrastive proposal encoding,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 7352-7362.

L. Qiao, Y. Zhao, Z. Li, X. Qiu, J. Wu, and C. Zhang, “Defrcn: Decoupled faster
r-cnn for few-shot object detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 8681-8690.

G. Zhang, Z. Luo, K. Cui, and S. Lu, “Meta-detr: Image-level few-shot object de-
tection with inter-class correlation exploitation,” arXiv preprint arXiv:2103.11731,
2021.

REFERENCES 28

[26]

[27]

28]

[29]

[33]

[35]

[36]

[37]

X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, “Meta r-cnn: Towards
general solver for instance-level low-shot learning,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9577-9586.

C. Tan, X. Xu, and F. Shen, “A survey of zero shot detection: methods and appli-
cations,” Cognitive Robotics, vol. 1, pp. 159-167, 2021.

Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the bad and the
ugly,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 4582-4591.

D. Kim, T.-Y. Lin, A. Angelova, I. S. Kweon, and W. Kuo, “Learning open-world ob-
ject proposals without learning to classify,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 54535460, 2022.

A. Bar, X. Wang, V. Kantorov, C. J. Reed, R. Herzig, G. Chechik, A. Rohrbach,
T. Darrell, and A. Globerson, “Detreg: Unsupervised pretraining with region priors
for object detection,” in Proceedings of the IEEE/CVFE Conference on Computer
Vision and Pattern Recognition, 2022, pp. 14 605-14615.

X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object detection via vision
and language knowledge distillation,” arXiv preprint arXiv:2104.13921, 2021.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from
natural language supervision,” in International Conference on Machine Learning.
PMLR, 2021, pp. 8748-8763.

C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li,
and T. Duerig, “Scaling up visual and vision-language representation learning with

noisy text supervision,” in International Conference on Machine Learning. PMLR,
2021, pp. 4904-4916.

S. Esmaeilpour, B. Liu, E. Robertson, and L. Shu, “Zero-shot out-of-distribution
detection based on the pretrained model clip,” in Proceedings of the AAAI conference
on artificial intelligence, 2022.

X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable
transformers for end-to-end object detection,” arXiv preprint arXiv:2010.04159,
2020.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2117-2125.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 2980-2988.

REFERENCES 29

[38]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

J. Vanschoren, “Meta-learning,” in Automated machine learning. Springer, Cham,
2019, pp. 35-61.

C. Giraud-Carrier and F. Provost, “Toward a justification of meta-learning: Is the
no free lunch theorem a show-stopper,” in Proceedings of the ICML-2005 Workshop
on Meta-learning, 2005, pp. 12-19.

Z. Yang, Y. Wang, X. Chen, J. Liu, and Y. Qiao, “Context-transformer: tackling
object confusion for few-shot detection,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 1265312 660.

M. George and C. Floerkemeier, “Recognizing products: A per-exemplar multi-
label image classification approach,” in European Conference on Computer Vision.
Springer, 2014, pp. 440-455.

R. Mokady, A. Hertz, and A. H. Bermano, “Clipcap: Clip prefix for image caption-
ing,” arXw preprint arXw:2111.09734, 2021.

A. Ziller, J. Hansjakob, V. Rusinov, D. Ziigner, P. Vogel, and S. Giinnemann, “Ok-
toberfest food dataset,” arXiv preprint arXiv:1912.05007, 2019.

K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets
for object detection,” in Proceedings of the IEEE/CVF international conference on
computer viston, 2019, pp. 6569-6578.

H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in Pro-
ceedings of the European conference on computer vision (ECCV), 2018, pp. 734-750.

Z. Dong, G. Li, Y. Liao, F. Wang, P. Ren, and C. Qian, “Centripetalnet: Pursuing
high-quality keypoint pairs for object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 10519-10 528.

A APPENDIX 30

A Appendix

A.1 Performance Metrics

The Intersection over Union (IoU) is a widely used evaluation metric in object detection
problems and measures how much the predicted bounding box overlaps with the ground
truth. An IoU of 1 reports that the prediction and ground truth overlap completely,
while an IoU of 0 shows that prediction and ground truth do not overlap at all. If the IoU
exceeds a certain [oU threshold the prediction is counted as positive match, otherwise it
is counted as negative.

Awverage Precision (AP) and Average Recall (AR) correspond the average precision and
recall for IoU thresholds from 0.5 to 0.95 with a step size of 0.05 calculated for each class.
The Mean Average Precision (mAP) is the averaged AP over all classes.

A.2 Additional Figures

Figure 16: Examples from Oktoberfest Food Dataset

A APPENDIX 31

Feature
Extractor

Meta
I features

Channel-wise
multiplication

COeE0

Support images

Reweighting
Module

\ Bounding Box Regressor /

Conv BxLx1

@

Reweighting vectors

Figure 17: Architecture and test results of our class-agnostic one-shot meta-learning
model. As we can see, the model is not yet able to detect individual objects, but it
localizes the location of the donut instead of a random location.

DETR mAP: 0.12

currywurst 0.43
bier_mass
kaesespaetzle

weissbier

breze 0.17
burger 0.15
pommes 0.11
brotzeit 0.11
cola 0.08
weisswein 0.03
wasser 0.02
apfelschorle (0.00
bier (0.00
jaegermeister |0.00

williamsbirne [0.00

Figure 18: DETR model mAP values evaluated per class of Oktoberfest Dataset

A APPENDIX

cola
kaesespaetzle
currywurst
bier_mass
pommes
wasser

bier

brotzeit

breze
apfelschorle
burger
jaegermeister
weisshier
weisswein

williamsbirne

Figure

32
052D mAP: 0.1
0.70
0.25
0.20
0.10
0.07
0.06
0.05
0.05
0.02

0.00
0.00
0.00
0.00
0.00
0.00

19: OS2D model mAP values evaluated per class of Oktoberfest Dataset

A APPENDIX

Candy
Donut
Dessert
Cookies
Pumpkin
Grape
Meat ball
Strawberry
Dumpling
Baozi
Egg tart
Nuts
Banana
Apple
Pie
Durian
Sausage
Potato
Egg
Onion
Carrot
Cake

DETR mAP: 0.38

Broccoli

Pepper
Pizza
Tomato
Plum
Spring Rolls
Hot dog
Corn

French Fries
Sandwich
Pear

Mango

Ice cream
Bread
Avocado
Okra

Chips
Cheese
Papaya
Sushi
Lemon
Pomegranate
Peach
Hamimelon

Canned

Garlic |
Cherry
Mushroon
Cucumber
Coconut
Hamburger
Steak
Cabbage
Green Vegetables
Radish
Watermelon
Green beans
Rice
Lettuce
Kiwi fruit
Pasta
Pineapple
Eggplant
Noddles
Grapefruit
Green Onion
Red Cabbage

Figure 20:

33

0.86
0.71
0.70
0.69
0.69
0.64
0.62
0.60
0.60
0.59

DETR model mAP values evaluated per class of Objects365 Dataset

A APPENDIX 34

COCO Classes mAP: 0.49

Donut 0.86
Banana 0.53
Apple 0.51
Carrot 0.44
Cake 0.43
Broccoli 0.43

Pizza

Hot dog

Sandwich

Figure 21: DETR model mAP values of COCO classes, evaluated per class of Objects365
Dataset

A APPENDIX 35

Non-COCO Classes mAP : 0.37
Candy 0.6
Dessert 0.71
Cookies 0.70
Pumpkin 0.69
Grape 0.69
Meat ball 0.64
Strawberry 0.62
Dumpling 0.60
Baozi 0.60
Egg tart 0.59
Nuts 0.54
Pie 0.48
Durian 0.48
Sausage 0.46
Potato 0.46
Eqg 0.46
Onion 0.45
Pepper 043
Tomato | 0.40
Plum 10.40
Spring Rolls 0.40
Com 0.39
French Fries 0.39
Pear 0.38
Mango 0.38
Ice cream 0.37
Bread 0.37
Avocado 0.36
Okra 0.36
Chips 0.35
Cheese 0.35
Papaya 0.34
Sushi 0.33
Lemon 033
Pomegranate 0.33
Peach 0.33
Hamimelon 0.32
Canned 0.31
Garlic 0.31
Cherry
Mushroon |
Cucumber
Coconut
Hamburger
Steak
Cabbage
Green Vegetables
Radish
Watermelon
Green beans
Rice
Lettuce
Kiwi fruit
Pasta
Pineapple
Eggplant
Noddles
Grapefruit
Green Onion
Red Cabbage

Figure 22: DETR model mAP values of non-COCO classes, evaluated per class of Ob-
jects365 Dataset

A APPENDIX

0: A pink plate topped with lots of donuts covered in frosting.

1: A donut with sprinkles and a bite taken out.

Figure 23: Example captions of two donuts generated by ClipCap

36

	Abstract
	Introduction
	Related Work
	Methods and Pipeline
	Object Localization
	Zero-Shot detection
	One-Shot Detection
	Few-Shot Detection
	Meta learning
	Included Object Localization Model

	Non-Maximum Supression
	Image Embeddings
	Captioning

	Experiments and Results
	Datasets
	Objects365
	Oktoberfest Food Dataset

	Performance on Objects365 Subset Dataset
	Performance on Oktoberfest Food Dataset
	Final Experiment
	Comparison between DETR and OS2D
	General Observations

	Future Work
	Processing ClipCap Captions
	Meta Learning
	Other Object Localization Networks

	Conclusion
	Appendix
	Performance Metrics
	Additional Figures

