
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

Planning and Control using Model-Based
Reinforcement Learning

Authors Pavel Czempin, Vincent Friedrich, Ruotong Liao,
Jannik Nettelnstroth

Mentor(s) M.Sc. Mathias Sundholm, M.Sc. Hamdi Belhassen
PreciBake GmbH

Co-Mentor PhD candidate Michael Rauchensteiner
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Feb 2021

1

Abstract

During the last years, there have been numerous breakthroughs with Reinforcement Learn-
ing agents playing complex games, the most famous being DeepMind’s Alpha Go defeating
one of the world’s best Go players Lee Sedol. Managing the inventory in a bakery to per-
fectly meet the customer demand is also a very complex task, even though most customers
take it for granted that they always get what they order. That is why we apply Reinforce-
ment Learning techniques in order to assist the production process in a bakery. The goals
are to maximize the number of sold products as well as their freshness while at the same
time minimizing the number of products that go to waste. In this project we implement
Model-Based Reinforcement Learning agents that use Monte Carlo Tree Search combined
with a Hawkes Process as prediction model for the consumer behaviour. Our experiments
evaluating how well a Hawkes process can capture consumer behaviour patterns in a real
world scenario show promising results. In the end we assess the capability of different
agents to adapt to previously unknown environments and discuss how well they can handle
settings with an increased amount of possible products. While model-based approaches
highly depend on the ability to accurately estimate future events, we show that Monte
Carlo Tree Search combined with Hawkes predictions can outperform simpler agents. Our
results indicate that adding Reinforcement Learning algorithms can further improve the
performance of tree search, however this approach is limited by the capability of training
the algorithms in accurate settings.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3

2 Bakery Setting 4
2.1 OpenAI Gym . 4
2.2 Bakery Environment . 4
2.3 Consumer Models . 6
2.4 Reward Metric . 6

3 Model-Based Reinforcement Learning 7

4 Hawkes Prediction Model 8
4.1 Theory . 9
4.2 Hawkes Experiments on Real Data . 11

4.2.1 Setup . 11
4.2.2 Evaluation . 12
4.2.3 Graphical Analysis . 13

5 Monte Carlo Agent 15

6 Monte Carlo Tree Search 15
6.1 Theory . 15
6.2 Improving Monte Carlo Tree Search . 18

6.2.1 Unsuccessful attempts to improve MCTS 19
6.2.2 Depth limit . 19
6.2.3 Learned simulation policy . 20

7 Experiment Setup 21

8 Results & Discussion 23

9 Conclusion & Future Work 25

Bibliography 26

Appendix 28

1 INTRODUCTION 3

1 Introduction

Reinforcement Learning (RL) techniques are expected to play a key role in the future
development of Artificial Intelligence. Remarkable results in playing complex games that
require strategic thinking such as Go attracted the attention of a broader audience and
further aroused the enthusiasm for RL. In 2016, the RL-based computer program AlphaGo
defeated one of the most successful professional Go players Lee Sedol by 4-1, which was
considered a landmark achievement [1].
The core idea of RL is that an agent learns by trial and error to take best actions in
an environment with regard to some predefined goal. Certainly, the application of RL is
not limited to board games, but how exactly can a bakery benefit from such advanced
techniques?
In a bakery, one has to decide at every time point of a day which amount and what prod-
ucts to produce. The goal is to maximize the sales, minimize the waste and to sell products
as fresh as possible. Our aim in this project is to develop an RL-agent that decides in
an optimal way when to put what amount of which product into the oven. One of the
biggest challenges is that the customer orders are not known a priori. In concrete terms,
this means that the same baking decisions in identical situations can lead to very different
outcomes concerning sales, waste and the freshness of products. As a consequence, our
approach is to equip the agent with a method to simulate potential customer behaviour
in order to recognize which consequences certain decisions might have. In our simplified
bakery setting all randomness stems from customer behaviour, while bakery processes are
deterministic. For learning a model of the environment it is therefore sufficient to predict
customer orders. RL combined with a learned model of the (stochastic) environment is
referred to as Model-Based Reinforcement Learning [2].
In this project, we develop Model-Based RL agents that consist of two main components.
Firstly, the consumer behaviour is modeled by a Hawkes process that allows the agents
to sample possible future orders. Secondly, the agents resort to Monte Carlo Tree Search
(MCTS) to decide on which action to take. The internal simulations of the agents per-
formed in MCTS are based on the order samples generated by the Hawkes process.
In the following we show how we build our Model-Based RL agents and have a closer
look at the underlying concepts. In later sections, we will evaluate the performance of the
agents by presenting and interpreting the results of several experiments. Our work can be
seen as a continuation of last year’s TUM Data Innovation Lab project with PreciBake [3].

Related Work Inventory management is a promising application area for Reinforce-
ment Learning with numerous prior work. For example, RL can adjust over a finite sales
horizon to maximize expected revenue [4], although frequent changes on prices do not fit
for bakery price settings. Others suggest that RL learns better when the age of the prod-
ucts is used in state representation. Moreover, demand variance and inter dependency of
products are important for perishable inventory management [5]. Another group analysed
that customer demand depends on a homogeneous Poisson process and reached a near op-
timal policy for perishable inventory management with deep Reinforcement Learning [6].
Using predictions of stochastic user behavior and considering the dynamics of a system
with Model-Based Reinforcement Learning also shows great potential of better reward,
as tested on photovoltaic production [7]. Even approximated predictions without prior

2 BAKERY SETTING 4

knowledge of the probability distributions of the demand can still contribute positively to
inventory-optimization steps rather than solving them separately in the situation of the
Newsvendor problem [8]. In the former project by the previous group in Precibake it is
also pointed out that model free agents are sensitive to environment changes [3], which is
why the goal of our project was to introduce planning via model-based RL. In our project
we focused on implementing the model-based approach as used by AlphaGo [9], which
combines Reinforcement Learning with Monte Carlo Tree Search. Further improvements
in the form of AlphaZero [10] and MuZero [11] exist, however they are out of the scope
of this project so we leave them for future work.

2 Bakery Setting

2.1 OpenAI Gym

To implement a framework for our experiments we use Open AI Gym, an open-source
toolkit for Reinforcement Learning problems [12]. It has a library of pre-implemented
example problems, called the registry, but also provides the possibility to add custom
problems. The problems are modeled as so-called environments which share an interface
composed of the following components:

• Attribute action space: Describes all possible actions an agent can carry out. It is
possible to sample actions from this space.

• Function step(): Takes an action from action space as input, carries out this action
and gives the following outputs:

– Observation: Environment-specific object that represents what the agent can
see from the environment. We use observation synonymously with state, as
the observation in our case is always the complete state that is visible to the
agent.

– Reward : Value that describes the reward achieved by the action. The goal of
the agent is to maximize the overall rewards.

– Done: Boolean variable describing whether an episode (in our setting one day
in the bakery) has terminated. If this is True, the agent cannot do actions in
this environment anymore, until the environment is reset.

– Info: A variable containing additional information used for debugging. The
contents depend on the environment.

• Function reset(): Resets the environment to its initial state.

2.2 Bakery Environment

As already explained in section 2.1, it is possible to add custom environments to the
OpenAI Gym registry. The environment used for this project is composed of three parts:

2 BAKERY SETTING 5

1. Producer model: Models an oven, which can hold up to 30 products of the same
type (e.g. pretzels, bread). This is the only part of the environment the agent can
interact with by deciding how many products of which type should be produced.
While the oven is busy, no new actions can be carried out.

2. Consumer model: Defines when consumers enter the bakery and which products
they order. In our setting, each order consists of only one product. When working
without real-world data we use a Poisson distribution to generate customer orders
in the environment. Further details are given in section 2.3.

3. Inventory: Models the inventory of the bakery, i.e. products which are ready for
sale. When the producer model is done producing new products, they are added
to the inventory. After a customer orders an available product, it will be removed
from the inventory.

Figure 1 shows how these parts interact in the environment. Every time the function
step() is called, the producer model carries out the chosen action and the consumer model
simulates the customer behaviour of that time step. Feasible actions are tuples (p, n) of
a product type p and a quantity n with 0 ≤ n ≤ 30.

Figure 1: Graphical Representation of the PreciBake setting. The environment encapsu-
lates item production, inventory and consumer demand. The agent tries to optimize the
metric by maximizing the observed reward.

After the agent adds products to the oven, the oven is occupied and no new products can
be produced until it finishes. Therefore, all agents that will be discussed in this paper
skip time steps in which no action can be taken. The output observation of the function
step() contains information about products currently in the oven and in the inventory as
well as information about the orders during the last time step.
We divide a day into 100 time steps of equal length. By calling the function step(), the
environment simulates one of these intervals. However, due to the skipping mentioned
above, calling step() will advance the state forward by more than one time step for all
actions that produce at least one product, as no meaningful action can be performed
when the oven is full. Each type of product has a specific production time (how many
time steps it takes to produce a batch of this product in the oven) and an expiration

2 BAKERY SETTING 6

time which describes how long a product of this type is considered to be fresh. It can
still be sold after its expiration time but the freshness has an effect on the reward (see
Section 2.4).

2.3 Consumer Models

In the course of this project we use two different models to generate consumer orders. The
first approach is based on a generative model which samples the amount of orders per
time step from a Poisson distribution. It is parameterized by a list of means for different
intervals of the day of equal length. This means, the model can reflect the customer
behaviour during different parts of the day to some degree, for instance by assigning an
individual mean for the morning, noon, afternoon and evening period. For example the
parameters [15, 20, 10, 10] for one product type would mean that on average the model
will generate 15 orders in the first quarter of the day, 20 orders in the second quarter and
10 orders in both the third and fourth quarter. A precise description on how the number
of orders gets simulated can be found in the appendix.
The advantage of this model is that it is easy to parameterize and interpret. Additionally,
it is a stochastic model and can generate an unlimited amount of training data.
In order to get more realistic consumer behaviour, our second approach was to use a
dataset of anonymized real world sales data provided by PreciBake GmbH. For this we
implemented a consumer model that simply outputs the number of observed real-world
orders at each time step.

Real Sales Data

• customer data for 10 days in August and 15 days in December
of the same year

• around 100 000 customer orders

• more than 500 different products

The main advantage of using this data is that it provides a very realistic environment
for our agents to act in. The disadvantage is the fact that we are limited to 25 days.

2.4 Reward Metric

In order to asses the performance of different agents and give feedback to our learning
agents, we designed a performance measure which will be referred to as our metric.
In our setting the agent does not receive immediate feedback for its actions and can only
observe the metric at the end of an episode (i.e. the observed reward of the agent is 0 as
long as the respective day has not finished yet).
The metric is composed of three different scores that correspond to the main goals in a
bakery.

3 MODEL-BASED REINFORCEMENT LEARNING 7

• fulfilled-orders-ratio: Corresponds to the goal of maximizing sales. High values
mean that a high percentage of the orders are fulfilled. In our setting, an order can
only be served immediately. Customers do not wait if their desired product is not
in the inventory at the time they arrive.

ms =
#sold products

#ordered products

• product-waste-ratio: Corresponds to the goal of minimizing waste. High values
mean that a low fraction of produced products goes to waste. Products are only
wasted if they are still in the inventory or in the oven at the end of an episode.

mw = 1− #wasted products

#produced products

• average freshness : Corresponds to the goal of maximizing the freshness of the
sold products. High values mean that a high percentage of the products were
considered fresh at the time they were sold.

mf =
1

#sold products

∑
sold product i

1[agei ≤ expiration timei]

Here 1 denotes the indicator function and agei is the number of time steps the
product i was in the inventory before being sold.

Since we want the agents to mainly focus on the first two goals and get some bonus points
for complying with the third goal, we choose the overall metric as a weighted average of
the three metrics:

m =
4ms + 4m4 +mf

9

The agent’s objective is to maximize this quantity m. It would also be possible to assign
different weights to the components of the metric depending on the exact objective of the
bakery. All algorithms explained in this paper could adapt to any other metric but all
results are based on this metric m.

3 Model-Based Reinforcement Learning

Model-based Reinforcement Learning is the key concept behind the implementations in
this project. Reinforcement Learning is a technique that enables an agent to learn by trial
and error to take optimal decisions in an environment. The feedback on the quality of an
action in a specific situation is provided by a reward function like explained in Section 2.2.
However, näıve tryouts during the learning process can be costly when directly applied
in a real bakery. For example, unconventional decisions in the learning phase such as
producing nothing at all could be fatal for the economic success of a bakery. Therefore,
to avoid such cost, we equip the agent with an internal model of the customer behaviour.
Consequently, the agent is able to internally simulate days in a bakery and to estimate
the outcome of its actions. This summarizes the core idea of Model-Based RL which can

4 HAWKES PREDICTION MODEL 8

be figuratively described as enabling the agent to ”think” before it acts.
More formally, Model-Based Reinforcement Learning can be defined as any RL approach
that uses a known or learned model of the environment [13]. As shown in Figure 2, we use a
prediction model to forecast the consumer behaviour which is based on a Hawkes intensity
as we will further discuss in Section 4. We will name this model Hawkes prediction
model. This Hawkes process is trained on orders that were previously generated by the
real environment. Every time the agent can take an action, it applies Monte Carlo Tree
Search in a simulated environment in order to decide on which action to take in the real
world. Here, the most promising action based on the reward in the simulated environment
will be chosen. Monte Carlo Tree Search will be explained in Section 6. In this simulated
environment, the customer orders are samples from the learned Hawkes model.

Figure 2: Graphical representation of Model-Based RL in PreciBake environment. The
right-hand side is the real bakery environment. The left-hand side illustrates the simu-
lated environment in which the agent performs simulations. The consumer orders in the
simulated environment are generated by a Hawkes predition model whose parameters are
trained on real ordering data beforehand. The agent uses Monte Carlo Tree Search in the
simulated environment as planning method. Multiple different actions such as baking dif-
ferent amounts of pretzel or bread can be taken in the simulated world without influencing
the real one. The action that leads to the highest average reward in the simulations will
be carried out in the real world.

4 Hawkes Prediction Model

In order to plan their actions in an optimal way, our agents need a way to internally
model what the environment might look like in the future. As explained in Section 2.2,
the environment is mostly deterministic, except for the consumer model. In this section
we will talk about how our agents predict this consumer behaviour.
In general, there is a trade-off between how much a model relies on bakery-specific in-
formation (for instance when peak times with an increased number of orders occur) and

4 HAWKES PREDICTION MODEL 9

how easily it can be transferred to another bakery or to a setting with different demand.
The idea behind the application of the Hawkes model is to be as flexible as possible to
adapt to different scenarios. In concrete terms, the model should be powerful enough to
recognize whether the demand will increase or decrease based on the observed order his-
tory, without using a priori information when peak times usually occur. This is achieved
by employing a Hawkes process. It only assumes that if one consumer orders a product,
this will temporarily boost the probability of obtaining another order in the near future.
Peak times are not explicitly defined.

4.1 Theory

To explain how a Hawkes process works, we first consider a setting with only one product
to sell. At time t, we have already observed orders of this product at time steps H(t) =
{t1, ..., tn} where ti < t for all i ∈ {1, ..., n}. Then, the conditional intensity function of a
Hawkes process at time t is defined as [14]:

λ
(
t|H(t)

)
= µ+ α

∑
tk∈H(t)

exp
(
− ω · (t− tk)

)
(1)

This conditional intensity has the interpretation as the expected infinitesimal rate at
which orders are expected to occur around time t given H(t)[15].
It includes three parameters that can be learned: The base intensity µ ≥ 0, the excitement
parameter α ≥ 0 and the decay parameter ω. The effect of these parameters can be seen
in Figure 3. Here, circles indicate the arrival of a customer. In the beginning, the intensity
is equal to the base rate µ, and every time a customer places an order it jumps up by α.
The speed of the exponential decay after an excitement is determined by ω.

Figure 3: The intensity function of a Hawkes process [16]

This simple version of a Hawkes process uses independent intensities for each individual
product, which only depend on orders of this particular type. However, the independence
assumption might be violated in a real bakery setting. For instance, orders of croissants
might increase the expected number of coffee orders in the next time step as they are
often consumed during similar parts of the day.
To capture these possible relations, we decided to use an extension of the Hawkes process
which also takes into account the inter-product dependencies. In this extension, the
conditional intensity function for a product i takes into account the order history Hj(t)
of every product j = 1, ..., N up to time t.

λi
(
t|H1(t), ...,HN(t)

)
= µi +

N∑
j=1

αi,j ∑
tk∈Hj(t)

exp(−ωi,j · (t− tk))

 (2)

4 HAWKES PREDICTION MODEL 10

In this case there is a parameter µi ≥ 0 for every product i as well as αi,j ≥ 0 and
ωi,j for every pair of products (i, j). Therefore the intensity of every product has an
individual baseline and can jump by different amounts, depending on which product is
being ordered. Note, this definition does not pose a constraint as it could restore the
simple Hawkes model by setting all parameters αi,j for product pairs (i, j) with i 6= j to
zero.
For both versions of the Hawkes process, the parameters can be learned from observed
orders via Maximum Likelihood Estimation. The Log-Likelihood of the parameters given
observed order sequences H = {H1, ...,HN} is [17]:

LL(µ,α,ω|H) =
∑

i=1,...,N

(∑
tk∈Hi

log λi
(
tk|H(tk)

)
−
∫
λi
(
t|H(t)

)
dt

)
(3)

with µ =
(
µi
)
i=1,...,N

, α =
(
αi,j
)
i,j=1,...,N

, ω =
(
ωi,j
)
i,j=1,...,N

, H(t) = {H1(t), ...,HN(t)}.

The integral can also be calculated analytically using the following formula (see Appendix
for a derivation of this formula):

∫ b

a

λi(t)dt = µi · (b− a)−
n∑
j=1

αi,j ∑
tk∈Hj

eωi,j(tk−b) − 1

ωi,j

 (4)

Even though we have an analytical formula to calculate the Log-Likelihood, there is no
analytical solution to its maximization. Therefore we used (stochastic) Gradient Descent
to numerically minimize the negative Log-Likelihood.
Fundamental for our agents is that they are able to sample customer orders based on
the order history and our trained Hawkes parameters. Our approach is to sample the
inter-event times between two consecutive orders. Since sampling these inter-event times
from a complex intensity function like the Hawkes intensity is difficult, we use a method
referred to as thinning [14]. This means, at time t we sample candidate times t′ for the
next order from a constant upper bound intensity µ0 ≥ max

t′≥t

∑N
k=1 λk(t

′|H(t)). For each

candidate event t′ we sample the corresponding product type from a categorical distribu-
tion where each type 1 ≤ k ≤ N is chosen with probability λk(t

′|H(t))
µ0

while the candidate

event will be rejected with probability 1−
∑N

k=1
λk(t

′|H(t))
µ0

.
The inter-event times for a constant intensity function µ0 can be sampled from an expo-
nential distribution Exp(1/µ0) [14]. This means, after each event ti, the next event ti+1

is sampled in the following manner:

4 HAWKES PREDICTION MODEL 11

Sampling via Thinning

Input: time ti, history H(ti) and end of episode tmax
Output: tuple (ti+1, j) of next order time ti+1 and product j

or None

1. Set t = ti

2. Choose µ0 ∈ R+ such that µ0 ≥
∑N

k=1 λk
(
t′|H(ti)

)
∀t′ ≥ t

3. Sample inter-event time τ ∼ Exp(1/µ0)

4. Set t = t+ τ

5. If t > tmax:
return None

6. Sample j ∼ Categorical
(
λ1(t|H(ti))

µ0
, ..., λN (t|H(ti))

µ0
, 1−

∑N
k=1 λk(t|H(ti))

µ0

)
If j ∈ {1, ..., N}:

return (t, j)

Else:
Go to 3.

Note that if the sampled next order occurs after the end of the episode tmax, the sampling
method simply returns None. After one tuple was sampled, it gets added to the history
and the procedure is executed again to obtain the next tuple based on the updated his-
tory. This process is repeated until the end of one episode where the algorithm returns
None.

4.2 Hawkes Experiments on Real Data

4.2.1 Setup

In order to assess the capability of the Hawkes process to model consumer behaviour, we
fit the simple version (1) and its extension (2) to the real sales data that was introduced
in Section 2.3. The simple version of the Hawkes process will be abbreviated as SH and
the Multidimensional Hawkes as MH. We train the two versions on the August data while
the December data is used as a test set. The Log-Likelihood (3) serves as our performance
measure for all experiments in this section. As the concrete value of the Log-Likelihood is
difficult to interpret, we introduce a Sliding Window (SW) model as a baseline approach
and consider the relative performance of the Hawkes processes compared to the simpler
SW approach. In the SW model, the order intensity function λSW

(
t|H(t)

)
at time t is

simply the average number of orders per time step over the interval [t−K, t[. The scalar
K > 0 is referred to as the window size and a detailed mathematical formulation of the
intensity λSW

(
t|H(t)

)
can be found in the Appendix. For the experiments we choose a

window size of K = 10.

4 HAWKES PREDICTION MODEL 12

4.2.2 Evaluation

In Figure 4 one can see an overview of the average performance of the Hawkes models
compared to the baseline Sliding Window model.

(a) train set (b) test set

Figure 4: Comparison of Hawkes models and Sliding Window model on real sales data.
Displayed is the average relative Log-Likelihood of order sequences compared to the base-
line Sliding Window model on both the train and test set.

In both figures, the values on the x-axis refer to the number of included products.
In order to have the largest amount of data per number of included products at hand,
the products with the highest number of orders on the whole data set were chosen. That
means, if the number of included products in the figure equals four, we include the four
most frequently ordered products in our analysis. The y-axis shows the average perfor-
mance (Log-Likelihood) compared to the SW baseline model. The mathematical formu-
lation can be found in the Appendix. A value larger than zero for the MH and SH model
means that their average Log-Likelihood was higher in the corresponding experiment. In
Figure 4a we consider the performance on the August train set while Figure 4b shows the
evaluation on the December test set.
In Figure 4a we can observe that if we evaluate the MH model on the train data, it
outperforms the simpler version of the Hawkes process SH and the baseline model SW.
This is no surprise as the MH model is an extension of the SH model that can also take
interdependencies between different products into account. Even if the orders of several
products were independent of each other (that is, the assumption of the SH model would
be correct), as mentioned in section 4.1 the MH model could recover the SH model.
There is also the tendency that the higher the number of included products gets, the more
one can benefit from taking interdependencies into account as the gap between the MH
model and the SH/SW models in Figure 4a increases.
For most numbers of included products the MH model also achieves a higher average Log-
Likelihood on the test set , however the difference to the SH and SW model is smaller
than on the train set. One reason for this observation might be that some of the learned
interdependencies between several product pairs (i, j) might not hold in the test period.
In concrete terms, it could be the case that orders of product type i may effect the fre-
quency of orders of product type j in August, while in December this dependency is not

4 HAWKES PREDICTION MODEL 13

present anymore as the consumer behaviour might be different in winter. Figure 4 aims
to give an impression of the power of the MH approach as consumer model.
Next we will have a closer look at the intensity function.

4.2.3 Graphical Analysis

As an example, we consider the three most commonly sold products which we denote by
1,2 and 3. The parameters of the MH model obtained during the training period are the
following:

µ̂ =

0.109
0.074
0.359

 α̂ =

1.006 0.000 0.045
0.000 0.895 0.015
0.415 0.101 0.362

 ω̂ =

1.023 1.601 1.819
2.185 0.940 1.863
1.420 1.672 1.435

 (5)

Figure 5: Learned Multidimensional Hawkes parameters on real sales data with three
included products.

As a reminder, for i, j ∈ {1, 2, 3} the quantity µ̂i corresponds to the base order rate of
product i. The excitement parameter α̂i,j describes how much the intensity of product i
rises per order of product j and ω̂i,j explains how fast the effect of an order of product
j on the intensity of product i decays. The parameters allow to draw conclusions on the
interdependecies between the different products. Due to the fact that α̂1,2 = α̂2,1 = 0
orders of product 1 do not influence the intensity of product 2 and vice versa in this
learned model. While the intensity of product 1 almost entirely depends on the order
history of product 1 (as α̂1,1 � max{α̂1,2, α̂1,3}), the intensity of product 3 jumps higher
per order of product 1 compared to an order of its own type (α̂3,1 > α̂3,3). In Figure 6,
we illustrate how the intensity function of each product gets affected by customer orders.
For this, we pick a random day from the train set and consider at first only a small time
interval.

Figure 6: Intensity function of the Multidimensional Hawkes with trained parameters.
Depicted is a small time interval of an example day from real sales data.

4 HAWKES PREDICTION MODEL 14

One can see that an order of product 3 has primarily an impact on its own intensity and
only a very small effect on the intensity functions of product 1 and product 2. However,
an order of product 1 leads to an increase in the intensity for both product 1 and product
3 while the intensity of product 2 remains unaffected.
Eventually, in Figure 7 we compare the histogram of real orders per product (Figure 7a)
with the intensity function of the MH model and the SH model based on the learned
parameters on the train set. On top, we further include the intensity of the SW baseline
model. The depicted day is the same example day as used in Figure 6, but now the whole
episode and not only a small interval is examined.

(a) histogram of real consumer behaviour (b) intensity of Multidimensional Hawkes

(c) intensity of Simple Hawkes (d) intensity of Sliding Window

Figure 7: Visualization of real customer orders on an example day and the corresponding
intensity functions of the Multidimensional Hawkes model, Simple Hawkes model and
Sliding Window model

Figure 7a shows that most orders of product 1 and product 3 appear at completely dif-
ferent parts of the day compared to orders of product 2. The time intervals with frequent
orders of product 1 roughly coincide with peak order times of product 3. This behaviour
accords with the observations we made when discussing the learned MH parameters from
(5). Even though the MH intensity (Figure 7b) fails to perfectly match the real amount
of orders for several time intervals of that specific day, the overall consumer behaviour
seems to be mirrored by the intensity function. Remarkable is that by applying the op-
timal (learned) base rates, excitement parameters and decay parameters, peak times are

5 MONTE CARLO AGENT 15

reflected as the intensity function is flexible enough to both rise and decay very sharply.
The same holds for the intensity function of the Simple Hawkes process (Figure 7c). The
Sliding Window intensity (Figure 7d) fails to reflect the real consumer behaviour espe-
cially at peak times as its intensity function is not flexible enough to rise sharply when
the demand increases. Based on this simple graphical analysis of an example day, one
cannot identify which version of the Hawkes model is more favourable, however our re-
sults presented in Figure 4 indicate that it is beneficial to select the MH model as internal
prediction approach for our agents.

5 Monte Carlo Agent

As a baseline we implement a model-based agent that we call Monte Carlo (MC) agent.
It uses Monte Carlo evaluation [18, 19], also called Monte Carlo search [20], to compare
all possible actions at the current state. This agent evaluates these actions by performing
them in the simulated environment and subsequently taking random actions for every step
after, until the end of the episode. The orders in the simulation phase are sampled from
a trained Hawkes model. The reward at the end of the day is used as the score for the
initial action. By performing these simulations multiple times the obtained estimate of
the reward gets more accurate. After all simulations are done, the agent greedily chooses
the action with the highest estimated reward to act in the environment. We compare our
more complex approaches to this baseline model.

6 Monte Carlo Tree Search

In this section we introduce the heuristic search algorithm Monte Carlo Tree Search
(MCTS) [19] that plays the key role in the decision process of the upcoming agents. It
enables the agent to plan ahead in a simulated environment first and then take the most
promising action in the real world.

6.1 Theory

MCTS is a simulation based algorithm that aims to select the best action in the current
state by building a search tree with each node assigning a value to a specific action. Based
on these values MCTS uses a heuristic to expand towards the most promising actions.
This way the tree is built more effectively than evaluating all possible actions in a brute-
force way. MCTS has proven successful and has been used in Model-Based RL approaches
with promising results [9, 10, 11, 19].
Our environment is not deterministic, which means that at any point in time the agent
is uncertain about the exact future development of the environment. When building the
tree, the state at the root of the tree is fixed, corresponding to the real-world state, but
same action sequences can lead to different environment states. Therefore, in our case the
values at the nodes represent the value of the sequence of actions leading to that node,
or more precisely the estimated average value of all states that can be reached with the
respective sequence of actions. Because we cannot calculate this value for all possible

6 MONTE CARLO TREE SEARCH 16

states that an action sequence can possibly lead to, the values are based on Monte Carlo
samples for that action sequence.

Expanding the search tree Figure 8a) shows a visual representation of an example
Monte Carlo tree at time step t = 30. The root node, colored yellow, contains the
information of the real-world state, at t = 30 in this example. All nodes contain the
information of what action is needed to reach that node from the root and the current
value of that node. This value is saved as to variables x and y (illustrated as x/y in the
figure). x is the accumulated reward of all simulations performed at the node and from
all descendants of that node. y is the cumulative number of simulations of it and all
descendant nodes. Actions are choices of how many products and which type to produce,
represented by the icons with amounts. The time steps are not relevant to the agent,
but were added in the visualization to show that the nodes do not have to correspond to
a certain time step at a certain level in the tree. This is due to the fact that different
product types have different production times.
Figure 8 illustrates the necessary steps in Monte Carlo Tree Search. Steps a), b), d) and
e) are the common steps in standard Monte Carlo Tree Search, while c) is a step required
due to the non-deterministic nature of our environment. Step e) illustrates updates after
performing a step in the real-world based on a sufficiently expanded tree.

a) One central part of MCTS is selecting where to expand the tree in an order that
is more efficient than brute-force. In the selection step the heuristic we use is to
select the currently most promising node, which means the node with the highest
cumulative reward divided by the number of simulations. This is node A in the
example figure.

b) In expansion the tree is expanded by adding a child node B to the selected node.
This node corresponds to an action that leads from the previous to the new node.
This action is chosen randomly. In the case that the selected node already happens
to be at the end of the day, it is not expanded and instead node B will simply be
set to the previously select node A.

c) In this step we sample a state that can be reached by performing the sequence of
actions from the root C to node B. The reason we sample this state starting from
the root node is that it depends on the current information we have about our real-
world state. This real-world state might have changed since we last simulated any
of this node’s ancestors. Also, the state at this node is not deterministic and can
therefore only be approximated by a Monte Carlo sample. In order to sample this
state we use our internal prediction model to estimate any potential orders from
customers which affect the state.

d) Given this state the agent then performs a rollout of simulations. The rollouts
simulate the environment until the end of the day using demand estimate from
the internal model (in our case a Hawkes model) and a simulation policy, which
determines what actions the agent performs in this simulation. In standard MCTS
the simulation policy simply performs random actions chosen uniformly from the set
of all possible actions. The cumulative reward at the end of the simulation divided

6 MONTE CARLO TREE SEARCH 17

Figure 8: Steps of Monte Carlo Tree Search. Nodes save the estimated value of the actions
leading to that node. The value consists of x and y, where x is the cumulative reward
of simulations performed at that node and all successor nodes and y is the total number
of simulations performed at that node and all successor nodes. The estimated value of a
node can be calculated by x/y.

by the number of simulations is saved as the value of the node B. In order to have
more accurate estimates for the reward, multiple simulations can be executed for
this node and the outcomes averaged.

e) The backpropagation step uses the results of the rollout to update information in
all ancestors Ni of the simulated node. The simulation numbers and accumulated
rewards of the simulated node will be added as simulation for all nodes Ni. As a
consequence, every Ni will update its values using the number of new simulations
and their accumulated rewards. Because we originally chose to expand from the
current most promising node, this update causes the value at the most promising
node to further approach a theoretically ”correct” value.

Steps a) to e) are repeated as often as the computational budget allows, building up the
search tree to become more accurate with more simulations. When the tree was expanded
sufficiently it is used by the agent to choose which step to perform in the real world. As

6 MONTE CARLO TREE SEARCH 18

shown in Figure 8f), the children of the current root node are compared, marked with
a red circle in the figure. The one with the highest average value, marked with F in
the figure, is selected as the new root node. The action belonging to that node is then
performed in the real world. Now the state at F is changed to the observation in the real
world. The nodes that cannot be reached anymore, marked in grey, are discarded and the
agent continues, starting at step a) with the new root node F, further expanding the tree.

6.2 Improving Monte Carlo Tree Search

We implemented MCTS with the goal of outperforming the far simpler MC agent. Because
we did not manage to find parameters that could do that with our first implementation,
we experimented with different ways to improve the performance of MCTS in our bakery
setting. In Section 6.2.1, 6.2.2 and 6.2.3 we present several modifications to the standard
MCTS approach. Some but not all of them turned out to be successful.

A note on the computational budget In order to fairly compare the MC and MCTS
agents we decided to do so under similar computational budget constraints. The individual
simulations in both agents work the same. Then after all simulations were performed both
types of agents choose actions in linear time with respect to the number of possible actions.
Other computations should only have constant impact on the runtime and are negligible.
Overall, computation times for both agents are therefore dominated by the number of
simulations that are done for every step in the real world, i.e. for every decision an agent
has to make. Therefore, we define the computational budget to be the fixed number
of simulations each agent can perform per real-world time step. Figure 9 shows that in
general apart from some minor irregularities a higher computational budget will increase
the performance of the agent, as expected.

total number of simulations

av
er

ag
e

re
w

ar
d

0.800

0.825

0.850

0.875

0.900

200 400 600 800 1000 1200 1400

Hawkes MCTS Number of Simulations

Figure 9: Average reward of the Hawkes MCTS agent for different numbers of simulations.
Experiments were performed for simulation numbers from 200 to 1400, with intervals of
200. The resulting rewards were averaged over 40 episodes. In general, despite some
irregularities a higher computational budget improves the performance.

6 MONTE CARLO TREE SEARCH 19

6.2.1 Unsuccessful attempts to improve MCTS

The further away from the root a node is, the less accurate simulations of its state will be.
Our first hypothesis was that these inaccuracies cause problems in the evaluation of our
nodes and therefore the overall performance of our agent might deteriorate compared to
the MC agent which only assigns values to states immediately following the current real-
world state. As we perform steps in the real world, the root gets closer to this inaccurate
node deep in the tree. However, the further we go in the real world, the further the value
at that deep node most likely diverges from the real value. Therefore, our first approach
was to rebuild the tree for every real-time step, essentially not remembering any past
simulations that might have been done on less accurate data, because they were based
on less information. This modification, however, did not improve the performance of our
agent in our experiments. A similar approach based on the same idea was to discount
the values of simulations based on how old the simulations themselves are. This discount
would represent the unreliability of old node values. However, this also did not affect the
performance of our agent.
Another method to balance between exploration and exploitation is forcing the root to
try all possible actions, i.e. fully expanding the root, before the selection-expansion-
simulation-backpropagation loop starts. However, this does not show great improvement
under a reasonable computation budget.

6.2.2 Depth limit

Since Monte Carlo Tree Search is a biased searching method in which the tree tends to
expand towards the most promising moves, it risks losing potential promising branches
that have not been fully explored. Predictions far in the future from the current real state
lose accuracy due to the inherent uncertainty of predictions of the future. The idea behind
introducing a depth limit is to ensure that only a small fraction of the computational power
is wasted on future time steps that might not result in accurate evaluations, no matter
how often they are evaluated. The specific value of the depth limit is a balance between
being able to plan far ahead in the future and not wasting resources on simulating states
with high uncertainty.
In our implementation a depth limit of n corresponds to only selecting nodes in the tree
at a depth from 0 to n in the selection phase of MCTS. The depth in this case is the
relative distance to the current root, which corresponds to the current real-world state.
Consequently, the current root has a depth of 0. Any new node that gets added into the
tree in the expansion step can have a maximum relative depth of n+ 1 (expanded nodes
are direct children of the node that was determined to be the most promising node in
the selection step). The depth limit only affects the maximum depth of the tree. The
simulations in the simulation step are not affected and will still be performed until the
end of the day, in order to provide a reward.
Empirically, our experiments showed that lower depth limits improve the performance
of our MCTS agent. Figure 10 shows one such experiment. It can be seen that in this
setting with 600 simulations per real time step there is not a large difference between
depth limits between 0 and 3. However, starting from a depth limit of 4 the performance
continually deteriorates. At depth limit 10 the performance is similar to not having any
depth limit. While the tree can theoretically have a depth of up to 100, in practice most

6 MONTE CARLO TREE SEARCH 20

trees will have a maximum depth around 10. The results also show that with lower depth
limits MCTS manages to outperform the MC agent, as opposed to previous approaches
without depth limit.

depth limit

av
er

ag
e

re
w

ar
d

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

MCTS with depth limit MCTS without depth limit MC agent

Hawkes MCTS Agent Depth Limit

Figure 10: The blue solid line shows the average reward for different depth limits. The
agent is a Hawkes MCTS agent with a computational budget of 600 simulations per time
step. The reward was averaged over 40 episodes. The dotted line shows the average
reward with no depth limit. The orange line shows the average reward achieved by the
Monte Carlo agent without tree search. The experiments show that with lower depth
limits MCTS can outperform the MC agent.

An MCTS agent with a depth limit of 0 behaves very similarly to the MC agent. The
main difference is that the MC agent will loop over all possible actions in the current
state and simulate the subsequent states, while the MCTS agent will use the heuristic
to choose the most promising action. The results from Figure 10 indicate that applying
this heuristic is already enough to improve the performance. Additionally, the fact that
low depth limits larger than 0 perform similarly well suggests that the uncertainty in our
predictions several actions into the future is not detrimental to the performance.

6.2.3 Learned simulation policy

MCTS lends itself to several modifications in which standard RL algorithms can be ap-
plied. Our approach was improving the simulation policy by replacing our previous policy,
which simply performed random actions during simulation, with an agent that learns over
time. Similar to one of the approaches used in [9] the idea is that an improved simulation
policy makes the results of a simulation more accurate, therefore reducing the number of
needed simulations and potentially improving the precision of the resulting score. Due
to the large number of simulated experiences used for building the Monte Carlo tree, we
decided to simply train the simulation policy on experience from the simulated environ-
ment. Consequently, this adds a training process which is required for our agent: Before
the agent can be evaluated it needs to run for a number of training episodes in order to
train the simulation policy.

7 EXPERIMENT SETUP 21

For the RL policy we experimented on Deep Q Networks (DQN) [21] and Proximal Policy
Optimization (PPO) [22]. Our empirical tests show no obvious difference and we decided
that detailed hyperparameter-tuning and comparison of other algorithms is out of scope
for this project. In PPO every policy gradient update step is limited, such that it does
not change too far from the previous policy. We chose PPO because unlike a DQN policy,
a PPO policy works with any combination of discrete and continuous observations and
discrete and continuous action spaces.
In our original environment both the action space and the observation space are discrete:
We can produce a discrete number of products from a discrete choice of product types;
We can have a discrete number of products in our inventory and customers will purchase
a discrete number of products. However, the real-world interpretation of actions and ob-
servations loses information when reduced to discrete vectors, where two different samples
are completely independent. A time step with two orders of a product is more similar to
a time step with three orders than to one with ten orders. The same holds for production
decisions. By giving our action and observation spaces continuous vector shapes, we im-
plicitly model this correlation. We chose to make the actions and observations continuous
before passing them to the PPO algorithm and discretizing them when passing the output
actions to the environment. For example, if the PPO algorithm chooses to produce 0.5 of
a product that simply means 0.5 times the maximum number of products it can produce
of that type. As we are using PPO, our simulation policy can work with these continuous
spaces.
For the implementation of the RL algorithms we choose the library stable-baselines3

[23]. It provides tested state-of-the-art implementations of many popular RL algorithms
implemented in PyTorch, which we are familiar with.

7 Experiment Setup

Environment configuration We evaluate the agents in three different settings. Firstly,
we evaluate the performance of our agents in a setting where the test consumer demand
comes from the same distribution as the training demand. The second setting aims to
evaluate how well the agents transfer to new environments. Here we train on the same
distribution as in the first setting, however the test evaluations are performed in an en-
vironment where the demand has increased. This could be seen as a day where simply
more customers decide to buy at the bakery than usual. The average number of products
ordered are double the amount from the first setting. In the third setting we evaluate
the agent on real-world data. Both training and testing is performed on customer orders
provided by PreciBake from a real food establishment as described in Section 2.2. The
training distribution comes from days in August while the tests are performed on data
from December which includes Christmas day. Therefore, this setting also evaluates the
robustness of the agent on changing external circumstances. All tests are performed on
one environment with 2 different product types and one with 5 different product types.
Table 1 in Section 8 illustrates the 6 different experiments.

Hawkes prediction model The Hawkes prediction model, as described in Section 4,
is a priori trained independent from the other parts of the agents. Equipped with the

7 EXPERIMENT SETUP 22

learned parameters, the agent can then act on train or test data. To provide comparable
results we train the Hawkes model once for every environment setting (for the setting
with double the amount of orders we do not need to train again, as we can use the trained
model from the previous setting) and use the same parameters for all model-based agents.

Threshold agent We compare our agents with a rule-based baseline agent. This agent
mimics the process a human baker would use to choose what to produce. The agent
simply produces a fixed number of new products if the inventory for this product falls
under a set threshold. This agent does not use any internal simulations and cannot be
trained.

Model-based agents Choosing the computational budget for our agents, as it is de-
scribed in Section 6.2, is a trade-off between agent performance and experiment duration.
We choose a budget of 600 total simulations per real-world step.
We evaluate two agents that use MCTS. The first uses a random simulation policy and we
will refer to it as the MCTS agent. The second one uses PPO as the simulation policy and
we will refer to it as MCTS+PPO. Before evaluating the agent, MCTS+PPO is trained for
10 training days in the environment designated for training. During evaluation the PPO
policy stays constant and does not learn further. Following our empirical experiments
and discussion described in Section 6.2.2, we choose a depth limit of 2. This gives us
a relatively low value with good performance while still allowing the tree to do some
planning of the future.

8 RESULTS & DISCUSSION 23

8 Results & Discussion

Experiment 1a 1b 2a 2b 3a 3b

Training Poisson environment Real customer data
(August)

Testing Identical to training Doubled product orders Real data
from training (December)

Number of 2 5 2 5 2 5
products

Table 1: Experiment configuration. Experiments 1 use the same distribution for training
and testing, experiments 2 use a distribution with higher customer demand for testing,
experiments 3 train and test on real data from two different months. Experiments a use
a configuration with 2 different product types, experiments b with 5 different ones.

Experiment 1a 1b 2a 2b 3a 3b

Threshold 0.7672 0.5016 0.6876 0.5577 0.5527 0.4447

MC 0.8057 0.6842 0.7154 0.6323 0.6408 0.5008

MCTS 0.8353 0.7054 0.8755 0.6913 0.7618 0.6512

MCTS +
PPO

0.8515 0.6946 0.8549 0.7070 0.7422 0.6360

Table 2: Results of experiments as described in Section 7. Specifics of experiment con-
figuration can be seen in Table 1. Values are average rewards achieved evaluating in test
setting. Values in bold represent the highest achieved average rewards in an experiment.

Table 2 shows our final experiments. The values are the average reward in evaluations
of the four agents on the different settings. The result of the best performing agent for
each experiment is marked as bold. Unsurprisingly, the threshold agent is outperformed
by all other agents, as it only follows a very simple rule that cannot keep up with more
sophisticated approaches. Furthermore, the Monte Carlo agent is outperformed by both
the MCTS agent and MCTS+PPO. We explain this by the fact that MCTS is an extension
of Monte Carlo search. If MCTS chose to only expand the root node, it would be very
similar to Monte Carlo Search. Adding the heuristic of selecting useful states to simulate
in MCTS as opposed to the brute-force equal simulation of all actions in the Monte Carlo
agent, as well as the ability to do some planning of future actions apparently provides
better results.
Comparing MCTS with and without an RL simulation policy shows that MCTS+PPO
can outperform simple MCTS in the normal environment with two products and Experi-
ment 2b, which has 5 products and different training and testing environments. How-
ever, MCTS+PPO performs worse in the other environments. The better results of
MCTS+PPO in Experiment 1a and 2b show that improvement by using a smarter sim-
ulation policy is possible. A learned simulation policy can improve the accuracy of the

8 RESULTS & DISCUSSION 24

Monte Carlo samples allowing the agent to make more efficient use of its resources. For
the same number of simulations, values in the tree might be more accurate. The lower
performance of MCTS+PPO in experiments 2a, 3a and 3b could be related to the differ-
ence in training and test data. One would expect that the agent that has a simulation
policy that learns over time is more sensitive to changes in the environment’s distribu-
tion. The RL policy will learn to assume a distribution which is not true in the testing
environment. The MCTS agent however does not contain any learned parameters except
in the Hawkes predictions, and will therefore be less affected by a domain transfer. The
difference between MCTS and MCTS+PPO in experiments 1b and 2a is relatively small,
so is difficult to conclusively analyze.
In general it is difficult to compare rewards from different environments with each other.
Small changes to the configuration can have large effects on the resulting rewards. Exper-
iments 3a and 3b on the real data seem to generally be a more challenging environment.
This does not seem to be the case in general for environment 2a and 2b, despite the dif-
ference in training and test distribution. It is possible that the higher amounts of orders
in 2a and 2b counteract the difference in domain by allowing the agents the get more
reward by making it easier to sell products without wasting them.
One advantage of the approach of having an agent that can learn, is that it is possible to
train multiple agents and choose the best one. While all other agents’ performance can
only be improved by modifying the architecture or parameters, for example by increasing
the computational budget, for the learning (PPO) agent different outcomes in the learning
process can result in differently performing agents with the same parameters. Training
multiple ones would allow to choose the best one in a given evaluation which would then
be expected to perform better in general. Similarly, in our experiments we only evaluated
agents that trained for 10 episodes. However, while MCTS agents cannot be trained, it
is conceivable that training the MCTS+PPO agent for a longer time would allow it to
improve further. Of course this additional training also takes more time, however as this
can be done offline before the agent is deployed it does not affect online run-time.

9 CONCLUSION & FUTURE WORK 25

9 Conclusion & Future Work

We have provided a way to improve agents in our baking environment with Model-Based
Reinforcement Learning. While the non-determinism of the environment makes it difficult
to use many model-based approaches out of the box, our results show that Model-Based
RL is still feasible. The resulting agents are capable of planning by estimating the outcome
of possible actions. Our agent lends itself to improvements in future work.
In the Hawkes model, we learn the optimal parameters considering the whole episode and
do not distinguish between different parts of the day. This has the advantage that we do
not have to provide any information about usual consumer behaviour for specific times.
A possible extension would be to split the day into different parts with similar demand
and learn parameters for each part individually.
Another approach would be to employ an LSTM to update the intensity function after
each event. This would allow the model to capture even more complicated dependencies
between product orders [24].
Additionally, our usage of a Hawkes model prioritizes transferability over long-term pre-
diction accuracy. Using a prediction model that takes recorded past consumer behavior
into greater account could improve agent performance in the main domain at the cost of
transferability. This approach would also depend on the availability of past data.
There are also possible extensions associated with MCTS. An RL Policy used to decide the
real action given a Monte Carlo Tree could make a smarter trade-off between exploration
and exploitation than the current greedy method. Furthermore, improvements could
be made in choosing which actions are expanded from a given node, which is currently
random. Additionally, a regression network which provides a quick but not as accurate
value for a given node could be used in conjunction with the rollouts similar to the
approach taken in AlphaGo [9], which could reduce the number of needed simulations.
The approach used in the AlphaZero [10] algorithm expands on the previous two improve-
ments in a way that seems promising for our setting. Firstly, it combines the policy used
to make decisions in the real-world with the network that estimates the value of a node
in the tree into a single neural network. Secondly, it forgoes simulations, only using the
constantly learning neural network to estimate the value of the node. These improvements
allow to expand the search tree more efficiently.
The non-determinism and branching factor of the tree make many model-based approaches
difficult. Hierarchically structuring the world into nodes is inherently discrete, which dis-
cards some information we have about the similarity of actions and creates a large search
space. Model-based approaches that do not rely on search trees, such as Imagination
Augmented agents [25], or that use some kind of function approximation to represent
the state could provide big improvements. Along similar lines is an approach used in
the MuZero algorithm [11], an extension of AlphaZero. In MuZero learning the model
is not separate from the MCTS, which by default expects an already learned model of
the environment. Instead, neural networks are used to directly learn the dynamics of the
environment in conjunction with the MCTS process. This approach could prove useful in
solving inherent challenges with prediction of the environment.
Overall, Model-Based Reinforcement Learning seems promising for the bakery optimiza-
tion problem and there are many extensions possible to improve on our existing work in
the future.

Bibliography

[1] DeepMind. AlphaGo. url: https://deepmind.com/research/case-studies/
alphago-the-story-so-far/ (visited on 02/03/2021).

[2] Michael Janner et al. When to Trust Your Model: Model-Based Policy Optimization.
2019. arXiv: 1906.08253 [cs.LG].

[3] Murat Karacabey et al. Domain Transfer for Reinforcement Learning Agents. 2020.

[4] Rupal Rana and Fernando S. Oliveira. “Dynamic pricing policies for interdependent
perishable products or services using reinforcement learning”. In: Expert Systems
with Applications 42.1 (2015), pp. 426–436.

[5] Ahmet Kara and Ibrahim Dogan. “Reinforcement learning approaches for speci-
fying ordering policies of perishable inventory systems”. In: Expert Systems with
Applications 91 (2018), pp. 150–158.

[6] Rui Wang et al. “Solving a Joint Pricing and Inventory Control Problem for Perish-
ables via Deep Reinforcement Learning”. In: Complexity 2021 (2021), p. 6643131.

[7] Ana Soares et al. “Using reinforcement learning for maximizing residential self-
consumption â“ Results from a field test”. In: Energy and Buildings 207 (2020),
p. 109608.

[8] Afshin Oroojlooyjadid, Lawrence V. Snyder, and Martin Takác. “Applying Deep
Learning to the Newsvendor Problem”. In: CoRR abs/1607.02177 (2016). arXiv:
1607.02177.

[9] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and
Tree Search”. en. In: Nature 529.7587 (Jan. 2016), pp. 484–489.

[10] David Silver et al. “A General Reinforcement Learning Algorithm That Masters
Chess, Shogi, and Go through Self-Play”. In: Science 362.6419 (Dec. 7, 2018),
pp. 1140–1144. pmid: 30523106.

[11] Julian Schrittwieser et al. “Mastering Atari, Go, Chess and Shogi by Planning with
a Learned Model”. In: Nature 588.7839 (7839 Dec. 2020), pp. 604–609.

[12] OpenAI. OpenAI Gym documentation. url: https://gym.openai.com/docs/

(visited on 02/01/2021).

[13] Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based Re-
inforcement Learning: A Survey. 2020. arXiv: 2006.16712 [cs.LG].

[14] Abir De, Utkarsh Upadhyay, and Manuel Gomez-Rodriguez. Temporal Point Pro-
cesses. Lecture Script (Saarland University). Winter 2018-19.

[15] Wolfram MathWorld. Conditional Intensity Function. url: https://mathworld.
wolfram.com/ConditionalIntensityFunction.html (visited on 02/05/2021).

[16] Stephan Günnemann. Machine Learning for Graphs and Sequential Data (IN2323).
Lecture Script (Technical University of Munich). delivered 06/17/2020.

[17] Mehrdad Farajtabar et al. A Continuous-time Mutually-Exciting Point Process
Framework for Prioritizing Events in Social Media. 2015. arXiv: 1511.04145 [cs.SI].

26

https://deepmind.com/research/case-studies/alphago-the-story-so-far/
https://deepmind.com/research/case-studies/alphago-the-story-so-far/
http://arxiv.org/abs/1906.08253
http://arxiv.org/abs/1607.02177
30523106
https://gym.openai.com/docs/
http://arxiv.org/abs/2006.16712
https://mathworld.wolfram.com/ConditionalIntensityFunction.html
https://mathworld.wolfram.com/ConditionalIntensityFunction.html
http://arxiv.org/abs/1511.04145

[18] B. Abramson. “Expected-Outcome: A General Model of Static Evaluation”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 12.2 (Feb. 1990),
pp. 182–193.

[19] Guillaume Chaslot et al. “Progressive Strategies for Monte-Carlo Tree Search”. In:
New Mathematics and Natural Computation 04 (Nov. 1, 2008), pp. 343–357.

[20] Gerald Tesauro and Gregory Galperin. “On-Line Policy Improvement Using Monte-
Carlo Search”. In: Advances in Neural Information Processing Systems. Ed. by M.
C. Mozer, M. Jordan, and T. Petsche. Vol. 9. MIT Press, 1997, pp. 1068–1074.

[21] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013.
arXiv: 1312.5602 [cs.LG].

[22] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: ArXiv abs
/1707.06347 (2017).

[23] Antonin Raffin et al. Stable Baselines3. https://github.com/DLR-RM/stable-
baselines3. 2019.

[24] Hongyuan Mei and Jason Eisner. The Neural Hawkes Process: A Neurally Self-
Modulating Multivariate Point Process. 2017. arXiv: 1612.09328 [cs.LG].

[25] Sébastien Racanière et al. “Imagination-Augmented Agents for Deep Reinforcement
Learning”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon
et al. Vol. 30. Curran Associates, Inc., 2017, pp. 5690–5701.

27

http://arxiv.org/abs/1312.5602
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
http://arxiv.org/abs/1612.09328

Appendix

Sampling Algorithm of the Poisson Model

Poisson Consumer Model Algorithm

Input: List of means µ, time step t ≤ 100.
Output: Number of orders for time step t.

1. Set l = length(µ)

2. Identify which entry µi of µ corresponds to the part of the day that
contains t.

3. Sample x ∼ Pois
(
µ·100
l

)
4. Return x

Remark: In our implementation, one day consists of 100 time steps.

Calculation of Hawkes integral

For given order sequences H1, ...,HN for the products 1, ..., N , the integral of the intensity
of product i is:

∫ b

a

λi(t) dt =

∫ b

a

µi +
N∑
j=1

αi,j ∑
tk∈Hj(t)

exp (−ωi,j · (t− tk))

 dt

=

∫ b

a

µi dt+
N∑
j=1

αi,j ∫ b

a

∑
tk∈Hj(t)

exp (−ωi,j · (t− tk)) dt

= µi · (b− a) +

N∑
j=1

αi,j ∫ b

a

∑
tk∈Hj

exp (−ωi,j · (t− tk)) · 1(tk < t) dt

= µi · (b− a) +

N∑
j=1

αi,j ∑
tk∈Hj

∫ b

a

exp (−ωi,j · (t− tk)) · 1(tk < t) dt

= µi · (b− a) +

N∑
j=1

αi,j ∑
tk∈Hj

∫ b

tk

exp (−ωi,j · (t− tk)) dt

= µi · (b− a)−

N∑
j=1

αi,j ∑
tk∈Hj

eωi,j(tk−b) − 1

ωi,j

28

Here, Hj(t) denotes all orders in sequence Hj that have occurred before time t and 1

denotes the indicator function.

Baseline Sliding Window Model

In the SW model, the order intensity function of product j, namely λSW,j
(
t|H(t)

)
at time

t is simply the average number of orders per time step over the interval [t − K, t[with
K > 0. For some product j and time t > 0 Hj(t) = {t1, ..., tn} denotes the set of past
orders of product j and the Sliding Window intensity reads as

λSW,j
(
t|Hj(t)

)
=

(
1

K

∑
tl∈Hj(t)

1[t− tl ≤ K]

)
1[t > K] +

|Hj(t)|
t

1[t ≤ K] (6)

where 1 denotes the indicator function and |Hj(t)| the cardinality of set Hj(t).

Average relative Log-Likelihood compared to SW model

Denote as LLMH
k,d the Log-Likelihood of the order sequence for day d with k included

products for the trained MH model (and analogously LLSHk,d for the SH model), then with
D denoting a set of days we define by

L̂L
MH

k,D :=
1

|D|
∑
d∈D

LLMH
k,d −

1

|D|
∑
d∈D

LLSWk,d (7)

L̂L
SH

k,D :=
1

|D|
∑
d∈D

LLSHk,d −
1

|D|
∑
d∈D

LLSWk,d (8)

the average relative Log-Likelihood compared to the SW model.

29

	Abstract
	Introduction
	Bakery Setting
	OpenAI Gym
	Bakery Environment
	Consumer Models
	Reward Metric

	Model-Based Reinforcement Learning
	Hawkes Prediction Model
	Theory
	Hawkes Experiments on Real Data
	Setup
	Evaluation
	Graphical Analysis

	Monte Carlo Agent
	Monte Carlo Tree Search
	Theory
	Improving Monte Carlo Tree Search
	Unsuccessful attempts to improve MCTS
	Depth limit
	Learned simulation policy

	Experiment Setup
	Results & Discussion
	Conclusion & Future Work
	Bibliography
	Appendix

