
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

TUM AI for Pathology, Schueffler Lab

Final report of project:

PathoAI Cockpit - Pathology Data Science for

Molecular and Digital Pathology AI

Authors Max Adam, Mei-Ling Fang, Kaan Kalaycioglu, Santhosh
Kumar Ravi Kumar, Dilvan Sabir

Mentor(s) Prof. Dr. Peter Schueffler, PD Dr. Katja Steiger, Dipl.
Biol. Nicole Pfarr

Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Jul 2023



1

Summary

Digital pathology has revolutionized diagnostic medicine, enabling efficient and accurate
analysis of tissue samples through digitized slides. However, as digital pathology becomes
more prevalent, maintaining quality control during the scanning process is crucial to en-
sure pathologists receive slides suitable for immediate analysis. In this project, we present
the development of a comprehensive dashboard for digital pathology slides, integrating
multiple artifact detection classifiers to address these challenges.

The frontend of the dashboard was built using the Angular framework, coupled with a
backend divided into two components. The first component triggers upon slide scanning,
calling the classifiers and collecting their outputs in JSON format. The second compo-
nent serves as a REST API, delivering data to the frontend and facilitating a user-friendly
interface for pathologists to access and interact with digitized slides effortlessly.

Python-based classifiers were developed to enhance quality control in digital pathology
analysis, including:

1. Air Bubble Detection: Identifying slides with air bubbles that may hinder accu-
rate analysis.

2. Blur Detection: Quantifying and detecting blur in slides to ensure clarity and
reliability.

3. Dust and Dirt Detection: Identifying artifacts such as dust and dirt that could
impact analysis.

4. Missing Coverslip Detection: Detecting slides without coverslips to ensure clar-
ity and accurate analysis.

5. Incomplete Tissue Detection: Identifying areas where tissue samples are missing
from the scanned image.

6. Stripe Detection: Detecting artifacts caused by scanning irregularities, ensuring
slide accuracy.

7. Tissue Fold Detection: Identifying slides with tissue folds that could impact
analysis.

The dashboard displays the results of each classifier in an easily interpretable manner,
enabling a user to identify slides that might require rescanning or further examination.
By integrating these classifiers into the dashboard, our project enhances the quality and
efficiency of digital pathology analysis, addressing the growing need for reliable quality
control measures in this evolving field.
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1 Introduction

1.1 Digital Pathology

Digital pathology is a field of medicine that involves the digitization and analysis of
pathology slides. It enhances the traditional method of manually examining glass slides
under a microscope with the use of digitized Whole Slide Images (WSIs) that can be
analyzed and interpreted using high-resolution scanners and computer algorithms. This
enables remote access, collaboration, and automated diagnostics for improved accuracy
and efficiency in diagnosing diseases.

1.2 Motivation

WSIs are produced in the digital pathology workflow (see Figure 1). A WSI is a high-
resolution digital representation of an entire glass slide that is used in digital pathology for
viewing, analyzing, and sharing tissue specimens electronically (see Figure 2b). With the
adoption of advanced imaging tools in clinical and research practice, WSIs are used more
and more to explore complex and sub-visual features in tissue-based biomarker analysis,
which are related to different types of cancer. The need for increasing translational
outcomes has sparked the innovation of a superior image analysis approach. Moreover,
the enormous amount of data generated has made the management of diagnostic workflow
increasingly hard. Therefore, there is an increasing need to develop tools to streamline
the workflow of pathologists.

Figure 1: Comparison between the workflow of traditional and digital pathology [1].

Quality control is one of the most crucial bottlenecks in digital pathology. The lab1 of our
project mentor, Prof. Dr. Schueffler, is affiliated with the Institute of General and Surgical
Pathology of the Technical University of Munich2, where the digitization of WSI archives
is taking place. In the current setup, the preparation and digitization of histological

1Schueffler Lab
2Institute of General and Surgical Pathology of the Technical University of Munich

https://schuefflerlab.org/
https://web.med.tum.de/en/path/homepage/
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slides often introduce variations and artifacts, e.g. specks of dust (Figure 14a) or out-of-
focus regions (Figure 5), but the detection of such artifacts are also manually screened
using tools such as Figure 2c, which are time-consuming and error-prone. Artifacts are
alterations of tissue or artificial structures introduced by extraneous factors that might
be present in some parts or even the whole WSI [2], which might hamper the diagnostic
procedure. This project focuses on the automation of detecting common artifacts of
scanned images. In addition, we provide a solution for WSI quality control in the form
of a cockpit dashboard, which integrates state-of-the-art implementations found in the
literature. Furthermore, we include a summary of evaluation techniques along with a
discussion of possible limitations and future refinement directions.

(a) WSI scanners (b) Resolution pyramid (c) Whole slide viewer

Figure 2: There are various vendors offering WSI scanners (2a and its corresponding
format. Usually, the file consists of an image pyramid, with top-level showing a thumbnail
image that has the lowest resolution and the bottom level of the pyramid (see 2b) having
the highest resolution. Artifacts can occur at every resolution level. [3]. Pathologists can
inspect WSIs using imaging tools such as the one in 2c.

2 Methods of Artifact Detection

In this section, we explain our approach to detecting the most common artifacts.

2.1 Air Bubbles

Air bubbles are confined air pockets that become trapped between the microscope slide
and the cover slip. This is often a consequence of insufficient sealing of the sample.

Air bubbles pose a significant issue primarily due to their ability to cause light refraction,
resulting in distortions within the scanned image. Consequently, the distorted image fails
to faithfully represent the true characteristics of the tissue sample. This distortion then
could pose a challenge in accurately interpreting tissue structures and features, in the
worst case potentially leading to erroneous diagnoses or inaccurate analysis.

2.1.1 Related Work

During the research phase, we conducted a thorough literature review to identify suitable
methodologies. We found one study that is of particular interest where the authors

https://slides.path.med.tum.de/
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(a) no bubbles (b) air bubble (c) air bubble at tissue

Figure 3: Example of no bubbles 3a, bubbles 3b, and bubbles intersecting with tissue 3c.

proposed and subsequently implemented an approach for air bubble detection that entails
the iterative processing of the slide file to detect the contours of lines formed by air bubbles
[4]. However, upon experimentation, we observed that this method lacked robustness,
and the authors themselves acknowledged its developmental nature. In light of this, we
sought guidance from our mentor, Prof. Dr. Peter Schüffler, who suggested an alternative
strategy. This approach focuses on the detection of black lines, as they correspond to the
boundaries of the bubbles. To explore this concept further, we consulted a publication by
Schüffler et al. [5], which aimed to extract pen annotations of various colors (including
blue, red, green, and black) from slide thumbnails.

2.1.2 Implemented Method

Concerning the presence and detection of air bubbles, our study began with a positive
sample size of 4, which we augmented by implementing a black marker detector using
OpenCV and Python. This detection method was primarily derived from the previous
work conducted by Schueffler et al [5].

By employing the aforementioned approach, we successfully generated masks of the air
bubbles by detecting the black lines encircling them and subsequently filling in the corre-
sponding areas. Figure 4 demonstrates the generated masks for the samples from Figure 3:

(a) no bubbles (b) air bubble (c) air bubble at tissue

Figure 4: Masks of air bubbles of the images from Figure 3.

Furthermore, we developed a specialized tool utilizing the OpenSlide API to extract
batches of thumbnail images from WSIs in the format of .svs files.

2.1.3 Results

We tested our classifier on a dataset of thumbnail images extracted from 3060 WSI from
the TUM Institute of Pathology. Through meticulous manual data cleaning, we success-
fully identified 174 slides that displayed the presence of air bubbles. In order to avoid
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lots of false positives, we set the masking sensitivity to pick up on objects of at least 300
pixels large, a number which was arrived at using grid-search.

We then constructed a Convolutional Neural Network (CNN) binary image classifier based
on the TensorFlow framework. We employed a dataset consisting of 378 samples dis-
tributed across two classes: no bubbles (negative class) and bubbles (positive class). For
training purposes, we utilized 320 samples, reserving 58 samples for testing.

In Table 1 and Table 2, we present the confusion matrix and the accuracy metrics respec-
tively for the CNN air bubble classifier:

Manual Detection
Bubbles No bubbles Total

Prediction
Bubbles 171 95 266
No bubbles 49 2791 2840

Total 220 2886 3060

Table 1: Confusion Matrix for the CNN Air Bubble Classifier on a dataset of 3060 WSIs.

Accuracy Precision Recall Specificity F1-Score
0.9494 0.6436 0.7778 0.9678 0.7043

Table 2: Accuracy metrics for the CNN Air Bubble Classifier on a dataset of 3060 WSIs.

2.1.4 Discussion

Limitations of this work include the constrained sample size employed for training the clas-
sifier. Consequently, the current classifier detects air bubbles in a general sense, rather
than specifically focusing on the issue of bubbles intersecting or overlapping with tissue.
Nonetheless, it is noteworthy that the latter scenario is a subset of the former, and thus
the current classifier adequately fulfills its primary objective.

For future improvement, one potential avenue of approach involves integrating a segmen-
tation model, such as Meta’s Segment Anything [6] into the detection process. Proper
implementation of this approach holds promise in achieving a robust method for accurately
identifying instances where air bubbles overlap with tissue. This enhancement would offer
a more precise and targeted detection capability, specifically addressing concerns related
to bubble-tissue intersections.
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2.2 Blurriness

2.2.1 Context

Blur is the most common artifact introduced during scanning that diminishes the overall
sharpness of a WSI, see example slides in Figure 5. It is produced by uneven tissue
thickness or improper focal calibration by the scanning devices [2]. Once blur areas are
detected on the WSIs, they’re often discarded or re-scanned if possible.

2.2.2 Related Work

Existing methods of objectively quantifying the presence of blurry patches can be divided
into Full-/Partial-Reference and No-Reference methods [7]. Full-/Partial-Reference meth-
ods require a non-blurry reference image for comparison. However, reference images are
not always available. In No-Reference methods, one assumes that the distribution of the
blur metric is different in sharp and blurry patches.

Figure 5: Example slides from the Fo-
cusPath database, showing different lev-
els of blurriness.

Gao et al. [8] leveraged the textural information
obtained from the images and classify sharp and
blurry regions by determining pixel-level infor-
mation and bin distributions. Both local and
global features are compared using several clas-
sifiers. Among them, local features contributes
to higher accuracy. Campanella et al. [9] pro-
posed to train a blur detector from scratch, us-
ing sharpness-based features along with a ran-
dom forest model and residual network. The results include spatial heatmaps that enable
further quantification and localization of blurred areas on a slide. Hosseini et al. [10] pro-
posed a focus quality assessment metric by using a sum of even-derivative filter bases to
synthesize a human visual system-like kernel, which is modeled as the inverse of the len’s
point spread function. Further, a benchmark database FocusPath [11] with 8640 patho-
logical images (consisting of 9 slides from different organ tissues) was made available3,
and this dataset is used in this project for training and validation of a blur detection
algorithm.

2.2.3 Implemented Method & Evaluation

0 1 0
1 −4 1
0 1 0


Figure 6: The
Laplacian kernel.

Inspired by the work of Pech-Pacheco et al. [12], we implemented a
blur detection method using a variation of the Laplacian. The idea
is to highlight regions of an image containing rapid intensity changes
by measuring the 2nd derivative of an image using the Laplacian op-
erator. The assumption is that if an image has high variance, there
is a wide range of responses, representative of an in-focus and out-of-
focus image. On the other hand, low variance indicates there’s a tiny
spread of responses. Given that the more an image is blurred, the

3FocusPath-UofT https://sites.google.com/view/focuspathuoft/home

https://sites.google.com/view/focuspathuoft/home
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fewer edges there are. So, we start by convolving a grayscale image with the Laplacian
kernel, see Figure 6. Then we take the variance, i.e. squared standard deviation, of the
outcome. If the variance falls below a pre-defined threshold, then the image is considered
blurry, and vice versa.

Figure 7: Distribution of image responses af-
ter applying Laplacian filter.

Next, we look for a clear threshold using
the FocusPath [11] database. We start by
classifying levels of blurriness into 7 cate-
gories, with high scores for blurry regions
and low scores for sharp regions. Then, we
plot the output of image responses after ap-
plying the Laplacian filter. From the dis-
tribution plot (Figure 7), we can observe
a similar distribution among very blurry
classes (score ≥ 4) and less blurry classes
(score < 4). The color encodes the subjec-
tive score, which is defined in the Focus-

Path dataset. Here, we classify images with absolute subjective scores above 7 into 7, in
order to balance the class distribution. However, due to the long tail distribution, we are
unable to make a clear distinction between blurry and sharp images at this stage.
Then, we turn our attention to the 2nd technique - Fast Fourier Transform(FFT) [13,14].
It is an algorithm used to analyze signals and identify patterns in them. In blur detection,
FFT is applied to an image to convert it into its frequency domain representation. By
analyzing the high-frequency content in the spectrum obtained through FFT, we can
determine whether the image is blurred or not based on the amount of high-frequency
energy present. The magnitude spectrum image obtained from the FFT in blur detection
represents the strength or magnitude of different frequency components present in an
image. By converting the input image to grayscale and applying the FFT, we can analyze
the distribution of frequencies in the image. This information helps to determine the level
of blurriness in the image, as sharp images tend to have higher energy in the high-frequency
components (see Figure 8b), while blurred images exhibit a more uniform distribution
across frequencies (see Figure 8a).

(a) Blurry image with subjective score of 8 (b) Sharp image with subjective score of 0

Figure 8: Comparison of blurry (a) and sharp (b) images after applying FFT. Users can
find more information about subjective scores in [11]. The sharpest images get a score
close to 0. The higher the score, the blurrier the image is.

To further inspect the effectiveness of our method, we applied the method on every patch
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in the FocusPath database and plotted the distribution. Here, we empirically classify
image patches with an absolute subjective score of 1 and 0 as sharp, and the rest as
blurry. We set the threshold to 10. We subsequently obtained an acceptable separation
between 2 classes, see Figure 9b. However, refinements and tuning the threshold are
required for further improvement. At this stage, we present the threshold as well as the
output values for users to decide.

(a) FFT (b) FFT with threshold

Figure 9: (a) Distribution of image responses after applying FFT and its corresponding
blurry binary map (b).

The final result is demonstrated using an example WSI in Figure 10. In our implementa-
tion, the blur detector takes a WSI as input, then it generated tiles, or patches, in each
layer and stores them into a DeepZoom object. It then takes the deepest level with the
highest resolution and runs the above algorithms for each tile, and generated a heatmap
visualization.

Figure 10: Final result of the blur detector. The leftmost image is the original image
being detected. Then it follows the heatmap from the Laplacian filter, and the heatmap
from FFT, as well as its binary blurry mask derived from FFT. The last image is the
original image with an overlay of FFT heatmap. The lighter the region, the sharper it is.

2.2.4 Results

We continued to present deep learning (DL) as well as traditional machine learning (ML)
methods, which were explored separately yet have not generated significant results due
to time constraints, see the DL and ML path illustrated in Figure 11. These could be
further improved for future explorations.
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Figure 11: Proposed routes during the exploration phase.

Figure 12: Training plot of DenseNet121.

In the DL path, a DenseNet121 multi-
class classifier was trained using a
subset of FocusPath, with a total of
864 images for the experiment. 4-
fold split for cross-validation was per-
formed, with a 90:10 split ratio for the
training and testing set. The labels
were taken from the subjective scores
defined in the FocusPath. To balance
the class distribution, we first took the
absolute value of the subjective scores, and assigned scores above 9 into class 8, so that
we obtained a total of 9 classes as our labels. Though the training average loss shows a
clear declining trend Figure 12, the resulting classifier is barely outperforming a random
one, see the performance in Table 3. We conjured that more preprocessing of the image
patches, proper handling of the class labels, and lack of hyperparameter tuning might
improve the predicting quality.

AUC Weighted Precision Weighted Recall F1-Score
Fold 0 0.6379 0.0625 0.0833 0.0833
Fold 1 0.6994 0.1738 0.1481 0.1191
Fold 2 0.6004 0.0258 0.0926 0.0926
Fold 3 0.6128 0.0981 0.1250 0.1250
Average 0.6376 0.0901 0.1123 0.1050

Table 3: Results of DenseNet121.

In the machine learning (ML) branch, a feature extraction method was explored. Inspired
by [9], we would like to extract several textural, morphological, and histogram-based
features from FocusPath datasets for training a random forest classifier to predict the
blurriness score per patch. Due to computational constraints, the library4 never completed
the extraction of grayscale images from the full FocusPath datasets. However, we believe
that the features from the image contain useful signals and would be helpful in training
a supervised classifier.

4pyfeats - Open source software for image feature extraction.

https://github.com/giakou4/pyfeats
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2.2.5 Discussion & Conclusion

We started development based on FocusPath [11] because it is hard to locate blurry slides
among the available TUM datasets. The training and evaluation are based solely on
FocusPath. Therefore, the transferability is yet to be examined. Furthermore, although
the distribution plot was used to determine a sensible threshold, a more robust way to
quantify the blurriness and determine a threshold should be considered in the future.

2.3 Dust & Dirt

Dust detection plays a crucial role in ensuring accurate analysis of digital pathological
slides. Various techniques, including image processing algorithms and machine learning
approaches, are employed to differentiate dust particles from tissue regions, improving
the reliability of slide analysis.

(a) Clean Slide (b) Significant dust present (c) marked dust

2.3.1 Overview

Many techniques could be deployed for detecting dust. Thresholding and morphological
operations are commonly used to distinguish dust particles from the tissue regions. Tex-
ture analysis methods, such as local binary patterns or wavelet transforms, can further
enhance detection accuracy by capturing the unique textural characteristics of dust parti-
cles. Machine learning approaches, including supervised and unsupervised methods, have
also been utilized to train classifiers that can differentiate dust from other structures in
the slide images. Integration of these techniques enables efficient and automated detection
of dust, improving the quality and reliability of digital pathological slide analysis.

2.3.2 Implemented Method & Evaluation

Our proposed dust detection involves three key steps: image normalization, tissue mask-
ing, and thresholding. Initially, the image pixel values are normalized to a 0-255 range,
ensuring consistent intensity values across the image as in Figure 14a. Subsequently, tis-
sue masking is applied to isolate the tissue region as in Figure 14b, which is crucial for
accurate dust detection. The resulting tissue mask is then converted to white Figure 14c,
effectively highlighting the background while suppressing the tissue. Finally, a threshold
value of 40 is applied to the entire slide, creating a binary image where pixel values below
40 represent potential dust points. This method assumes that dust is equally distributed
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(a) Slide with dirt (b) Tissue alone masked (c) Tissue threshold to white

Figure 14: Step-by-step dust detection process. The original slide 14a contains both tissue
and dust artifacts. In 14b, the tissue region has been masked. The tissue region 14c is
blended while maintaining the dust artifacts on the outside region.

on the WSI and can be easily detected in the background.

2.3.3 Discussion

Our technique can be used for the classification of dust versus non-dust regions in digital
pathological slides. However, it is important to note that the accuracy of the classification
may depend on the specific characteristics of the dust particles and the complexity of
the slide images. Fine-tuning or additional steps may be necessary to achieve higher
classification accuracy, such as applying texture analysis, machine learning algorithms, or
expert review for validation.

2.3.4 Conclusion

In conclusion, extending the current dust detection technique through region growth
methods or CNN-based approaches represents potential avenues for future research. By
iteratively expanding the regions based on certain criteria, such as intensity similarity
or texture consistency, it may be possible to capture more subtle or fragmented dust
artifacts that were initially missed. Furthermore, machine learning techniques offer an
opportunity to enhance dust detection by training models on labeled dust areas. By gen-
erating a dataset consisting of annotated dust regions from pathological slides, supervised
learning algorithms, such as convolutional neural networks (CNNs), can be trained to
recognize dust patterns and discriminate them from other structures. These extensions
could enhance the accuracy and completeness of dust detection in digital pathological
slides. Addressing the associated challenges and limitations will be crucial for developing
more advanced and reliable dust detection methods, ultimately contributing to improved
slide analysis and diagnosis in the field of digital pathology.

2.4 Missing Coverslip

Occasionally, some samples are scanned without their coverslips, posing a problem as the
tissue appears significantly darker than its actual state, making the pathologist’s task
more challenging. Figure 15 illustrates the difference at the macro level of a typical slide
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with a coverslip would resemble Figure 15a and an example of a slide without a coverslip
in Figure 15b.

(a) With cover slide. (b) Without cover slide.

Figure 15: Example macro images with coverslide present 15a and coverslide missing 15b.

An immediate distinction in Figure 15b as compared to Figure 15a is the absence of black
lines or edges on the left and right sides of the slide. This characteristic is present only
in the slides with a coverslip, as it is the boundary where the cover glass ends.

2.4.1 Related Work

To the best of our knowledge, there is no related work in the literature. With respect
to other artifacts, it would appear that the occurrence of this issue is comparatively
infrequent. We therefore subsequently chose to pursue our own approach focusing on
classifying or clustering digital pathology images based on their color and brightness
characteristics as well as the detection of the presence of black lines along the edges inside
the slide, which might serve as reliable indicators of the presence of coverslip.

2.4.2 Implemented Method & Evaluation

(a) K-means of slide with coverslip. (b) K-means of slide with no coverslip.

Figure 16: Result of K-means clustering.

Our study initially focused on identifying slides without coverslips, encompassing a posi-
tive sample size of 10. We explored various approaches, one of which involved analyzing
the difference in brightness. Specifically, we attempted to cluster the slides based on dom-
inant colors in the images using techniques such as K-means clustering as indicated in
Figure 16. However, this method proved unreliable due to the substantial variance within
images outweighing the variance between groups.
Subsequently, we adopted a second and final approach that focused on detecting the black
lines on the right and left sides of the slides. This was accomplished through the utiliza-
tion of OpenCV.
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We performed hyperparameter tuning and adjusted the parameters of a custom-written
black line detector in OpenCV using an initial sample size of 177 slide images. Within
this sample, 10 belonged to the positive class (slides without coverslips), while the re-
maining samples represented the negative class (slides with coverslips). Through rigorous
optimization, the detector achieved flawless classification accuracy, without any misclas-
sifications.

2.4.3 Results

We applied this optimized detector to an expanded dataset consisting of 3053 slide images.
Impressively, it accurately identified 2989 slide images as having coverslips, resulting in
zero false negatives. Within the positive class, however, the detector detected 64 images,
of which 61 were false positives, and 3 were true positives.

Manual Detection
Positive Negative Total

Prediction
Positive 3 61 64
Negative 0 2989 2989
Total 3 3050 3053

Table 4: Confusion Matrix for the coverslip detector on a dataset of 3060 WSIs.

Accuracy Precision Recall Specificity F1-Score
0.9812 0.0462 1.0 0.9801 0.0898

Table 5: Accuracy metrics for the coverslip detector on a dataset of 3053 WSIs.

2.4.4 Discussion

A potential direction for future improvement in missing coverslip detection involves re-
visiting the analysis of brightness and colors within macro images. By considering the
commonalities and differences in colors between the positive class (coverslip absent) and
negative class (coverslip present), it may be possible to effectively cluster new images
based on these criteria. A clustering approach could help address the challenge of limited
samples for the positive class, assuming one can accurately capture the features of the
macro images that differentiate the positive class from the negative class.
Another avenue to explore is the detection of vertical black lines on the left and right
sides of the macro image. However, it is important to consider that some slides may
contain a black region on the right side as a consequence of the scanning process or
because specific information such as the slide’s make or the manufacturer’s name, which
is typically presented as white text is on a black background on the right side of the
macro image. Any approach incorporating black line detection should account for these
potential confounding factors.
Furthermore, a promising prospect may also involve combining these two approaches. By
integrating the analysis of brightness and colors with the detection of vertical black lines,
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it might be plausible to develop a highly reliable and potent method for missing coverslip
detection in digital pathology.

2.5 Incomplete Tissue

During the scan process, the scanner defines a bounding-box around the detected tissue.
Occasionally, the scanner fails to correctly locate the tissue which results in an incomplete
scan, meaning parts of the tissue on the WSI are not captured. In that case, a re-scan
has to be triggered. In general, we distinguish two cases of incomplete tissue: touching
tissue and missing tissue.

2.5.1 Implemented Method & Evaluation

Figure 17: Example of touching tissue.
Green: scanned region.

Touching Tissue Detection: If contiguous
tissue has only been captured in parts by the
scanner, there is tissue directly at the edge of
the scan (Figure 17). In this case, the au-
tomatic detection is straightforward. We use
a method for tissue detection introduced by
Wang [15] to pixelwise segment the scan into
two classes ’tissue’ and ’no tissue’. Then, we
calculate the percentage of tissue that is present
in the four-pixel-wide border region of the scan.
The value of four was chosen because we only want to capture tissue that is immediately
at the edge of the scan to minimize the risk of falsely classifying tissue as a cut-off. The
resulting score indicates the relative amount of border that has touching tissue, with zero
percent meaning none of the border region has tissue while 100 percent means the entire
border region has tissue.

Figure 18: Example of missed tissue.
Green: scanned region.

Missing tissue detection: In the instance
that tissue is non-contiguous, tissue that is left
out by the scanner can not be detected on the
scan itself (Figure 18). For that case, we have
to analyze the so-called macro image for tissue
outside the bounding box. The macro image is
a picture of the scan slide taken by the scanner
during the scan process. However, classical tis-
sue detectors are trained on the scan itself, not
on a picture of the scan slide. Therefore, our

tests have shown that those models are not suitable for reliably detecting tissue using the
macro image, as they tend to confuse macro-image-specific artifacts with tissue.

Figure 19: An auto-generated patch of
the macro image with its corresponding
tissue mask.

Model training: Since we have a large dataset
of tissue scans that each include a macro im-
age and the bounding box, we can automat-
ically generate a labeled dataset to train our
own macro image tissue segmentation model.
Therefore, we first segment the tissue on the
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WSI using the method from [15]. Then, we use
the location and size of the bounding box ex-
tracted from the scan metadata to project the
tissue mask onto the macro image. This results
in a macro image segmented into three classes;

’tissue’, ’no tissue’, and ’unknown’. The latter represents the area outside the bounding
box, where we do not know if there is tissue or not since this area was not captured by the
scanner. After discarding the unknown part of the segmented macro image, we sample
20 100x100 pixel patches from each macro image, consisting of a macro image section
together with a binary tissue mask (Figure 19). In total, we generated 8000 patches from
400 macro images. Since the scanner does not scan the label area and the dark edges of
the slide that can both be seen in Figure 17 and Figure 18, there are no labeled samples
of those regions in our dataset. Therefore, we added 200 manually sampled patches from
those edge regions. The 8200 labeled patches are then used to train a UNet model for the
task of macro image tissue segmentation. The model architecture was inspired by [16] and
consists of a conventional encoder for downsampling, a bottleneck consisting of a convo-
lutional block, and a decoder for upsampling. We use a random 80/10/10 train/test/val
split and trained our model using binary-cross-entropy-loss and a learning rate of e−3.
Since the majority of the patches contain none or only little tissue, our training dataset
is highly imbalanced. Therefore, we use the F1 score as an evaluation metric which can
handle imbalanced datasets. We trained our model for 20 epochs and kept the model
weights that achieved the best F1 score on the validation set to run evaluation on our
test set. The training took 15 minutes on a Tesla T4 GPU. The trained model was able
to achieve an F1 score on the test set of 0.9904.

Figure 20: A sample macro image segmented by our macro image tissue segmentation
model.

Model inference: Since our model is only able to segment 100x100 pixel macro image
patches, we have to divide new macro images into patches of this size and process them
individually. Figure 20 shows a sample macro image segmented using our model. Al-
though small spots at the edge of the image are incorrectly labeled as tissue, the model is
able to correctly identify the tissue present. With the location and size of the bounding
box, we can then calculate the percentage of tissue that is located outside the bounding
box and thus not included in the scan.

2.5.2 Conclusion

Detecting touching tissue is a simple and straightforward task that can be solved with
simple numerical algorithms. However, to successfully detect missing tissue, we had to
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train our own macro image tissue segmentation model. We chose the UNet architecture
because our literature review showed UNet to be very suitable for image segmentation
tasks [17]. Although we do not have a dataset of fully labeled macro-images that could be
used for robust evaluation, visual inspection of fully segmented samples shows that our
approach already works pretty well. More training samples and extensive hyperparameter
tuning could lead to even better performance. In addition, our model can currently only
be as good as the WSI tissue segmenter we use to generate training samples. In addition,
the way we patch the macro images both for the creation of the training dataset and
during inference can still be optimized.

2.6 Stripes

2.6.1 Introduction

One common artifact for WSI is the presence of stripes, which can arise from various
sources such as scanner imperfections, tissue folds, dirt/dust, or staining irregularities.
Stripe artifacts exhibit distinct illumination variations due to differences in the white
balancing procedure in the scanner. (Figure 21) The existence of stripes poses a significant
challenge to downstream image analysis algorithms, as they can introduce bias and distort
the extracted features, potentially leading to erroneous interpretations. Therefore, the
development of reliable and efficient stripe detection techniques is crucial to ensure the
integrity and accuracy of digital pathology workflows. We are proposing an algorithm
based on various image-processing techniques for detecting stripes in slides.

Figure 21: Example of stripes in a WSI.

2.6.2 Related Work

It is possible to handle the problem of stripe detection using different approaches such as
image-processing or deep learning. One approach by [18] makes use of the periodic nature
of the stripe noise. Initially, the authors employ the direct and inverse fuzzy transform
of the spectrum to identify periodic noise peaks. Subsequently, they introduce a notch
filter based on the fuzzy transform to smoothen the spectral data and isolate the original
image by removing the periodic noise elements.
Various other solutions (eg., [19]) make use of the feature extraction of CNNs. They
propose a more general framework for slide segmentation and analysis. Their framework,
in essence, is a series of individual techniques within the preprocessing-training-inference
pipeline to enhance the efficiency and overall applicability of the analysis.
While above-mentioned approaches have shown promising results, they often require sig-
nificant computational resources and may not generalize well to different types of stripes
and image datasets. Therefore, there is a need for further research to develop robust,
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efficient, and adaptable methods for stripe detection on whole slide images, considering
the wide range of potential stripe sources and their varying characteristics.

2.6.3 Implemented Method & Evaluation

In our solution, we combine different image processing algorithms such as Canny edge
detection, Gaussian blur, and Hough line transform to come up with a result. Our main
idea is to combine the periodic nature of the stripes with edge detection techniques to
obtain the number of significant horizontal lines that correspond to stripes in whole slide
images. For this purpose, we use the thumbnail image of slides.
In our pipeline, we first apply an edge enhancement filter implemented in the Python
Image Library (PIL) which applies an edge detection kernel to our image using convolu-
tion. Then we convert the image to grayscale format in order to prepare it for the edge
detection algorithm. After that we apply the Canny Edge Detection algorithm which
can be summarized in 5 steps: 1) Apply Gaussian filter to smooth the image in order to
remove the noise, 2) Find the intensity gradients of the image, 3) Apply gradient mag-
nitude thresholding or lower bound cut-off suppression to get rid of spurious response to
edge detection, 4) Apply double threshold to determine potential edges, 5) Track edge
by hysteresis: Finalize the detection of edges by suppressing all the other edges that are
weak and not connected to strong edges.
This algorithm takes a grayscale image as input and returns its edge map using three
parameters: two threshold values for the hysteresis procedure and the size of the Gaussian
filter. The resulting edge map undergoes the Probabilistic Hough Transform, an extension
of the Hough Transform for detecting line segments in an image. This step reduces
computational complexity, ensures precise localization, and handles noise or occlusions
well. The Hough transform algorithm has additional parameters (rho, theta, threshold,
minLineLength, and maxLineGap) that require manual tuning for our use case. We
will optimize minLineLength and maxLineGap, which will help classify slides based on
the number of horizontal lines detected in the image. Figure 22 showcases the effect of
different pipeline stages on a thumbnail image with stripes.

(a) Original image (b) Enhanced edges (c) Canny edges (d) Horizontal lines

Figure 22: Different stages of the stripe detection algorithm.

2.6.4 Results and Discussion

We selected 7 whole slide images from our dataset of slides to test how our algorithm
performs. We manually tuned our parameters such that we get more consistent results.
Values that we used for the parameters are as follows: Gaussian kernel size = 5, first
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threshold for canny = 50, second threshold for canny = 150, rho = 1, theta = π/180,
threshold = 100, minLineLength = 100, maxLineGap = 80. minLineLength is the mini-
mum length in which lines below this length are rejected and maxLineGap is the maximum
allowed gap between points on the same line to link them. We selected these two parame-
ters so that it captures the stripes in our images more consistently. Figure 23 and Table 6
illustrates example results and the effect of the change of parameter values.

WSI ID detected edges
2427 240
149651 101
171070 217
194606 52
362566 160
149657 33
non-stripe 12

Table 6: Stripe detection results.

(a) (b) (c) (d)

Figure 23: 23a Stripe slide with number of horizontal lines = 101
23b Normal slide with number of
23c Stripe slide with number of horizontal lines = 37 when minLineLength = 500s
23d Stripe slide with number of horizontal lines = 57 when maxLineGap = 10

2.6.5 Conclusion

We focused on addressing the challenge of detecting stripes in WSI, that can introduce
bias and distort features in automated image analysis. To tackle this issue, we proposed
an algorithm that employed image processing techniques, specifically combining edge
detection and the probabilistic Hough transform to identify line segments associated with
stripes. The effectiveness of our approach was evaluated on a dataset of eight whole slide
images, and we manually adjusted the algorithm’s parameters to ensure consistent and
accurate results. Compared to alternative methods, our approach offers an advantageous
combination of computational efficiency and adaptability, making it suitable for various
staining conditions and slide characteristics. However, certain challenges persist, such
as accounting for the diverse appearances of stripes, optimizing parameter selection, and
establishing standardized benchmark datasets for rigorous evaluation.
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2.7 Tissue Folds

2.7.1 Introduction

The presence of tissue folds, which occur due to mechanical problems during slide prepara-
tion, poses a significant challenge to accurate and reliable image analysis. Tissue folds can
introduce distortions and artifacts that can compromise the interpretation of histopatho-
logical features, leading to erroneous diagnoses and unreliable quantitative measurements.
See Figure 24 for an example of tissue fold. Consequently, the development of robust and
efficient techniques for tissue fold detection on whole slide images has become a critical
research area. In order to tackle this problem, we decided to take the method developed
by [20] and adapt it to our use case.

Figure 24: Example of tisse fold in WSI.

2.7.2 Related Work

In recent years, various methods have been proposed for tissue fold detection on WSI,
including image processing, machine learning, and deep learning approaches. Early works
focused on connectivity-based soft thresholding [21] and using HSV color space properties
to detect changes in saturation [20]. Deep learning techniques have also gained attention,
with [22] introducing a CNN architecture specifically designed for tissue fold detection.
Their model combined CNN’s ability to learn hierarchical features with an SVM classifier,
achieving good accuracy and robustness. Despite these promising techniques, challenges
remain in tissue fold detection due to variability in appearance influenced by size, shape,
and texture. Additionally, the lack of publicly available annotated datasets hampers
approach comparison and benchmarking. Overcoming these challenges will enhance ac-
curacy and reliability in whole slide image analysis, benefiting digital pathology as a
whole.

2.7.3 Implemented Method & Evaluation

The colorimetric characteristics of tissue folds can vary across slides with different staining
conditions; however, they generally exhibit higher color saturation compared to non-fold
regions. To effectively enhance the colorimetric distinction between tissue folds and other
tissue components, the technique that we employed involves the shifting of RGB color
values. The method also introduces an adaptive shifting factor that varies in magnitude,
assigning a larger magnitude to pixels that are more likely to belong to tissue folds. To
determine these pixels, we utilized the information present in the luminance and saturation



2 METHODS OF ARTIFACT DETECTION 22

components of each image pixel. Equations 1 and 2 below show the modifications of
luminance and saturation components that results in enhanced tissue fold regions in the
overall image.

S ′ = 1− 3
min(R,G,B) + (S − V )

R +G+B + 3α(S − V )
(1)

V ′ = V + α(S − V ) (2)

Where S = saturation, V = luminance, R = red, G = green, and B = blue component of
the corresponding pixel, and α is the shifting factor. The change in luminance becomes
positive when α > 0 and S > V . This change in luminance will be important when we
are identifying the tissue folded regions in WSI. After applying this technique, we masked
the image so that if the lumination value of the pixel is increased we set its value to 1
and 0 otherwise. This results in a binary mask where tissue folded regions can be seen as
white. As a classification result, we decided to use the total number of white pixels. We
also calculated the folded region area and the total tissue region in order to provide the
users of the pathology application with more information since only the number of folded
pixels may not be very meaningful.

2.7.4 Results and Discussion

We selected 10 WSI from the dataset that we manually identified to contain tissue folds.
Then we applied the pixel enhancement method to the thumbnail images that we ex-
tracted from the slide files. The paper that inspired our solution mentions that the alpha
parameter should be selected between 1 and 2 (i.e. 1 < α < 2). They suggested that
the optimal value for the alpha is 1.5 but in our experiments, we saw that even though
α = 1.5 works perfectly for most of the cases, increasing it resulted in better samples
where the colors are less brighter. The steps of the algorithm and results for a single
image can be seen in Figure 25 and Figure 26 respectively.

(a) original image (b) HSV color space (c) enhanced (d) binary

Figure 25: Steps of the tissue fold detection algorithm.
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(a) enhanced (b) binary

Figure 26: 25a with α = 1.8 resulting in 3.24% of fold area and 1563 folded pixels.

See Table 7 for experimental results on a WSI which is known to contain tissue fold.

Slide No Fold Area (cm2) Tissue Area(cm2) Ratio(%)
1 0.041 1.272 3.238
2 0.363 3.264 11.120
3 0.119 0.389 30.526
4 0.112 0.627 17.863
5 0.019 0.822 2.351
6 0.115 0.965 11.946
7 0.0832 0.116 71.742

Table 7: Some sample results of fold detection algorithm on WSI with folds.

2.7.5 Conclusion

We addressed the challenge of tissue fold detection on whole slide images by adapting a
method proposed by Bautista et al [20]. Our implemented method focused on enhancing
the colorimetric distinction between tissue folds and other tissue components by modifying
the luminance and saturation components of each pixel. By shifting the RGB color values
based on these modifications and masking the image, tissue fold regions were highlighted
as white. We evaluated our method on a dataset of 10 whole slide images and observed
that increasing the shifting factor alpha beyond the recommended value of 1.5 produced
better results, especially for samples with less bright colors. Our method offers a simple
yet effective solution for tissue fold detection, which is computationally efficient and easily
adaptable to different staining conditions. However, challenges remain in addressing the
variability in tissue fold appearance and the absence of standardized benchmark datasets
for evaluation.

3 PathoAI Cockpit and Integration

The main purpose of our dashboard is to list WSIs that have been processed by the clas-
sifiers that we implemented. Here we present our architectural design as well as showcase
our first version of the quality control dashboard. We further discuss the challenges, the
limitations, and the potential improvements in the future.
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3.1 Architectural Design

3.1.1 Backend

Our backend is composed of two main parts. One is the script that is invoked when a
new slide has been scanned. This script runs all the classifiers and algorithms that were
implemented for artifact detection and puts a resulting JSON file in an output directory.
The second part is a REST API that serves as a single endpoint for the purpose of
delivering artifact detection results to the frontend application. All scripts are written in
Python 3.10 and use Flask as an API framework.

3.1.2 Frontend

We use the Angular framework v15 [23] for our frontend application. The Angular project
follows a standard directory structure with the main components organized in the app/
directory and services in the app/services directory.
Each component is contained in its own folder with TypeScript, HTML, and optional CSS
files. The application uses Angular Router for navigation, and the routing configuration
is defined in the app-routing.module.ts file.
Global styling is managed through styles.css, and component-specific styles are defined in
their respective CSS files.

3.2 Demonstration

Our PathoAI Cockpit runs locally on the TUM Slide Viewer server. A user can see the
path of the WSI in the server, the image ID, outputs of the classifiers, thumbnails, and
macro images. We also add a hyperlink to each slide that takes the user to the TUM
Slide Viewer. We want to keep the layout basic and easy to interpret. A screenshot of
the dashboard can be seen in Figure 27. There is room for further visual improvements
as our focus in this project was strictly on functionality. And also, performance of the
application should be evaluated in a production environment with many WSI.

Figure 27: Screenshot from our quality assurance dashboard.
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4 Discussion

Quality control (QC) evaluation has shown how artifact detection and data curation affect
the performance of computational pathology systems [24,25]. However, artifact detection
is still frequently overlooked in the preprocessing pipeline. Current approaches often rely
on low magnification analysis to discard complete WSIs, including most of our detection
algorithms. To effectively address this limitation, it might be necessary to extend QC
approaches to higher magnification levels for artifact detection.
The massive size of the WSIs also poses a great challenge to the existing infrastructures.
Moreover, the complexity of preprocessing required for WSI analysis, which varies based
on tissue type, disease type, and specific tasks [2], makes selecting an appropriate pre-
processing pipeline a daunting task. Our dashboard offers a tissue- and disease-agnostic
solution, serving as the initial checkpoint and triage in the preprocessing pipeline for
pathologists, effectively reducing manual workload. Nevertheless, further refinement of
the detection algorithms is warranted, and cautious interpretation of results is essential.
Moreover, artifact detection can impact subsequent processing steps, such as color nor-
malization and image augmentation. Whether to perform artifact detection before color
normalization or not remains an open question. Additionally, detecting specific artifacts
often depends on tissue characteristics, biopsy features, and laboratory procedures. In
this project, we assumed the independence of artifact detection from such impacts in our
workflow.
Through the integration of artifact detection and the development of a basic but com-
prehensive dashboard, our project aims to enhance the reliability and efficiency of digital
pathology. By addressing these challenges, we contribute to advancing digital pathology’s
potential for accurate and automated analysis in diagnostic medicine.

5 Conclusion

In this project, we set out to enhance and streamline the digital pathology workflow by
introducing a QC cockpit dashboard with artifact detection capabilities. This includes the
implementation of various detection algorithms targeting prevalent artifact types within
WSIs as well as evaluating them using the appropriate metrics and discussing their limi-
tations.
The presented dashboard serves as a promising initial step toward optimizing digital
pathologists’ tasks. Moving forward, it is possible to further augment the functionality of
the cockpit without compromising existing features and performance. This could entail
incorporating valuable feedback from pathologists to introduce more useful features and
further refine the detection speed. Additionally, expanding the range of detectable arti-
facts, addressing edge cases, and integrating scanner status and workload statistics are
paramount to enhancing the dashboard’s overall effectiveness and impact.
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“Towards machine learned quality control: A benchmark for sharpness quantifica-
tion in digital pathology,” Computerized medical imaging and graphics : the official
journal of the Computerized Medical Imaging Society, vol. 65, pp. 142–151, 2017.

[10] M. S. Hosseini, J. A. Z. Brawley-Hayes, Y. Zhang, L. Chan, K. N. Plataniotis, and
S. Damaskinos, “Focus quality assessment of high-throughput whole slide imaging in
digital pathology,” IEEE Transactions on Medical Imaging, vol. 39, pp. 62–74, 2018.

[11] M. S. Hosseini, Y. Zhang, and K. N. Plataniotis, “Focus quality metric based on
visual sensitivity,” arXiv: Image and Video Processing, 2018.

https://www.precisiononcology.ie/newsevents/blogs/items/text,502846,en.html
https://www.precisiononcology.ie/newsevents/blogs/items/text,502846,en.html
https://github.com/MSKCC-Computational-Pathology/PenAnnotationExtractor
https://github.com/MSKCC-Computational-Pathology/PenAnnotationExtractor


REFERENCES 27
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