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1.1 Introduction — Motivation TI.ITI

e Why tree classification?
o Determination of the overall forest stock volume
o ldentification of tree species
o Distribution of tree species
o Assessment of tree / forest health

e Why aerial imagery?
o Costwise and timewise benefit
o Very high resolution data

e Why multispectral imagery?
o Most widely used
o High reflectance of vegetation in near-infrared domain
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1.2 Introduction — Problem statement TI.ITI

e Main goal
o Improving OCELL'’s approach for tree detection and species
classification

e Current approach:
o Semantic Segmentation: Generate output segmentation masks using
a Fully Convolutional Neural Network (FCNN) from input images
o Tree localization and classification: Extract center points from output
segmentation maps

Med-res: Med-res:
02 x H/4 x W/4 02 x H/4 x W/4,

Low-res:
D3 x H/4 x W/4

Input: High-res: High-res: Predictions:
3xHXW D xH/2xW/2 D, x HI2 x Wi2 Hx W

[10]

Speaker: Filippo Galassi DL on High-Res Multispectral Aerial Imagery

5



1.2 Introduction — Problem statement TI.ITI

e Potential points of improvement
o Approach 1:
Evaluation and comparison of other suitable architectures

o Approach 2:
Performance analysis under different definitions of ground truth
segmentation mask

o Approach 3:
Integration of height information and Near-Infrared band
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2.1 Setup — Data Sets (1) TI.ITI

Data Set A

Data Set B
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2.1 Setup — Data Sets (2) TI.ITI

Acquired with a sensor developed by the company
Orthorectified images were provided
Implementation of DSM model

Implementation of NIR band in data set A
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2.2 Setup — Data Preprocessing (1) TI.ITI

e Image tiling
o Generation of equally sized tiles
o Tile size: 512 x 512 pixel

e Data augmentation
o Weak and strong augmentation

o Augmentation optimized for multispectral images
m Split - Augment — Recombine — Augment

e Data split
o Training: 70%
o Validation: 20%
o Testing: 10%
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2.2 Setup — Data Preprocessing (2) TI.ITI

without augmentation

weak augmentation

strong augmentation
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2.3 Setup — Training Pipeline TI.ITI

e Each training process has this setup
o Choice of best model
o Optimizer: Adam [1]
o Loss function: Lovasz-Softmax loss [2]

e Runs as a sequence of different setups (Architectures, label definitions)

Provided label definition

Speaker: Sarah Dorr DL on High-Res Multispectral Aerial Imagery 12



2.4 Setup — Evaluation Pipeline (1) TI.ITI

e Metric Choice: Pixel-wise metrics () Q
are not informative in context of o O

tree detection O O

e Point Extraction: Tree centers and O @
species have to be extracted from e ®
output segmentation mask

e Blob detection: Extract keypoints O @ @
(i.e. tree centers) by detecting O O =
O

areas of uniform color O

e Implementation: OpenCV blob a* o © O
detection algorithm used (based on O O
Border-Following algorithm [3]) O O O

Blob Detection: Detected center points from
ground truth segmentation masks
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2.4 Setup — Evaluation Pipeline (2) TI.ITI

e Nearest-Neighbor matching:
o Find nearest neighbors for all predictions and
labels
o Only Match if pairwise nearest neighbor .

e Score Definition . fr
o Center Scores: Measures distance of centers |
o Sample-Weighted Class Score: Average score

of all class scores w.r.t. correct center
predictions (weighted by the number of samples)

Nearest-Neighbor Matching

Linear Score Function (2) Discrete Score Function (1) Piecewise Linear Score Function (0.5, 2)
10 10 104
08 08 08
o 0.6 o 06 o 0.6
=] o =]
LX 04 (X 04 ‘X 04
02 1 02 0.2
0.0 0.0 0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Distance in Meters Distance in Meters Distance in Meters
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3.1 Approach 1 — Architectures TI.ITI

e Current state:
o AlbuNet architecture [4] with pre-trained ResNet-50 as encoder

e Issues:

o No evaluation and comparison to other suitable neural network
architectures

= Hard to measure how well the current architecture performs
o Large architecture with a lot of parameters to train
= Long training, inference time, requires more GPU memory

e Goal:

o Conduct a comparative analysis of the performance of AlbuNet
o Evaluate and compare a selection of related architectures

Speaker: Kamilia Mullakaeva DL on High-Res Multispectral Aerial Imagery 16



3.2 Approach 1 — General structure TI.ITI

e Downsampling path: Capturing the context of the image and extracting
feature maps

e Up-sampling path: Transforming features back to an output map (same
size as the input image)

e Skip connections: Reusing feature maps of downsampling path
= Helps to recover spatially detailed information

—

» Bottleneck
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3.2 Approach 1 — U-Net and TernausNet

U-Net [5] (not pre-trained):

e Encoder block: Convolution, ReLU,
MaxPool layers

e Decoder block: Convolution, RelLU,
Interpolation layers

e Bottleneck: Convolution,
Interpolation layers

TernausNet [6]:
e Encoder: VGG-11, VGG-16
e Pre-trained encoder on ImageNet

[9]

Speaker: Kamilia Mullakaeva
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3.2 Approach 1 — AlbuNet and Tiramisu

AlbuNet [4]:

Encoder: ResNet-50, ResNet-34,
ResNet-18

ResNet uses Residual Blocks (skip
connection in each block)
Pre-trained encoder on ImageNet

[9]

Tiramisu [7] (not pre-trained):

Encoder is DenseNet-based
DenseBlocks: Each layer obtains
additionally inputs from all
preceding layers

Transition Blocks: Used for
downsampling and upsampling

Speaker: Kamilia Mullakaeva
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3.3 Approach 1 — Results (1) TI.ITI

Center Prediction Scores

1.0 Recall, Precision, F1-Score and Accuracy for center-ring

BN Accuracy
B F1 Score
B Precision

- mm Recall
0.

0.

. == III
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3.3 Approach 1 — Results (2)
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11
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3.4 Approach 1 — Conclusion TI.ITI

e The performance of different network architectures was evaluated
e The AlbuNet-50 architecture performs well on all three evaluation methods
e Using AlbuNet-34 or AlbuNet-18 increases efficiency (training time,
GPU memory, inference time)
e Further improvements might be:
o Changing the skip connections between the encoder and the decoder
o Exploring another architectures like Attention U-Net

Speaker: Kamilia Mullakaeva DL on High-Res Multispectral Aerial Imagery 22
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4.1 Approach 2 — Redefining Labels TI.ITI

e Problem:
o Quality of center predictions: Strongly varying performance of

architectures on center prediction
BUT: Center point extraction decisive factor for overall performance

e Goals:
o Label definitions: Explore different possibilities to define ground

truth segmentations masks for tree localization / species classification
o Evaluation: Comparison of models trained on different label

definitions

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 24



4.2 Approach 2 — Label Definitions TI.ITI

Generic-Center Two model (center)

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 25



4.3 Approach 2 — Majority-Vote Algorithm

Majority-Vote Algorithm
for Species Classification:

e Tree-center Detection: Extract tree center
points with Blob Detection

e Enclosing Square: With the extracted tree
center point and the approximated radius a
enclosing square is derived

e Majority-Vote: Within the enclosing square
a majority-vote over all pixels is conducted
to derive the species

.@EO OE

Tree-center Detection

O hd @
::o... .D
i

® o .‘0',
,..EE.' o?‘
E‘....._

Classification

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 26



4.4 Approach 2 — Quantitative Evaluation (1) TI.ITI

Center Prediction Scores

10 F1 Score
BN center-ring
B ring-only
B generic-center
B two model
0.8
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0.4

0-2 | I I I I
., = Il I
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4.4 Approach 2 — Quantitative Evaluation (2) TI.ITI

Sample-Weighted Class Scores

1.0 F1 Score
BN center-ring
B ring-only
B generic-center
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4.5 Approach 2 — Qualitative Evaluation (1) TI.ITI

Tiramisu: Tree center extraction

Ring-only Generic-center Two model

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 29



4.5 Approach 2 — Qualitative Evaluation (2) TI.ITI

AlbuNet: Tree center extraction

Center-Ring Ring-only Generic-center Two model

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 30



4.6 Approach 2 — Conclusion TI.ITI

e Center/ Class Prediction: Models perform worse on center prediction

than on classification
o Center point extraction: Blob detection works reliably for generic-center and
two model approach
= improves overall performance significantly
o Classification: No significant improvement in species classification

e Label Definition: Generic-Center and Two Model approaches yield an

improvement of 7-14% for AlbuNet-50.

o Generic-center:
+ Training of only one model
- Less flexibility due to fixed species classes

o Two model:
+ One generic center model trained on all data

= More robust, can be used with different classification models

- Training of two models

Speaker: Felix Buchert DL on High-Res Multispectral Aerial Imagery 31
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5.1 Approach 3 — Multispectral and 3D Information TI.ITI

e Goal: Incorporation of additional information: Near-infrared (NIR)
reflectance and Digital Surface Model (DSM)

e Assumptions:
o NIR reflectance provides additional sample from spectral signature
and helps with the classification of tree species
o DSM contains geometric information that helps with the tree center
localization and species classification
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5.2 Approach 3 — Data fusion

e Fusion of orthophoto and Digital Surface Model
e Adaptation of processing pipeline to work with fused data

Speaker: Max Helleis

Orthophoto

5 channel tiling
—_—
GeoTiff 912 x 512 x5

Bilinear
resampling

Training
pipeline
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5.3 Approach 3 — Training plan TI.ITI

e All model architectures from the previous approaches were trained

Run Channels Models Epochs Pre-trained
1 RGB + NIR all 500 True

2 RGB + NIR+DSM  all 500 True

3a RGB AlbuNet-50 2000 False

3b RGB + NIR AlbuNet-50 2000 False

e Transfer learning: To assess influence of transfer learning one model
was trained from scratch (AlbuNet-50) on two configurations:
o RGB
o RGB + NIR

Speaker: Max Helleis DL on High-Res Multispectral Aerial Imagery 35



5.4 Approach 3 — Results (1) TI.ITI
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5.4 Approach 3 — Results (2) TI.ITI

Sample-Weighted Class Scores
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5.5 Approach 3 — Conclusion TI.ITI

e Center prediction
o Center prediction seems not to profit from additional information
o No significant difference for AlbuNet family
m Still performs best
o DSM decreases performance for other architectures
o NIR has a smaller impact on scores than DSM

e Class prediction
o No significant change for AlbuNet family
o Impact of NIR and DSM channel weaker than for center prediction
o Could be valuable for different set of tree species

e Transfer learning
o Transferability of knowledge obtained from ImageNet can be seen
o Class prediction: Almost caught up with pre-trained models
o Training from scratch should be considered for future tests
m  Might improve performance with different set of tree species

Speaker: Max Helleis DL on High-Res Multispectral Aerial Imagery 38
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6.1 Further results — Tree Species

Evaluation based on tree species:
e Confusion between conifers

e [eaved Tree performs the worst
o Not important for foresters
o Only few samples
o Tree centers hard to predict

e Spruce and Pine perform the

best

o Most important tree species for
foresters

o Lots of samples
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6.2 Further results — Evaluation on Data Set B TI.ITI

Center Prediction Scores

F1 Score
1.0
BN generic-center
B two model
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7 Conclusion TI.ITI

e Best performing model: AlbuNet-based architectures
o No significant difference between AlbuNet-50 and AlbuNet-34
o AlbuNet-34 has less trainable parameters
= Decreases training and inference time, but also GPU resources

e Best label definition: Generic-Center and Two Model
o Generic-Center only needs training of one model
o Two Model generalizes better on unseen data

e Use of multispectral data:
o No significant difference in performance for best models
o  Still worth to test if set of tree species changes
o May be helpful for detecting unhealthy trees

Speaker: Sarah Dorr DL on High-Res Multispectral Aerial Imagery 43
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Backup — Future Research TI.ITI

e Labeling techniques

o Two model approach: Update ring-only labels to area segmentation
o Training different models for different selection of models (i.e. use generic
class for all other species)

e Task specific model development
o Two model approach: combine different architectures
o Feed classification model with center prediction confidence mask

e Multispectral information
o Evaluate performance on bigger data set
o Use NIR channel to predict diseases or water-stress

e Blob detection and species classification
o Improve performance on image borders
o Conditional Random Fields for post-processing
o Majority-Vote: weight input of pixel by distance to center

e Improving architectures
o New architectures: Attention U-Net, QuickNat
o Regularization during training: Dropout, Weight Regularization

DL on High-Res Multispectral Aerial Imagery 46



Backup — Architectures (1) TI.ITI
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Backup — Architectures (2) TI.ITI
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Backup — Architectures (3)
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Backup — Architectures (4) TI.ITI
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Backup — Architectures (5) TI.ITI

Transition Down (TD)
Layer N —
Batch Normalization atch Normalization Transition Up (TU)
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poutp = . 2 x 2 Max Pooling
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Backup — Approach 3 TI.ITI

Dead Tree Classification
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Backup — Performance metrics TI.ITI

TP + TN
Accuracy =
TP + TN + FP + FN
TP
Recall =
TP + FN
.. TP
Precision =
TP + FP
F1 = Recall - Precision

. Recall + Precision
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Backup - Approach 2 (1) TI.ITI

Aggregate Class-Center Scores
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Backup - Approach 2 (2) TI.ITI

Aggregate Class-Center Scores

Recall, Precision, F1-Score and Accuracy for center-ring
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Backup - Approach 2 (3)
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