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I

Abstract

To assess and monitor the condition of a forest for research or management purposes, it
is crucial to have trustworthy information on the number of trees in a given area as well
as the spatial distribution of different tree species or even dead trees over the terrain.
Classically, these forest inventories are carried out manually by ground surveys from
which the locally sampled results are extrapolated to the entire region of interest. Recent
advances in image analysis using Fully Convolutional Neural Networks (FCNN) combined
with efficient large scale data acquisition using aircrafts render an automation of this
inventory process feasible. In this study, tree detection models trained on high-resolution
multispectral imagery are developed by testing a variety of U-Net-based architectures.
We provide a comprehensive analysis with respect to their performance on both tree
localization and tree species classification. Furthermore, different definitions of ground
truth label masks are explored and evaluated with respect to their eligibility for the given
task. [...] The best performing approach, which was developed based on the combination
of these findings, achieves an improvement in F1 Score of 9 to 14 percent.
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1 INTRODUCTION 1

1 Introduction

Note: This is the censored version of this report. Abridged content has been marked with
[...].

1.1 Motivation

In times when the whole world is entering the age of automation and machine learning, it
seems astonishing that a considerable part of forest management still depends on manual
labour. OCELL is a technology platform that strives to change this by delivering an
entirely new access to high-resolution aerial imagery and powerful analysis tools which
finally enables data-driven process optimization in the industrial forest and farming sector.
An example for a process that can be automated entirely is the forest stock taking, which
is used to determine the overall stock volume of a forest estate. This generally takes
50 employees and more than six weeks of manual labour in the forest. The traditional
approach is based on manually counting trees and identifying their species from which
then estimations for entire regions are extrapolated based on the limited sample set of
ground measurements. Therefore, in addition to saving costs and time, geo-information
captured from high-resolution multi-spectral aerial imagery promises to yield significantly
more accurate estimates of tree and species count compared to results obtained with the
traditional, manual approach. This would give forest managers or public authorities
timely access to in-depth analysis of valuable geo-information allowing them to precisely
monitor the forests’ condition and optimize forest management processes.

Apart from forest stock taking, models analyzing high-resolution multispectral imagery
of forests could also be used to provide regular, automated health monitoring of the forests.
Tools like these could prove to be critical in detecting and preventing tree diseases and
infestations such as bark beetles at an early stage and therefore help to prevent big
ecological and financial damages.

As outlined in the previous paragraphs, applying modern image-processing techniques
to high-resolution mutlispectral imagery shows promise for a variety of applications in
forestry. To further improve the capabilities of their existing machine learning systems
for tree detection and species classification, OCELL teamed up with the Data Innovation
Lab of the Technical University of Munich to form this project.

1.2 Problem Statement and Goals

The main goal of this project was to improve upon OCELL’s current approach to tree
localization and species classification on high-resolution multispectral imagery. On a
basic level, OCELL approaches this task as an image segmentation problem. A Fully
Convolutional Neural Network (FCNN) taking the high-resolution images as input is
trained on fully annotated segmentation maps encoding the different tree species. Tree
centers and species can then be extracted from predicted segmentation maps of a trained
model.
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In corporation with OCELL, three components of the current pipeline were identified
as potential points of improvement over the course of the project. [...]

The present document is structured in the following way: In Section 2, we provide a
comprehensive overview of the data sets and pre-processing steps as well as the train-
ing and evaluation pipeline. In the following sections, we then go on to describe the
methodology and present results for each of the three previously mentioned approaches.
In Section 6 we report and discuss further results concerning tree species specific perfor-
mance, the effectiveness of the chosen data augmentation and model performance on an
entirely new data set. Finally, we briefly summarize and discuss our results in Section 7
before concluding with a brief discussion of possible future directions of work in Section 8.

2 Setup

The setup that was used in terms of the data sets, data pre-processing, data augmentation
and the training and evaluation pipeline will be described in the following.

2.1 Data Sets

OCELL provided us with two different data sets, herein referred to as data set A and
B. Both of them contain orthorectified aerial images acquired over different regions in
Germany using a sensor module developed by the company. An orthorectified image
is a geometrically corrected image in which every pixel is labeled with its real world
coordinates in a chosen coordinate system. The sensor module was mounted on an ultra
light aircraft. The key parameters for both data sets are provided in Table 1. All results
presented within the scope of Approaches 1 to 3 have been obtained on data set A. Data
set B was only used for evaluation in Section 6.2 and Section 6.3.

Images of data set A consists of 3 bands in the optical domain of the electromagnetic
spectrum (red, green, blue) and an additional band in the near-infrared (NIR) domain,
as well as a separate digital surface model (DSM) which contains height information for
every pixel, relative to the ground level.

[...] In Figure 1 some samples of both data sets are provided.
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(a) Data set A

(b) Data set B

Figure 1: Data sets: 5 samples from data set A and B, only RGB channels

Table 1: Parameters of the two data sets provided by OCELL

Dataset Bands Wavelength [µm] GSD [m] Width [km] Height [km]

A

Red 0.62 - 0.68 0.1 x 0.1

8.4 9.0
Green 0.52 - 0.60 0.1 x 0.1
Blue 0.45 - 0.50 0.1 x 0.1
NIR 0.75 - 0.90 0.1 x 0.1
DSM - 0.2 x 0.2

B

Red 0.62 - 0.68 0.1 x 0.1

5.6 4.6
Green 0.52 - 0.60 0.1 x 0.1
Blue 0.45 - 0.50 0.1 x 0.1
DSM - 0.36 x 0.36

An example for the DSM can be seen in Figure 2. The lower part shows the 2D
image whereas the upper part visualizes the height information encoded in each pixel as
a 3D-model. The height is color-coded ranging from green (0 m) to white to brown (33
m).
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Figure 2: Digital Surface Model (DSM). The 3D view (upper part) shows the modelled
tree canopy. The 2D view (lower part) shows the plain image data.

Figure 3 shows examples for the used optical channels red, green, blue and NIR. The
high reflectance of the NIR band can be seen, as well as the comparatively high reflection
in the green band, which is typical for vegetation.

Figure 3: Examples for the red, green, blue and near-infrared channels, ordered from left
to right.

2.2 Data Preprocessing

Neural networks are highly sensitive to noise or light conditions in image data. As record-
ing data during different seasons or illumination conditions might change the color spec-
trum significantly, this poses a serious problem. We can see in Figure 1 that data set A
is visually quite different from data set B. [...]

2.2.1 Data augmentation for multispectral images

[...]
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2.2.2 Data split

Both data sets were randomly split in a train, validation and test data set containing
70%, 20% and 10% of the data respectively. In order to ensure comparability of results,
the same split was used in every training process. Data set A has a total count of 161
images, whereas data set B has a total count of images. Table 2 presents the number of
samples of each tree species in each subset.

The training and validation data set is used during our training pipeline, whereas
the test set is only used for comparing the scores of different training setups. During
the training process the training data is used for optimizing the model. Based on its
performance on validation data, we extract the best performing model.

Table 2: Distribution of tree species in the data sets

Data Set Data Split Dead Tree Douglas fir Larch Leaved Tree Pine Spruce

A all 93 925 1380 1034 1305 3582
training 78 654 850 771 880 2600
validation 14 161 212 226 267 675
test 0 82 224 36 158 158
test (filtered) 0 82 224 33 146 158

B all 117 0 0 3119 774 3923

2.2.3 [...]

2.3 Training Pipeline

During the project we developed a custom training pipeline which automatizes all steps
and decisions of the training process. It was designed with two main requirements in
mind. It needed to be flexible enough to be easily usable for all different approaches. It
also had to be efficient as the in-depth analysis of all approaches required training many
architectures in different setups (input data, ground truth label masks). Therefore, the
training of different models is run automatically in a sequential manner. Apart from that,
the training process comprises of the following setup:

• Choice of best model: During the training process the current model is evalu-
ated on the validation data set. The best model is then chosen by comparing the
validation score.

• [...]

• [...]

In the context of the training process, we refer to one iteration as the processing of a
single batch. One epoch is defined as the pass over all samples contained in the training
data set.
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2.3.1 Label Definition

[...]

2.3.2 Loss function

[...]

2.4 Evaluation Pipeline

In the context of OCELL’s goal of tree localization and species classification, a models’
performance cannot be reasonably evaluated based on pixel-wise metrics. [...]

2.4.1 [...]

2.4.2 [...]

2.4.3 Score Definition

Finally, the most commonly used metrics in classification tasks, Recall, Precision, F1 Score
and Accuracy, can be computed. In order to gain a more differentiated understanding
of a model’s performance, scores for tree center localization and species classification are
calculated separately. Moreover, we introduce an aggregated score allowing us to compare
overall performance, i.e. on both tree localization and species classification. With respect
to the task of tree localization not only a discrete score, i.e. binary encoding whether a
tree was detected or not, is of interest. Therefore, also continuous scores are introduced
which are defined as functions of the distance between the ground truth and the predicted
tree center.

Metric Definition Performance measures of classification tasks are generally calculated
from true positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN). Based on these definitions, the most common measures, Recall, Precision, F1 and
Accuracy, can be calculated. [...]

We can then define the metrics for a class c as

Precisionc =
TP

TP + FP

Recallc =
TP

TP + FN

F1-Scorec = 2 · Precisionc · Recallc
Precisionc + Recallc

Accuracyc =
TP + TN

TP + FN + FP + TN
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(a) Linear Score (2) (b) Discrete Score (1) (c) Piecewise Linear

Score (0.5, 2)

Figure 4: Score functions

and the total F1-score as

F1-Scorew = 2 · Precisionw · Recallw
Precisionw + Recallw

.

[...]

Figure 4 illustrates possible configurations of these score functions. [...]

Class Scores A models’ performance on the species classification task is assessed using
two different score types:

• Class-only: Classification metrics are only computed with respect to matched
label-prediction pairs

• Aggregate Center-Class: Classification metrics are computed with respect to all
labels and predictions

[...]

3 Approach 1 – Architectures

The first approach to improve upon OCELL’s current state was to directly improve the
employed neural network architecture. [...]

3.1 Introduction of Network Architectures

[...]
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3.2 Results

As introduced in Section 2.4.3 the performance of a model is separately evaluated on
center localization and tree species classification. Moreover, we assessed the aggregated
class-center scores to obtain a combined metric for class and center prediction. [...].
Throughout the tables the names of the score functions are shortened, such that PL, D
and L refer to piecewise-linear, discrete and linear score function.

For all different architectures proposed in Section 3.1 both metrics, F1 Score and
Accuracy, are evaluated. The results of different score functions from Section 2.4.3 are
shown in Table 3. It is noticeable that the Architectures 1-3 outperform all other models
followed by Architecture 7. Especially, Architecture 1 yields the best scores for center
prediction. Since Architecture 1 uses a [...] as encoder, it is more powerful and therefore
performing better than the other Architectures 1-3. The same behavior can be seen
between Architecture 2 and Architecture 3. Generally, by using a smaller network, such
as Architecture 3, less computations are needed and thus training and evaluation are
faster. Furthermore, a smaller number of trainable parameters serves as a “natural” form
of regularization by limiting the expressiveness of a model. As a general heuristic, the
smaller network should be used if there is no significant difference in performance between
two models.

Another reason, why Architectures 1-3 outperform the basic Architecture 7, might
be that no pre-trained encoder could be used for Architecture 7. The same holds for
the Architecture 6. By using a pre-trained encoder, the network needs less epochs for
training and fewer hyperparameter tuning which could in turn be another explanation for
the superior performance of Architectures 1-3.

Architectures 4, 5 and 6 only predict 10 to 70 trees correctly of a total count of more
then 600 trees. Therefore, class prediction results in the following paragraph have to
be carefully considered for these architectures, since class metrics are computed on only
a few correctly detected trees. Even though, [...] is a very deep neural network, it
usually faces the vanishing gradient problem, which might be an explanation for their
poor performance on the center prediction task. By applying shortcut connections as
described [...] can solve this issue.

Table 3: Prediction Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

PL(0.5, 2) F1 Score 0.69 0.64 0.59 0.12 0.06 0.05 0.44
Accuracy 0.52 0.48 0.42 0.07 0.03 0.03 0.28

D(1) F1 Score 0.67 0.63 0.57 0.12 0.05 0.05 0.42
Accuracy 0.50 0.46 0.40 0.07 0.03 0.03 0.26

L(2) F1 Score 0.54 0.51 0.47 0.10 0.05 0.04 0.35
Accuracy 0.37 0.34 0.30 0.05 0.02 0.02 0.21

Class Prediction Secondly, we evaluate the sample-weighted F1 Score and Accuracy,
defined in Section 2.4.3, for the tree species prediction. Table 4 summarizes our findings
with respect to all architectures proposed in Section 3.1. Generally, we can see that
the classification results differ significantly from the center predictions. Most models
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perform better than 80 percent on both score functions. First it might be surprisingly
that Architecture 4 performs mostly better than all other architectures, but with respect
to the center predictions we have to treat these results carefully. Since only 70 trees
are detected correctly, it might be that these are only from one species. Therefore, the
comparison is questionable. Apart from that, we can observe that all Architectures 1-3
and Architecture 7 perform similarly well. Taking into account the considerably larger
variations in performance with respect to tree center predictions, this indicates the that
a key aspect for a model’s overall performance is its capacity to correctly identify tree
centers.

Table 4: Sample-Weighted Class Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

D(1) F1 Score 0.94 0.94 0.94 0.95 0.78 0.80 0.94
Accuracy 0.88 0.86 0.86 0.87 0.49 0.59 0.85

D(2) F1 Score 0.94 0.94 0.94 0.95 0.76 0.80 0.93
Accuracy 0.88 0.86 0.87 0.88 0.48 0.58 0.84

Aggregate Class-Center Scores Lastly, the aggregated results for both measure-
ments, tree localization and species prediction, are reported in Table 5. It appears, that
the overall result is influenced more by the center prediction than by the class predic-
tion. In general, Architectures 1-3 again outperform the other network architectures.

Table 5: Aggregate Class-Center Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

D(1) F1 Score 0.41 0.37 0.32 0.06 0.01 0.01 0.21
Accuracy 0.59 0.54 0.49 0.11 0.03 0.03 0.35

D(2) F1 Score 0.54 0.48 0.43 0.07 0.02 0.02 0.28
Accuracy 0.70 0.65 0.60 0.13 0.04 0.03 0.44

3.3 Conclusion

Within this approach we evaluated the performance of different network architectures. As
the Architecture 1 performs well on all three evaluation methods, its choice is generally
reasonable. However, using Architecture 2 or Architecture 3 instead, increases efficiency
with respect to training time, GPU memory and inference time. Further improvements
might be observed changing the skip connections between the encoder and the decoder.
Currently, low-level feature maps are added to high-level feature maps, which might cause
some discrepancy throughout the learning and thus adversely affect the prediction proce-
dure. [...]
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4 Approach 2 – Redefining Labels

The second approach to improving upon OCELL’s current state explored to what extent
the definition of label masks influences a models’ performance. [...] Hence, in addition
to evaluating the different neural network architectures described in Section 3, different
labelling techniques were assessed. [...]

4.1 Label Definitions

All label definitions we considered for the evaluation are listed and comprehensively de-
scribed in the following. [...]

4.2 Tree localization and Classification

The models are scored as outlined in Section 2.4. [...] The methods used to extract these
points depend on the labeling technique and are described in the following. [...]

4.3 Results

The performance of the models trained on the different label masks introduced in Sec-
tion 4.1 is evaluated with respect to the two main tasks of interest: [...] and tree species
classification. Moreover, the aggregate class-center metric definition, described in Sec-
tion 2.4.3, is used to compare overall performance on both tasks. In the following, we
give both a quantitative evaluation as well as a qualitative analysis of the labeling tech-
niques. While the former focuses on the plain comparison of scoring metrics, the latter
investigates possible explanations for the observed results.

4.3.1 Quantitative Evaluation

[...]

Table 6: Prediction F1 Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

PL(0.5, 2) Def 1 0.69 0.64 0.59 0.12 0.06 0.05 0.44
Def 2 0.32 0.30 0.26 0.07 0.04 0.11 0.18
Def 3 0.75 0.70 0.71 0.61 0.45 0.71 0.65
Def 4 0.72 0.75 0.74 0.24 0.37 0.69 0.47

D(1) Def 1 0.67 0.63 0.57 0.12 0.05 0.05 0.42
Def 2 0.29 0.27 0.21 0.06 0.03 0.09 0.16
Def 3 0.75 0.69 0.70 0.61 0.45 0.69 0.63
Def 4 0.72 0.75 0.74 0.22 0.35 0.66 0.45

L(2) Def 1 0.54 0.51 0.47 0.10 0.05 0.04 0.35
Def 2 0.25 0.23 0.20 0.05 0.03 0.09 0.14
Def 3 0.60 0.56 0.57 0.48 0.36 0.56 0.51
Def 4 0.58 0.60 0.60 0.19 0.29 0.54 0.37
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In accordance with our findings in Section 3, it can be readily seen that Architectures 1,
2 and 3 outperform all other architectures on average. Moreover, an architecture trained
on the [...]labelling techniques consistently outperforms the same architecture trained on
the two other label definitions. For Architecture 1, an improvement between 9 to 12
percent can be observed, depending on the score function. [...]

Interestingly, the Architecture 1 consistently performs best on the generic-center label
definition, while Architecture 2 outperforms all other networks in the two model approach.
Although the difference in performance is not substantial, this pattern can be observed
over all score functions. A possible explanation for this result might be given by the
varying degree of complexity required in training on the label definitions. Accordingly,
the deeper Architecture 1 might be better suited for the more complex labeling technique
whereas the Architecture 2 exhibits an appropriate number of learnable parameters for
the two model label definition consisting of two “simpler” models.

Class Prediction In a second step, F1 scores calculated with respect to the tree species
classification task are evaluated for all model architectures. In Table 7 F1 scores are re-
ported based on the weighted class score definition introduced in Section 2.4.3. Again, the
Architectures 1, 2 and 3 architectures yield the best results on average, while generally
achieving higher absolute F1 scores ranging from 0.75 to 0.89 compared to the F1 scores
for center prediction. Interestingly, the observed improvement of F1 scores from 0.88 to
0.89 with respect to species classification is significantly smaller than the improvements ob-
served with respect to center prediction.

Table 7: Sample-Weighted Class F1 Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

D(1) Def 1 0.88 0.86 0.86 0.87 0.49 0.59 0.85
Def 2 0.81 0.79 0.80 0.48 0.52 0.45 0.65
Def 3 0.87 0.88 0.89 0.86 0.83 0.83 0.87
Def 4 0.88 0.89 0.88 0.85 0.88 0.81 0.85

D(2) Def 1 0.88 0.86 0.87 0.88 0.48 0.58 0.84
Def 2 0.81 0.79 0.75 0.40 0.49 0.40 0.62
Def 3 0.88 0.89 0.89 0.84 0.81 0.83 0.87
Def 4 0.88 0.89 0.89 0.87 0.87 0.82 0.85

[...]

Table 8: Aggregate Class-Center F1 Scores

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6 Architecture 7

D(1) Def 1 0.59 0.54 0.49 0.11 0.03 0.03 0.35
Def 2 0.23 0.21 0.17 0.02 0.01 0.04 0.10
Def 3 0.65 0.60 0.63 0.52 0.37 0.57 0.54
Def 4 0.63 0.67 0.65 0.19 0.31 0.53 0.38

D(2) Def 1 0.70 0.65 0.60 0.13 0.04 0.03 0.44
Def 2 0.35 0.32 0.29 0.04 0.03 0.06 0.15
Def 3 0.75 0.71 0.73 0.59 0.41 0.69 0.65
Def 4 0.73 0.76 0.76 0.25 0.40 0.66 0.47
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4.3.2 Qualitative Evaluation

After having evaluated performance with respect to the different labelling techniques, we
provide a qualitative analysis exploring possible explanations for the strong variation of
performance. In order to illustrate our findings, we chose the architectures Architecture 1
and Architecture 6 as their results are best suited to explain advantages and disadvantages
of label definitions in a clear and descriptive manner.

[...]

4.4 Conclusion

[...]

5 Approach 3

[...]

5.1 Architectures

The architectures used were the same as described in section 3. Since the provided
framework had so far only been used with RGB data, the whole pipeline had to be
adapted to be able to ingest the additional bands.

[...]

To investigate the impact of providing additional information to the models, all models
were trained using the additional information.

[...]

5.2 Results

[...]

5.3 Conclusion

[...]

6 Further Results

In addition to the central results presented in the previous three sections, this section
presents further notable observations and results.
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First of all, it is important to note that not all tree species are equally important to
OCELL and its customers. Therefore, a review of model performance by tree species is
presented in Section 6.1.

[...]

6.1 Tree Species

In the previous sections, models have only been evaluated with respect to the overall
score. [...]

6.2 Data Augmentation

[...]

6.3 Comparison of generic-center and two model

[...]

7 Conclusion

In this study we investigated several aspects of training deep neural networks on high
resolution multispectral aerial imagery for tree detection. Firstly, several state-of-the-art
Fully Convolutional Neural Network (FCNN) architectures for image segmentation were
evaluated and compared. The results showed that Architectures 1, 2 and 3 consistently
performed best in tree localization and species classification.

[...]

[...]

8 Future Research

Suggestions for future work based on the findings of this study are described in the
following. Suggestion are roughly ordered according to our assessment of their potential
impact on model performance from high to low. Of course, this ordering is subjective and
might change depending on prioritization of the main goals.

[...]
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