
Parameter Estimation with Gaussian
Processes

K. Harsha, A. Grundner, K. Wang

Jul 20, 2018



Abstract

Recent research has suggested great benefits from applying machine learning tools for the verification of parameters in
PDEs. Building upon this research, we implement and analyze the estimation of parameters in PDEs using Gaussian
Processes. Knowing only the parameter-dependend (linear) relationship between noisy data, we can infer this param-
eter by placing a Gaussian Prior on the data and by optimizing a certain log-marginal likelihood function. Here we
rely heavily on the fact, that a linear transformation of a Gaussian Process is again a Gaussian Process.

After introducing the concept of Gaussian Processes, we apply this methodology to the Heat Equation, a modified
version of the Burgers’ Equation and to the Wave Equation. By doing this, we show how the framework can be
successfully used in one or more dimensions and to some extent for the estimation of multiple parameters and for
those in non-linear transformations.



CONTENTS

0 Preface 3

1 About Gaussian Processes 4
1.1 Introduction to Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Simple example of a Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Linear operators on GPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Parameter estimation with Gaussian Processes 10
2.1 1D Linear operator with one parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 2D Linear operator with one parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 1D Linear operator with two parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 1D linear operator with a zero parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Linear PDEs 18
3.1 Heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Non-linear PDEs 27
4.1 The inviscid Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The inviscid Burgers’ Equation - A different approach . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Approach with pyGPs 37
5.1 Parameter Estimation for a linear operator using pyGPs . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 40
6.1 Problems with the RBF kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Kernel computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Appendix 41
A.1 Demo of pyGPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Own Covariance function for the Heat Equation with pyGPs . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Exploring the GPy package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 47

2



CHAPTER

ZERO

PREFACE

A great challenge for researchers with many applications in the applied sciences is to use vast available data sets
and blend them with differential equations. For instance these methods can be used for verification and validation
processes, which need to be undertaken in order to design well-functioning simulation software. This is also of special
interest to the Max Planck Institute. Concretely, we are interested in finding the relationship between two black-box
functions 𝑢 and 𝑓 based on possibly noisy data {𝑋𝑢, 𝑢(𝑋𝑢)} and {𝑋𝑓 , 𝑓(𝑋𝑓 )}. That is, in specifying the form of
the transformation ℒ𝜑

𝑥𝑢(𝑥) = 𝑓(𝑥). We presume to know the form of the transformation ℒ𝜑
𝑥 up to a set of unknown

parameters 𝜑. This setup falls under the broad range of so-called inverse problems, which occur often in diverse
scientific disciplines. An example application would be to take the classical problem of heat conduction in a medium
with unknown conductivity properties. The distribution of temperature is then governed by the Heat Equation, which
is a type of PDE. The thermal diffusivity coefficient would, however, be unknown and needs to be estimated. Using
Gaussian Processes to create a framework shedding light on the optimal parameters of the transformation ℒ𝜑

𝑥 has
many advantages. They can be used as flexible priors, describing a distribution over functions and provide a powerful
training procedure, coming from a probabilistic viewpoint. They can themselves be seen as a one-layer neural network
with infinitely many hidden units. In contrast to meshless methods, the optimal (hyper-)parameters can be learned by
minimizing the negative log-likelihood function and don’t have to be guessed or tuned manually. Whereas the main
difference to latent force models, which are one of the few existing frameworks for combining machine learning tools
with differential equations, is, that there is no need to solve the differential equation either analytically or numerically.

This paper is based mostly on the research conducted by Raissi et al. [7]. In their paper, applications consist of a
fractional equation, an integro-differential equation, a reaction-diffusion PDE and the Heat Equation. Whilst their
code was written in Matlab, we implement their methodology in Python and by doing this, also making it more
accessible.

Notes regarding the contents

In order to retain comparability, in each chapter we will work with a set of points 𝑋 with elements in [0, 1]𝑛 where n
is the number of dimensions. We always use either 10 or 20 points with the corresponding function values (𝑋,𝑌𝑢, 𝑌𝑓 )
as data samples. In this range, the estimates are good and the computation cost low.

We will mostly stick with a noise parameter of 𝑠 = 10−7, due to a trade-off between having a well-conditioned matrix
and accuracy: Our data samples are generated without any noise, so the lower the noise parameter, the more accurate
our estimation should be. Setting 𝑠 = 0 would increase the likelihood of having to work with an ill-conditioned or
singular matrix, since two columns in the covariance matrix corresponding to two points being close to each other
would have almost equal values. We want to avoid this, since, when calculating the negative log-likelihood, we have
to calculate the inverse of the covariance matrix. When working with noisy data on the other hand, one could optimize
over the parameter s as well.

Most code cells from our notebooks are missing in the report. This has been done to improve readability. For the
complete notebooks, we refer to our GitHub repository [5].

3



CHAPTER

ONE

ABOUT GAUSSIAN PROCESSES

1.1 Introduction to Gaussian processes

This chapter develops the theory behind Gaussian processes and Gaussian fields. In simple terms, stochastic processes
are families of random variables parameterized by a scalar variable 𝑡 ∈ R denoting time. A random field, on the other
hand, is a stochastic process parameterized by 𝑥 ∈ R𝑑 for 𝑑 > 1 often denoting space. We begin with a review of
univariate and multivariate normal distributions and use them to understand the properties of Gaussian processes.

1.1.1 Gaussian distributions

The univariate Gaussian (normal) distribution has a probability density given by

𝑝(𝑥;𝜇, 𝜎) =
1√
2𝜋𝜎

exp

{︂
− 1

2𝜎2
(𝑥− 𝜇)2

}︂
,

where 𝑥, 𝜇, 𝜎 ∈ R. If a random variable X is Gaussian distributed with mean 𝜇 and variance 𝜎, we commonly write
𝑋 ∼ 𝒩 (𝜇, 𝜎).

If 𝑌 ∼ 𝒩 (𝜇, 𝜎) and 𝛼 ∈ R, then

𝛼𝑌 ∼ 𝒩 (𝛼𝜇, 𝛼2𝜎).

A p-dimensional multivariate Gaussian (or normal) distribution has a joint probability density given by

𝑝(X|𝜇,Σ) = (2𝜋)−𝑝/2|Σ|−1/2 exp

(︂
−1

2
(X− 𝜇)𝑇 Σ−1(X− 𝜇)

)︂
,

where 𝜇 ∈ R𝑝 is the mean vector and Σ ∈ 𝐺𝐿(𝑝,R) is the (symmetric and positive semi-definite) covariance matrix.
This is commonly denoted as X ∼ 𝒩 (𝜇,Σ) or X ∼ 𝒩𝑝(𝜇,Σ) to specify the dimension.

If 𝑌 = 𝐵𝑋 + 𝑏 where 𝐵 ∈ R𝑞×𝑝, 𝑟𝑎𝑛𝑘(𝐵) = 𝑞 and 𝑏 ∈ R𝑞 , then

𝑌 ∼ 𝒩 (𝐵𝜇 + 𝑏, 𝐵Σ𝐵𝑇 ).

Let X ∼ 𝒩𝑝(𝜇,Σ) and decompose X, 𝜇,Σ as

X =

(︂
𝑋1

𝑋2

)︂
, 𝜇 =

(︂
𝜇1

𝜇2

)︂
and Σ =

(︂
Σ11 Σ12

Σ21 Σ22

)︂
with Σ11 ∈ R𝑛×𝑛 and Σ22 ∈ R𝑚×𝑚 and the remaining variables respectively.

Then the conditional probability of 𝑋2 is given by

𝑋2|𝑋1 ∼ 𝑁𝑝2(𝜇2 + Σ21Σ−1
11 (𝑋1 − 𝜇1) ,Σ22 − Σ21Σ−1

11 Σ12).

4



1.1.2 Gaussian processes

The following definitions and theorems are to introduce the concept of Gaussian processes and fields. For detailed
discussions and proofs, please refer to [6].

Definition (Stochastic process):

Given a set 𝒯 ⊂ R, a measurable space (𝐻,ℋ), and a probability space (Ω,ℱ ,P), an 𝐻-valued stochastic
process is a set of 𝐻 -valued random variables {𝑋(𝑡) : 𝑡 ∈ 𝒯 }. We simply write 𝑋(𝑡) to denote the
process. To emphasize the dependence on 𝜔 and that 𝑋 : 𝒯 × Ω → R, we may write 𝑋(𝑡, 𝜔).

Definition (Second-order process):

A real-valued stochastic process is second-order if 𝑋(𝑡) ∈ 𝐿2(Ω) for each 𝑡 ∈ 𝒯 . The mean function
is defined by 𝜇(𝑡) := E[𝑋(𝑡)] and the covariance function (also referred to as the kernel) is defined by
𝑘(𝑠, 𝑡) := 𝐶𝑜𝑣(𝑋(𝑠), 𝑋(𝑡))) for all 𝑠, 𝑡 ∈ 𝒯 .

Definition (Real-valued Gaussian process):

A real-valued second-order stochastic process {𝑋(𝑡) : 𝑡 ∈ 𝒯 } is Gaussian if X = [𝑋(𝑡1), . . . , 𝑋(𝑡𝑀 )]𝑇

follows a multivariate Gaussian distribution for any 𝑡1, . . . , 𝑡𝑀 ∈ 𝒯 and any 𝑀 ∈ N.

Theorem:

Let 𝒯 ⊂ R. The following statements are equivalent.

1. There exists a real-valued second-order stochastic process 𝑋(𝑡) with mean function 𝜇(𝑡) and kernel
𝑘(𝑠, 𝑡).

2. The function 𝜇 maps 𝒯 → R and the function 𝑘 maps 𝒯 × 𝒯 → R. Furthermore 𝑘 is symmetric
and positive semi-definite.

Corollary:

The probability distribution P𝑋 on
(︀
R𝒯 ,ℬ

(︀
R𝒯 )︀)︀ of a real-valued Gaussian process 𝑋(𝑡) is uniquely

determined by its mean 𝜇 : 𝒯 → R and kernel 𝑘 : 𝒯 × 𝒯 → R.

Definition (Random field):

For a set 𝐷 ⊂ R𝑑, a (real-valued) random field {𝑢(𝑥) : 𝑥 ∈ 𝐷} is a set of real-valued random variables
on a probability space (Ω,ℱ ,P). In the subsequent text, we drop 𝜔 ∈ Ω and simply write 𝑢(𝑥), although
it should be noted that 𝑢 : 𝐷 × Ω → R.

Definition (Second-order field):

For a set 𝐷 ⊂ R𝑑, a random field {𝑢(𝑥) : 𝑥 ∈ 𝐷} is second-order if 𝑢(𝑥) ∈ 𝐿2(Ω) ∀𝑥 ∈ 𝐷. We say a
second-order random field has mean function 𝜇(𝑥) ∈ 𝐿2(Ω) and kernel

𝑘(x,y) = Cov(𝑢(x), 𝑢(y)) := E[(𝑢(x) − 𝜇(x))(𝑢(y) − 𝜇(y))], x,y ∈ 𝐷

Definition (Gaussian random field):

A Gaussian random field {𝑢(𝑥) : 𝑥 ∈ 𝐷} is a second-order random field such that 𝑢 =

[𝑢 (𝑥1) , 𝑢 (𝑥2) , . . . , 𝑢 (𝑥𝑀 )]
𝑇 follows the multivariate Gaussian distribution for any 𝑥1, . . . , 𝑥𝑀 ∈ 𝐷

and any 𝑀 ∈ N. We denote it here as u ∼ GP(𝜇, 𝑘) where 𝜇𝑖 = 𝜇 (𝑥𝑖) and 𝑘𝑖𝑗 = 𝑘 (𝑥𝑖, 𝑥𝑗).

An important thing to note is, that by sampling an element 𝑢 from a Gaussian Process, we are thereby sampling a set
of function values for the points in the domain 𝐷 and can thus view 𝑢 as a function itself.

Since we will deal with different dimensions throughout the text, we will use the term ‘(Gaussian) process’ for both
of these cases to improve readability.



1.1.3 Kernels

This subchapter is to give an overview over the most popular kernels for a Gaussian Process.

Squared Exponential Kernel

It is also called Radial Basis Function kernel (RBF kernel), or Gaussian kernel, which is as follows:

𝑘SE (𝑥, 𝑥′) = 𝜎2 exp

(︂
−‖𝑥− 𝑥′‖22

2𝑙2

)︂
The length-scale 𝑙 determines the width of the kernel; in other words, the larger 𝑙 is, the smoother the function is. The
signal variance 𝜎2 controls the variance of the sampled functions. All the standard kernels have this parameter in front
as a scale factor.

It has become the default kernel for GPs and pyGPs, and we have also chosen this kernel for our project, which will
be explained in the later section.

Rational Quadratic Kernel

𝑘RQ (𝑥, 𝑥′) = 𝜎2

(︂
1 +

‖𝑥− 𝑥′‖22
2𝛼ℓ2

)︂−𝛼

This kernel is equivalent to adding together many RBF kernels with different length-scales, or can be seen as an infinite
sum of RBF kernels. If 𝛼 → ∞, then the RQ is identical to the RBF.

Periodic Kernel

𝑘Per (𝑥, 𝑥′) = 𝜎2 exp

(︂
−2 sin2 (𝜋‖𝑥− 𝑥′‖2/𝑝)

ℓ2

)︂
It is obvious that the periodic kernel (derived by David Mackay) is designed for functions with repeating structures.
Its parameters are easily interpretable:

The period 𝑝 is the distance between repetitions of the function.

The length-scale 𝑙 has the same interpretation as the length-scale in the RBF kernel.

Linear Kernel

𝑘Lin (𝑥, 𝑥′) = 𝜎2(𝑥− 𝑐)𝑇 (𝑥′ − 𝑐)

The linear kernel, unlike other kernels, is a non-stationary covariance function, which means that it does not solely
depend on 𝑥−𝑥′ . Thus by fixing the hyperparameters and moving the data, the model will yield different predictions.

Our Choice

Since our project is mainly based on the Raissi’s paper, so we also follow his choice of the kernel. The reason has
been stated in his 2017 paper:

In particular, the squared exponential covariance function chosen above implies smooth approximations.
More complex function classes can be accommodated by appropriately choosing kernels. For example,
non-stationary kernels employing nonlinear warpings of the input space can be constructed to capture
discontinuous response.



We have used the pyGPs package to test the kernels written above and customized kernels (see our project on GitHub).
It seems that the RBF kernels work for most functions at hand.

1.2 Simple example of a Gaussian process

The following example illustrates how we move from process to distribution and also shows that the Gaussian process
defines a distribution over functions.

𝑓 ∼ 𝒢𝒫(𝑚, 𝑘)

𝑚(𝑥) = 𝑥2

4

𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(− 1
2 (𝑥− 𝑥′)2)

𝑦 = 𝑓 + 𝜖

𝜖 ∼ 𝒩 (0, 𝜎2)

In [1]: ## Importing necessary packages
import numpy as np
import matplotlib.pyplot as plt

In [2]: ## Generating x-axis of 50 linearly spaced data points
## in the range between -5 and 5.
x = np.arange(-5,5,0.2)
n = x.size
s = 1e-7 # Noise parameter for y: s = sigma^2

In [3]: ## Defining the mean function
m = np.square(x) * 0.25

In [4]: ## Defining the covariance matrix k_y with respect to x
a = np.repeat(x, n).reshape(n, n)
k_y = np.exp(-0.5*np.square(a - a.transpose())) \

+ s*np.identity(n)

In [5]: ## We sample an n-dimensional vector of function values
## for y
r = np.random.multivariate_normal(m, k_y, 1)
y = np.reshape(r, n)

In [6]: ## The missing function values are filled in smoothly
## by the matplotlib-package
plt.figure(figsize = (3,2))
plt.xlabel("x")
plt.ylabel("f")
plt.title("Example of a Gaussian process")
plt.plot(x,y)
plt.show()



1.3 Linear operators on GPs

1.3.1 Regularity of Stochastic Processes

Definition (mean-square continuity):

Let {𝑋(𝑡) : 𝑡 ∈ 𝒯 } be a mean-zero process. The kernel 𝑘 is continuous in (𝑡, 𝑡) if and only if
E
[︀
(𝑋(𝑡 + ℎ) −𝑋(𝑡))2

]︀
→ 0 as ℎ → 0. In particular, if 𝑘 ∈ C(𝒯 × 𝒯 ), then {𝑋(𝑡) : 𝑡 ∈ 𝒯 } is

mean-square continuous.

Definition (mean-square derivative):

A process {𝑋(𝑡) : 𝑡 ∈ 𝒯 } is mean-square differentiable with mean-square derivative 𝑑𝑋(𝑡)
𝑑𝑡 if, for all

𝑡 ∈ 𝒯 , we have as ℎ → 0

‖𝑋(𝑡+ℎ)−𝑋(𝑡)
ℎ − 𝑑𝑋(𝑡)

𝑑𝑡 ‖𝐿2(Ω) = E
[︁
|𝑋(𝑡+ℎ)−𝑋(𝑡)

ℎ − 𝑑𝑋(𝑡)
𝑑𝑡 |2

]︁1/2
→ 0.

Theorem:

Let {𝑋(𝑡) : 𝑡 ∈ 𝒯 } be a stochastic process with mean zero. Suppose that the kernel 𝑘 ∈ C2(𝒯 × 𝒯 ).
Then 𝑋(𝑡) is mean-square differentiable and the derivative 𝑑𝑋(𝑡)

𝑑𝑡 has kernel 𝜕2𝑘(𝑠,𝑡)
𝜕𝑠𝜕𝑡 .

Proof :

For any 𝑠, 𝑡 ∈ 𝒯 and real constants ℎ𝑠, ℎ𝑡 > 0,

Cov(
𝑋(𝑠 + ℎ𝑠) −𝑋(𝑠)

ℎ𝑠
,
𝑋(𝑡 + ℎ𝑡) −𝑋(𝑡)

ℎ𝑡
) =

1

ℎ𝑠ℎ𝑡
E[(𝑋(𝑠 + ℎ𝑠) −𝑋(𝑠))(𝑋(𝑡 + ℎ𝑡) −𝑋(𝑡))]

=
1

ℎ𝑠ℎ𝑡
(𝑘(𝑠 + ℎ𝑠, 𝑡 + ℎ𝑡) − 𝑘(𝑠 + ℎ𝑠, 𝑡) − 𝑘(𝑠, 𝑡 + ℎ𝑡) + 𝑘(𝑠, 𝑡))

A simple calculation with the Taylor series shows that the right-hand side converges to 𝜕2𝑘(𝑠,𝑡)
𝜕𝑠𝜕𝑡 as

ℎ𝑠, ℎ𝑡 → 0.

With a similar approach and setting as in the previous theorem, we can calculate the covariance between a Gaussian
process and its mean-square derivative.

Cov(𝑋(𝑠),
𝑋(𝑡 + ℎ) −𝑋(𝑡)

ℎ
) =

1

ℎ
E[(𝑋(𝑠))(𝑋(𝑡 + ℎ) −𝑋(𝑡))] =

1

ℎ
(𝑘(𝑠, 𝑡 + ℎ) − 𝑘(𝑠, 𝑡))



The right hand side converges to 𝜕
𝜕𝑡𝑘(𝑠, 𝑡) as ℎ → 0.

Theorem (mean-square regularity):

Let 𝑢(𝑥) be a mean-zero second-order random field. If the kernel 𝑘 ∈ 𝐶(𝐷 × 𝐷), then 𝑢(𝑥) is mean-
square continuous so that ‖𝑢(x + h) − 𝑢(x)‖𝐿2(Ω) → 0 as ℎ → 0 ∀𝑥 ∈ 𝐷. If 𝑘 ∈ 𝐶2(𝐷 × 𝐷), then
𝑢(𝑥) is mean-square differentiable. That is, a random field 𝜕𝑢(𝑥)

𝜕𝑥𝑖
exists such that

‖𝑢 (x + ℎ𝑒𝑖) − 𝑢(x)

ℎ
− 𝜕𝑢(x)

𝜕𝑥𝑖
‖𝐿2(Ω) → 0 as ℎ → 0

and 𝜕𝑢(𝑥)
𝜕𝑥𝑖

has the kernel 𝑘𝑖(𝑥, 𝑦) = 𝜕2𝐶(𝑥,𝑦)
𝜕𝑥𝑖𝜕𝑦𝑖

.

Especially this theorem tells us, how zero-mean Gaussian Processes transform, when taking derivatives. Raissi de-
scribes in his paper, that the following even holds for general linear transformations [7]:

Let 𝑢 ∼ 𝐺𝑃 (0, 𝑘𝑢𝑢) and ℒ𝑥 be a linear transformation. Then for 𝑓 = ℒ𝑥𝑢 it holds:

1. 𝑓 ∼ 𝐺𝑃 (0, 𝑘𝑓𝑓 )

2. The covariance function of 𝑓 is given by 𝑘𝑓𝑓 = ℒ𝑥ℒ𝑥′𝑘𝑢𝑢.

3. The covariance between 𝑢(𝑥) and 𝑓(𝑥′) is given by 𝑘𝑢𝑓 = ℒ𝑥′𝑘𝑢𝑢, whereas the covariance between 𝑓(𝑥) and
𝑢(𝑥′) is given by 𝑘𝑓𝑢 = ℒ𝑥𝑘𝑢𝑢.



CHAPTER

TWO

PARAMETER ESTIMATION WITH GAUSSIAN PROCESSES

2.1 1D Linear operator with one parameter

This chapter introduces a basic example of the framework developed in Chapter 3. We take a one-dimensional system
with a single parameter and extract an operator out of it.

ℒ𝜑
𝑥𝑢(𝑥) = 𝑓(𝑥)

ℒ𝜑
𝑥 := 𝜑 · +

𝑑

𝑑𝑥
·

It is trivial to verify linearity of the operator:

𝑢, 𝑓 : [0, 1] → K, 𝛼, 𝛽 ∈ R

ℒ𝜑
𝑥(𝛼𝑢 + 𝛽𝑓) = 𝜑(𝛼𝑢 + 𝛽𝑓) +

𝑑

𝑑𝑥
(𝛼𝑢 + 𝛽𝑓)

= 𝛼𝜑𝑢 + 𝛽𝜑𝑓 + 𝛼
𝑑

𝑑𝑥
𝑢 + 𝛽

𝑑

𝑑𝑥
𝑓

= 𝛼ℒ𝜑
𝑥𝑢 + 𝛽ℒ𝜑

𝑥𝑓

One of the solutions to this system might be:

𝑢(𝑥) = 𝑥3

𝑓(𝑥) = 𝜑𝑥3 + 3𝑥2

𝑥 ∈ [0, 1]

We define Gaussian priors on the input and output:

𝑢(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥, 𝑥′, 𝜃))

𝑓(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑓𝑓 (𝑥, 𝑥′, 𝜃, 𝜑))

A noisy data model for the above system can be defined as:

𝑦𝑢 = 𝑢(𝑋𝑢) + 𝜖𝑢; 𝜖𝑢 ∼ 𝒩 (0, 𝜎2
𝑢𝐼)

𝑦𝑓 = 𝑓(𝑋𝑓 ) + 𝜖𝑓 ; 𝜖𝑓 ∼ 𝒩 (0, 𝜎2
𝑓𝐼)

For the sake of simplicity, we ignore the noise terms 𝜖𝑢 and 𝜖𝑓 while simulating the data. They’re nevertheless
beneficial, when computing the negative log marginal likelihood (NLML) so that the resulting covariance matrix is
mostly more well-behaved for reasons as they were outlined after the preface.

For the parameter estimation problem for the linear operator described above, we are given {𝑋𝑢, 𝑦𝑢}, {𝑋𝑓 , 𝑦𝑓} and
we need to estimate 𝜑.

10



2.1.1 Step 1: Simulate data

We use 𝜑 = 2.

In [2]: def get_simulated_data(n1, n2, phi):
x_u = np.random.rand(n1)
y_u = np.power(x_u, 3)
x_f = np.random.rand(n2)
y_f = phi*np.power(x_f, 3) + 3*np.power(x_f,2)
return(x_u, y_u, x_f, y_f)

In [4]: plt.show()

2.1.2 Step 2: Evaluate kernels

We use the RBF kernel defined as:

𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃) = 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)

throughout the report. It is worth noting that this step uses information about ℒ𝜑
𝑥 but not about 𝑢(𝑥) or 𝑓(𝑥). The

derivatives are computed using sympy.

In [5]: x_i, x_j, theta, l, phi = sp.symbols('x_i x_j theta l phi')
kuu_sym = theta*sp.exp(-l*((x_i - x_j)**2))
kuu_fn = sp.lambdify((x_i, x_j, theta, l), kuu_sym, "numpy")
def kuu(x, theta, l):

k = np.zeros((x.size, x.size))
for i in range(x.size):

for j in range(x.size):
k[i,j] = kuu_fn(x[i], x[j], theta, l)

return k

𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑) = ℒ𝜑
𝑥𝑖
ℒ𝜑
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)

= ℒ𝜑
𝑥𝑖

(︂
𝜑𝑘𝑢𝑢 +

𝜕

𝜕𝑥𝑗
𝑘𝑢𝑢

)︂
= 𝜑2𝑘𝑢𝑢 + 𝜑

𝜕

𝜕𝑥𝑗
𝑘𝑢𝑢 + 𝜑

𝜕

𝜕𝑥𝑖
𝑘𝑢𝑢 +

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
𝑘𝑢𝑢

= 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)
[︀
𝜑2 + 2𝜑|𝑥𝑖 − 𝑥𝑗 | + (𝑥𝑖 − 𝑥𝑗)

2 + 1
]︀



In [6]: kff_sym = phi**2*kuu_sym \
+ phi*sp.diff(kuu_sym, x_j) \
+ phi*sp.diff(kuu_sym, x_i) \
+ sp.diff(kuu_sym, x_j, x_i)

kff_fn = sp.lambdify((x_i, x_j, theta, l, phi), kff_sym, "numpy")
def kff(x, theta, l, phi):

k = np.zeros((x.size, x.size))
for i in range(x.size):

for j in range(x.size):
k[i,j] = kff_fn(x[i], x[j], theta, l, phi)

return k

𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑) = ℒ𝜑
𝑥𝑖
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)

= 𝜑𝑘𝑢𝑢 +
𝜕

𝜕𝑥𝑖
𝑘𝑢𝑢

= 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)

[︂
(
1

2
)2|𝑥𝑖 − 𝑥𝑗 | + 𝜑

]︂
= 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)(𝜑 + |𝑥𝑖 − 𝑥𝑗 |)

In [7]: kfu_sym = phi*kuu_sym + sp.diff(kuu_sym, x_i)
kfu_fn = sp.lambdify((x_i, x_j, theta, l, phi), kfu_sym, "numpy")
def kfu(x1, x2, theta, l, phi):

k = np.zeros((x2.size, x1.size))
for i in range(x2.size):

for j in range(x1.size):
k[i,j] = kfu_fn(x2[i], x1[j], theta, l, phi)

return k

𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑) = ℒ𝜑
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)

= 𝜑𝑘𝑢𝑢 +
𝜕

𝜕𝑥𝑗
𝑘𝑢𝑢

= 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)

[︂
(
1

2
)2|𝑥𝑖 − 𝑥𝑗 | + 𝜑

]︂
= 𝜃𝑒𝑥𝑝(− 1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

2)(𝜑 + |𝑥𝑖 − 𝑥𝑗 |)

In [8]: def kuf(x1, x2, theta, l, phi):
return kfu(x1, x2, theta, l, phi).T

2.1.3 Step 3: Compute the negative log marginal likelihood(NLML)

The following covariance matrix is the result of our discussion at the end of Chapter 1.3.1, with an added noise
parameter:

𝐾 =

[︂
𝑘𝑢𝑢(𝑋𝑢, 𝑋𝑢; 𝜃) + 𝜎2

𝑢𝐼 𝑘𝑢𝑓 (𝑋𝑢, 𝑋𝑓 ; 𝜃, 𝜑)
𝑘𝑓𝑢(𝑋𝑓 , 𝑋𝑢; 𝜃, 𝜑) 𝑘𝑓𝑓 (𝑋𝑓 , 𝑋𝑓 ; 𝜃, 𝜑) + 𝜎2

𝑓𝐼

]︂
For simplicity, assume 𝜎𝑢 = 𝜎𝑓 .

𝒩ℒℳℒ =
1

2

[︀
𝑙𝑜𝑔|𝐾| + 𝑦𝑇𝐾−1𝑦 + 𝑁𝑙𝑜𝑔(2𝜋)

]︀
where 𝑦 =

[︂
𝑦𝑢
𝑦𝑓

]︂
.



In [9]: def nlml(params, x1, x2, y1, y2, s):
params = np.exp(params)
K = np.block([

[
kuu(x1, params[0], params[1]) + s*np.identity(x1.size),
kuf(x1, x2, params[0], params[1], params[2])

],
[

kfu(x1, x2, params[0], params[1], params[2]),
kff(x2, params[0], params[1], params[2]) + s*np.identity(x2.size)

]
])
y = np.concatenate((y1, y2))
val = 0.5*(np.log(abs(np.linalg.det(K))) \

+ np.mat(y) * np.linalg.inv(K) * np.mat(y).T)
return val.item(0)

2.1.4 Step 4: Optimize hyperparameters

In [10]: nlml_wp = lambda params: nlml(params, x_u, x_f, y_u, y_f, 1e-6)
m = minimize(nlml_wp, np.random.rand(3), method="Nelder-Mead")

In [12]: np.exp(m.x)

Out[12]: array([11.90390211, 0.47469623, 2.00120508])

The estimated value comes very close to the actual value.

For the current model, we get the following optimal values of the hyperparameters:

Parameter Value
𝜃 11.90390211
𝑙 0.47469623
𝜑 2.00120508

2.2 2D Linear operator with one parameter

Along the same lines as the previous example, we take a two-dimensional linear operator corresponding to a two-
dimensional system with a single parameter. As previously explained, we set our problem up as follows:

ℒ�̄�𝜑𝑢(�̄�) = 𝑓(�̄�), �̄� := (𝑥1, 𝑥2)𝑇

X := [0, 1]2; K ⊂ R; 𝑢, 𝑓 ∈ 𝐶(X,K)

ℒ�̄�𝜑 : 𝐶(X,K) → 𝐶(X,K)

ℒ𝜑
𝑥 := 𝜑 · +

𝑑

𝑑𝑥1
· +

𝑑2

𝑑𝑥2
2

·

It is easy to verify that ℒ�̄�𝜑 is linear and continuous. A suitable solution for the operator is

𝑢(�̄�) = 𝑥1𝑥2 − 𝑥2
2

𝑓(�̄�) = 𝜑𝑥1𝑥2 − 𝜑𝑥2
2 + 𝑥2 − 2



Now, we use the same Gaussian priors as before, except that they are now defined on a two-dimensional space.

𝑢(�̄�) ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(�̄�, �̄�′, 𝜃))

𝑓(�̄�) ∼ 𝒢𝒫(0, 𝑘𝑓𝑓 (�̄�, �̄�′, 𝜃, 𝜑))

𝑦𝑢 = 𝑢(𝑋) + 𝜖𝑢; 𝜖𝑢 ∼ 𝒩 (0, 𝜎2
𝑢𝐼)

𝑦𝑓 = 𝑓(𝑋) + 𝜖𝑓 ; 𝜖𝑓 ∼ 𝒩 (0, 𝜎2
𝑓𝐼)

The parameter estimation problem for the linear operator described above is to estimate 𝜑, given {𝑥, 𝑦𝑢, 𝑦𝑓}. Notice
that we evaluate 𝑢, 𝑓 on the same set of points because it makes sense from a physics point of view.

2.2.1 Simulate data

We use 𝜑 = 2 and try to estimate it.

In [2]: def get_simulated_data(n, phi):
x = np.random.rand(n,2)
y_u = np.multiply(x[:,0], x[:,1]) - x[:,1]**2
y_f = phi*y_u + x[:,1] - 2
return (x, y_u, y_f)

2.2.2 Evaluate kernels

The implementation of the kernels is straightforward as done earlier. Consequently, the corresponding code has been
omitted from the report.

1. 𝑘𝑢𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃) = 𝜃𝑒(−𝑙1(𝑥𝑖,1−𝑥𝑗,1)
2−𝑙2(𝑥𝑖,2−𝑥𝑗,2)

2)

2. 𝑘𝑓𝑓 (�̄�𝑖, �̄�𝑗 ; 𝜃, 𝜑) = ℒ𝜑
�̄�𝑖
ℒ𝜑
�̄�𝑗
𝑘𝑢𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃)

= ℒ𝜑
�̄�𝑖

(︁
𝜑𝑘𝑢𝑢 + 𝜕

𝜕𝑥𝑗,1
𝑘𝑢𝑢 + 𝜕2

𝜕2𝑥𝑗,2
𝑘𝑢𝑢

)︁
= 𝜑2𝑘𝑢𝑢 + 𝜑 𝜕

𝜕𝑥𝑗,1
𝑘𝑢𝑢 + 𝜑 𝜕

𝜕𝑥𝑖,1
𝑘𝑢𝑢

+ 𝜑 𝜕2

𝜕2𝑥𝑗,2
𝑘𝑢𝑢 + 𝜕

𝜕𝑥𝑖,1

𝜕
𝜕𝑥𝑗,1

𝑘𝑢𝑢 + 𝜑 𝜕2

𝜕2𝑥𝑖,2
𝑘𝑢𝑢

+ 𝜕
𝜕𝑥𝑖,1

𝜕2

𝜕2𝑥𝑗,2
𝑘𝑢𝑢 + 𝜕2

𝜕2𝑥𝑖,2

𝜕
𝜕𝑥𝑗,1

𝑘𝑢𝑢 + 𝜕2

𝜕2𝑥𝑖,2

𝜕2

𝜕2𝑥𝑗,2
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃, 𝜑) = ℒ𝜑
�̄�𝑖
𝑘𝑢𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃)

= 𝜑𝑘𝑢𝑢 + 𝜕
𝜕𝑥𝑖,1

𝑘𝑢𝑢 + 𝜕2

𝜕𝑥2
𝑖,2

𝑘𝑢𝑢

In [8]: (x, yu, yf) = get_simulated_data(10, 2)
nlml((1, 1, 1, 0.69), x, yu, yf, 1e-6)

Out[8]: 10.124377463652147

2.2.3 Optimize hyperparameters

In [9]: nlml_wp = lambda params: nlml(params, x, yu, yf, 1e-7)
m = minimize(nlml_wp, np.random.rand(4), method="Nelder-Mead")

In [11]: np.exp(m.x)

Out[11]: array([1.29150445e+06, 4.54133519e-05, 5.27567407e-04, 2.00497047e+00])

The optimized hyperparameters are:



Parameter Value
𝜃 1.29150445e+06
𝑙1 4.54133519e-05
𝑙2 5.27567407e-04
𝜑 2.00497047

2.2.4 Analysis

To investigate error properties for this model, we run simulations from 5 to 25 datapoints with 5 samples of random
data in each case which is 100 samples. The absolute error in the parameter estimate, |𝜑𝑒𝑠𝑡 − 𝜑𝑡𝑟𝑢𝑒| is plotted in the
left figure below. The execution time is plotted to the right; it includes the time taken to simulate the data and the time
taken by the optimization routine.

In [76]: plt.show()

It is common practice to select the best of a set of minimisation results with different starting points. In this case,
assuming we take the minimum out of 5 iterations for a given sample(n data points), the absolute error is bounded
by 0.005 for n > 10. The blue line connects the minimum absolute error for every n. We employ this trick in further
notebooks.

The execution time shows a monotonically increasing trend when increasing the number of data points.

2.3 1D Linear operator with two parameters

In the previous examples we focus on systems with only one parameter. To see if the framework can be applied to a
more general case, we use a 1D linear operator on two parameters, and verify the prediction.

Here we set up the linear operator as follows:

ℒ𝜑
𝑥𝑢(𝑥) = 𝑓(𝑥)

ℒ𝜑
𝑥 := 𝜑1 · +𝜑2

𝑑

𝑑𝑥
·

A suitable solution can be:

𝑢(𝑥) = sin(𝑥)

𝑓(𝑥) = 𝜑1 sin(𝑥) + 𝜑2 cos(𝑥)

𝑥 ∈ [0, 1]



In this example, we assume 𝜑1 = 2, 𝜑2 = 5, and estimate 𝜑1 and 𝜑2.

2.3.1 Simulate data

In [2]: ##Initiating f(x) and u(x) with 20 data points
x = np.random.rand(20)
phi1 = 2.0
phi2 = 5.0
y_u = np.sin(x)
y_f = phi1*np.sin(x) + phi2*np.cos(x)

2.3.2 Evaluate kernels

Corresponding kernels are defined as following:

𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃) = 𝜃 exp
(︁
− 1

2𝑙 (𝑥𝑖 − 𝑥𝑗)
2
)︁

𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2)
= ℒ𝜑

𝑥𝑖
ℒ𝜑
𝑥𝑗
𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃)

= ℒ𝜑
𝑥𝑖

(︁
𝜑1𝑘𝑢𝑢 + 𝜑2

𝜕
𝜕𝑥𝑗

𝑘𝑢𝑢

)︁
= 𝜑2

1𝑘𝑢𝑢 + 𝜑1𝜑2
𝜕

𝜕𝑥𝑗
𝑘𝑢𝑢 + 𝜑1𝜑2

𝜕
𝜕𝑥𝑖

𝑘𝑢𝑢 + 𝜑2
2

𝜕
𝜕𝑥𝑖

𝜕
𝜕𝑥𝑖

𝑘𝑢𝑢

𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2)
= ℒ𝜑

𝑥𝑖
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)

= 𝜑1𝑘𝑢𝑢 + 𝜑2
𝜕

𝜕𝑥𝑖
𝑘𝑢𝑢

𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2)
= ℒ𝜑

𝑥𝑗
𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃)

2.3.3 Optimize hyperparameters

In [14]: phi ## Estimated phi1 and phi2 using noiseless data points

Out[14]: [1.9999955379492513, 5.000001322351089]

Parameter Value
𝜑1 1.9999
𝜑2 5.0000

We see that the error rate is less than 0.01% for the hyperparameter estimation. This example shows, that one can use
our framework for multiple parameter estimation.

In [ ]:

2.4 1D linear operator with a zero parameter

We have shown that parameter estimation works well with positive parameters. In some complex problems, one might
include extra terms in the predicted function, whose parameter equals to 0 in the end. To check if the framework works



in such case, we construct the following example:

ℒ𝜑
𝑥 := 𝜑1 · +𝜑2

𝑑

𝑑𝑥
· +𝜑3

𝑑2

𝑑𝑥2
·

𝑢(𝑥) = 𝑠𝑖𝑛(𝑥)

𝑓(𝑥) = ℒ𝜑
𝑥𝑢(𝑥)

= 𝜑1𝑠𝑖𝑛(𝑥) + 𝜑2𝑐𝑜𝑠(𝑥) − 𝜑3𝑠𝑖𝑛(𝑥)

= (𝜑1 − 𝜑3)𝑠𝑖𝑛(𝑥) + 𝜑2𝑐𝑜𝑠(𝑥)

𝑥 ∈ [0, 1]

2.4.1 Simulate data

We assume 𝜑1 = 2 and 𝜑3 = 5, and 𝑐𝑜𝑠(𝑥) is the extra term with 𝜑2 = 0, then the function f is given by:

𝑓(𝑥) = −3𝑠𝑖𝑛(𝑥)

2.4.2 Evaluate kernels

Corresponding kernels are defined as follows:

𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃) = 𝜃 exp
(︁
− 1

2𝑙 (𝑥𝑖 − 𝑥𝑗)
2
)︁

𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2, 𝜑3)
= ℒ𝜑

𝑥𝑖
ℒ𝜑
𝑥𝑗
𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃)

= ℒ𝜑
𝑥𝑖

(︁
𝜑1𝑘𝑢𝑢 + 𝜑2

𝜕
𝜕𝑥𝑗

𝑘𝑢𝑢 + 𝜑3
𝜕2

𝜕𝑥2
𝑗
𝑘𝑢𝑢

)︁
=

(︁
𝜑1𝑘𝑢𝑢 + 𝜑2

𝜕
𝜕𝑥𝑖

𝑘𝑢𝑢 + 𝜑3
𝜕2

𝜕𝑥2
𝑖
𝑘𝑢𝑢

)︁(︁
𝜑1𝑘𝑢𝑢 + 𝜑2

𝜕
𝜕𝑥𝑗

𝑘𝑢𝑢 + 𝜑3
𝜕2

𝜕𝑥2
𝑗
𝑘𝑢𝑢

)︁
𝑘𝑓𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2, 𝜑3)
= ℒ𝜑

𝑥𝑖
𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃)

= 𝜑1𝑘𝑢𝑢 + 𝜑2
𝜕

𝜕𝑥𝑖
𝑘𝑢𝑢 + 𝜑3

𝜕2

𝜕𝑥2
𝑖
𝑘𝑢𝑢

𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑1, 𝜑2, 𝜑3)
= ℒ𝜑

𝑥𝑖
𝑘𝑢𝑢 (𝑥𝑖, 𝑥𝑗 ; 𝜃)

The kernels apply to the general 1D system with three parameters.

2.4.3 Optimize hyperparameters

In [16]: phi # [phi1 - phi3, phi2]

Out[16]: [-3.0110910877279604, 0.006341664007503534]

Parameter Value
𝜑1 − 𝜑3 -3.0001
𝜑2 0.18e-05

The parameter estimation is very close to our prediction. The linear operator can be applied to most 1D linear PDE
problems, which is quite powerful. While dealing with some specific problems, we can add more terms in the form
of the transformation, then the parameter estimation with Gaussian Processes determines which of these terms are
redundant.



CHAPTER

THREE

LINEAR PDES

3.1 Heat equation

The heat equation is a parabolic partial differential equation that describes the distribution of heat (or variation in
temperature) in a given region over time. The general form of the equation in any coordinate system is given by:

𝜕𝑢

𝜕𝑡
− 𝜑∇2𝑢 = 𝑓

We will work here with the heat equation in one spatial dimension. This can be formulated as:

ℒ𝜑
�̄�𝑢(�̄�) =

𝜕

𝜕𝑡
𝑢(�̄�) − 𝜑

𝜕2

𝜕𝑥2
𝑢(�̄�) = 𝑓(�̄�),

where �̄� = (𝑡, 𝑥) ∈ R2.

The fundamental solution to the heat equation gives us:

𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑠𝑖𝑛(2𝜋𝑥)

𝑓(𝑥, 𝑡) = 𝑒−𝑡(4𝜋2 − 1)𝑠𝑖𝑛(2𝜋𝑥)

3.1.1 Simulate data

In [2]: np.random.seed(int(time.time()))
def get_simulated_data(n):

t = np.random.rand(n)
x = np.random.rand(n)
y_u = np.multiply(np.exp(-t), np.sin(2*np.pi*x))
y_f = (4*np.pi**2 - 1) * np.multiply(np.exp(-t), np.sin(2*np.pi*x))
return (t, x, y_u, y_f)

(t, x, y_u, y_f) = get_simulated_data(10)

3.1.2 Evaluate kernels

We use a reduced version of the kernel here.

1. 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 , 𝑡𝑖, 𝑡𝑗 ; 𝜃) = 𝑒[−𝜃1(𝑥𝑖−𝑥𝑗)
2−𝜃2(𝑡𝑖−𝑡𝑗)

2]

2. 𝑘𝑓𝑓 (�̄�𝑖, �̄�𝑗 ; 𝜃, 𝜑) = ℒ𝜑
�̄�𝑖
ℒ𝜑
�̄�𝑗
𝑘𝑢𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃) = ℒ𝜑

�̄�𝑖

[︁
𝜕
𝜕𝑡𝑗

𝑘𝑢𝑢 − 𝜑 𝜕2

𝜕𝑥2
𝑗
𝑘𝑢𝑢

]︁
= 𝜕

𝜕𝑡𝑖
𝜕
𝜕𝑡𝑗

𝑘𝑢𝑢 − 𝜑
[︁

𝜕
𝜕𝑡𝑖

𝜕2

𝜕𝑥2
𝑗
𝑘𝑢𝑢 + 𝜕2

𝜕𝑥2
𝑖

𝜕
𝜕𝑡𝑗

𝑘𝑢𝑢

]︁
+ 𝜑2 𝜕2

𝜕𝑥2
𝑖

𝜕2

𝜕𝑥2
𝑗
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃, 𝜑) = ℒ𝜑
�̄�𝑖
𝑘𝑢𝑢(�̄�𝑖, �̄�𝑗 ; 𝜃) = 𝜕

𝜕𝑡𝑖
𝑘𝑢𝑢 − 𝜑 𝜕2

𝜕𝑥2
𝑖
𝑘𝑢𝑢

18



3.1.3 Optimize hyperparameters

In [10]: %%timeit
nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
minimize(

nlml_wp,
np.random.rand(3),
method="Nelder-Mead",
options={'maxiter' : 5000, 'fatol' : 0.001})

2.13 s ± 267 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [11]: def minimize_restarts(t, x, y_u, y_f, n = 10):
nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
all_results = []
for it in range(0,n):

all_results.append(
minimize(

nlml_wp,
np.random.rand(3),
method="Nelder-Mead",
options={'maxiter' : 5000, 'fatol' : 0.001}))

filtered_results = [m for m in all_results if 0 == m.status]
return min(filtered_results, key = lambda x: x.fun)

Estimated value of 𝛼

In [13]: np.exp(m.x[2])

Out[13]: 0.9701718328188159

3.1.4 Analysis

Contour lines for the likelihood

In [16]: plt.show()

Profile likelihood

In [20]: plt.show()



Errors

We generate 5 set of samples for each number of data points(n) in the range (5,25) as earlier. The absolute error in the
parameter estimate and the computation times are plotted in the following figure.

In [135]: plt.show()

The minimum error for each value of n is bounded by 0.002 for n > 10. The computation time also increases mono-
tonically with n.

With the full kernel

In [30]: nlml((1,1,1,0), t, x, y_u, y_f, 1e-6)

Out[30]: 1100767.8910308597

In [31]: %%timeit
nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
minimize(

nlml_wp,
np.random.rand(4),
method="Nelder-Mead",
options={'maxiter' : 5000, 'fatol' : 0.001})



6.93 s ± 1.94 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

The reduced kernel takes less time for optimization as compared to the full one.

In [137]: plt.show()

The same analysis as earlier in the chapter was done for the full kernel given by 𝜃𝑒𝑥𝑝((x − y)𝑇 Σ(x − y)) where
Σ = 𝑑𝑖𝑎𝑔([𝑙1, 𝑙2]).

It can be noticed that the error in parameter estimate is slightly lower for the full kernel but the difference is not
very significant. Meanwhile, the execution times are significantly different for both the cases. For 10 data points, the
minimizer takes an average of 2.13 seconds for the reduced kernel while it is 6.93 seconds for the full kernel. This
shows that not all hyperparameters might be necessary to get acceptable results. For some specific problems, having
an intuition on the choice of kernels might be fruitful in the end.

3.2 Wave equation

Using our framework, we want to infer the constant c from the Wave Equation. The Wave Equation is given by

𝜕2𝑢

𝜕𝑡2
= 𝑐∇2𝑢,

where 𝑢 = 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑡) and 𝑐 > 0 is some constant [17]. In one spatial dimension it boils down to:

𝜕2𝑢

𝜕𝑡2
− 𝑐

𝜕2𝑢

𝜕𝑥2
= 0. (3.1)

We generate the data from a solution of the equation (3.1) corresponding to 𝑐 = 1 and get an estimation of 𝑐 = 1.0003.

3.2.1 Problem Setup

𝑢𝑡𝑡 − 𝑐𝑢𝑥𝑥 = 0

The general solution is given by: 𝑢(𝑥, 𝑡) = 𝐹 (𝑥− 𝑐𝑡) + 𝐺(𝑥 + 𝑐𝑡) with F, G some functions.



Take 𝐹 (𝑥) = 𝑥2 and 𝐺(𝑥) = sin(𝑥) and 𝑐 = 1.

Thus: 𝑢(𝑥, 𝑡) = (𝑥− 𝑡)2 + sin(𝑥 + 𝑡).

Set 𝑓 = 0.

Consider 𝑢 to be a Gaussian process:

𝑢 ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)) with the hyperparameters 𝜃 = {𝜃, 𝑙𝑥, 𝑙𝑡}.

And the linear operator:

ℒ𝑐
𝑥 = 𝑑2

𝑑𝑡2 · −𝑐 𝑑2

𝑑𝑥2 ·

so that

ℒ𝑐
𝑥𝑢 = 𝑓

Problem at hand: Estimate 𝑐 (should be 𝑐 = 1 in the end).

3.2.2 Step 1: Simulate data

𝑥 ∈ [0, 1]𝑛, 𝑡 ∈ [0, 1]𝑛

In [3]: def get_simulated_data(n = 20):
t = np.random.rand(n)
x = np.random.rand(n)
y_u = np.multiply(x-t, x-t) + np.sin(x+t)
y_f = 0*x
return(x, t, y_u, y_f)

(x, t, y_u, y_f) = get_simulated_data()

3.2.3 Step 2: Evaluate kernels

1. 𝑘𝑢𝑢(𝑦𝑖, 𝑦𝑗 ; 𝜃) = 𝜃𝑒𝑥𝑝(− 1
2𝑙𝑥

(𝑥𝑖 − 𝑥𝑗)
2 − 1

2𝑙𝑡
(𝑡𝑖 − 𝑡𝑗)

2), where 𝑦𝑖 = (𝑥𝑖, 𝑡𝑖), 𝑦𝑗 = (𝑥𝑗 , 𝑡𝑗).

2. 𝑘𝑓𝑓 (𝑦𝑖, 𝑦𝑗 ; 𝜃, 𝑐) = ℒ𝑐
𝑦𝑖
ℒ𝑐
𝑦𝑗
𝑘𝑢𝑢(𝑦𝑖, 𝑦𝑗 ; 𝜃)

= 𝑑4

𝑑𝑡2𝑖𝑑𝑡
2
𝑗
𝑘𝑢𝑢 − 𝑐 𝑑4

𝑑𝑡2𝑖𝑑𝑥
2
𝑗
𝑘𝑢𝑢 − 𝑐 𝑑4

𝑑𝑥2
𝑖𝑑𝑡

2
𝑗
𝑘𝑢𝑢 + 𝑐2 𝑑4

𝑑𝑥2
𝑖𝑑𝑥

2
𝑗
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(𝑦𝑖, 𝑦𝑗 ; 𝜃, 𝑐) = ℒ𝑐
�̃�𝑖
𝑘𝑢𝑢(𝑦𝑖, 𝑦𝑗 ; 𝜃) = 𝑑2

𝑑𝑡2𝑖
𝑘𝑢𝑢 − 𝑐 𝑑2

𝑑𝑥2
𝑖
𝑘𝑢𝑢

4. 𝑘𝑢𝑓 (𝑦𝑖, 𝑦𝑗 ; 𝜃, 𝑐) is given by the transpose of 𝑘𝑓𝑢(𝑦𝑖, 𝑦𝑗 ; 𝜃, 𝑐).

3.2.4 Steps 3 and 4: Compute NLML and optimize the hyperparameters

In [10]: m = minimize_restarts(x, t, y_u, y_f, 5)
np.exp(m.x[3]) # This is the optimized value for our parameter c

Out[10]: 0.9978007101765757

3.2.5 Step 5: Plotting the behavior for varied parameters

The logarithms of the optimal hyperparameters are given by (arranged in [𝜃, 𝑙𝑥, 𝑙𝑡, 𝑐]):

In [11]: m.x

Out[11]: array([ 6.67851868e+00, 2.71167786e+00, 2.66415024e+00, -2.20171181e-03])



We want to plot the behavior of the nlml-function around the minimizer:

In [13]: show_1(lin0, lin1, lin3, res0, res1, res2, res3);

3.2.6 Step 6: Analysis of the error

In this section we want to analyze the error of our algorithm using two different ways and plot its time complexity.

1. Plotting the error in our estimate for c:

The error is given by |𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑐𝑡𝑟𝑢𝑒|.

We ran the algorithm five times and plotted the respective outcomes in different colors:

In [33]: show_3(lin, ones, res)



We see that for n sufficiently large (in this case 𝑛 ≥ 10), we can assume the error to be bounded by 0.041.

2. Plotting the error between the solution and the approximative solution:

Another approach of plotting the error is by calculating the difference between the approximative solution and the true
solution.

That is: Let 𝑐 be the parameter, resulting from our algorithm. Set Ω := {(𝑥𝑖, 𝑡𝑖) | 𝑥𝑖 ∈ 𝑥, 𝑡𝑖 ∈ 𝑡} ⊆ [0, 1] × [0, 1].

Then we can calculate the solution of the PDE

𝑑2

𝑑𝑡2
�̃�(𝑥, 𝑡) − 𝑐

𝑑2

𝑑𝑥2
�̃�(𝑥, 𝑡) = 0. (3.2)

and set the error to ‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω. The norm can be chosen freely.

In our case, finding the solution to a given 𝑐 is not difficult. It is given by

�̃�(𝑥, 𝑡) = 𝑢(𝑥,
√
𝑐𝑡) = (𝑥−

√
𝑐𝑡)2 + sin(𝑥 +

√
𝑐𝑡) (3.3)

We thus get:

‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω = ‖(𝑥−
√
𝑐𝑡)2 + sin(𝑥 +

√
𝑐𝑡) − (𝑥− 𝑡)2 − sin(𝑥 + 𝑡)‖Ω

With the 𝐿2-norm, this is

(
∑︁

(𝑥𝑖,𝑡𝑖)∈Ω

|(𝑥𝑖 −
√
𝑐𝑡𝑖)

2 + sin(𝑥𝑖 +
√
𝑐𝑡𝑖) − (𝑥𝑖 − 𝑡𝑖)

2 − sin(𝑥𝑖 + 𝑡𝑖)|2)1/2

Short proof of (3.3):

We assume 𝑐 ≥ 0 and want to find some 𝛼 ∈ R such that

𝑑2

𝑑𝑡2
�̃�(𝑥, 𝛼𝑡) − 𝑐

𝑑2

𝑑𝑥2
�̃�(𝑥, 𝛼𝑡) = 0.



By setting 𝛼 =
√
𝑐 we have:

𝑑2

𝑑𝑡2
�̃�(𝑥, 𝛼𝑡) − 𝑐

𝑑2

𝑑𝑥2
�̃�(𝑥, 𝛼𝑡) = 𝛼2[

𝑑2

𝑑𝑡2
𝑢(𝑥, 𝑡)](𝑥, 𝛼𝑡) − 𝑐[

𝑑2

𝑑𝑥2
𝑢(𝑥, 𝑡)](𝑥, 𝛼𝑡)

= 𝑐

(︂
𝑑2

𝑑𝑡2
𝑢(𝑥, 𝑡) − 𝑑2

𝑑𝑥2
𝑢(𝑥, 𝑡)

)︂
(𝑥, 𝛼𝑡)

(3.2)
= 0.

In [39]: show_4(lin, ones, res, diff)

The 𝐿2-error is in our case bounded by 0.015 for 𝑛 ≥ 10.

3. Plotting the execution time:

In [42]: show_5(lin, timing)

Curiously, the time complexity seems to be around 𝒪(𝑛4/3) (blue-dashed line).



Assuming an equal amount of function evaluations in the Nelder-Mead algorithm for different values of n, we would
have been expecting a time complexity of 𝒪(𝑛3), due to the computation of the inverse of an 𝑛 × 𝑛-matrix in every
evaluation of nlml. This could probably be seen with larger values of n.



CHAPTER

FOUR

NON-LINEAR PDES

4.1 The inviscid Burgers’ Equation

Burgers’ Equation is an important non-linear PDE to applied mathematics. In its general form it is defined as follows:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
,

where 𝑥 ∈ R and 𝑡 > 0. Given an initial condition, i.e. when specifying 𝑢(𝑥, 0), there exists a closed form expression
for the solution 𝑢(𝑥, 𝑡) [16]. Due to the complicated nature of the solution, we want to focus on the inviscid Burgers’
Equation, where the diffusion term is equal to zero, i.e. 𝜈 = 0, and the non-linearity is still present:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0

In order to deal with the non-linear term, we will have to replace u by some constant. For this, the mean of the
function values of u is the most natural choice. Without this replacement, we would have a non-linear transformation
of a Gaussian Process, which is not guaranteed to be a Gaussian Process.

An interesting and easy solution to the inviscid Burgers’ Equation is given by

𝑢(𝑥, 𝑡) =
𝑥

1 + 𝑡
.

Introducing a parameter c, which we want to infer, we have the following:

4.1.1 Problem Setup

𝑢𝑡 + 𝑐𝑢𝑢𝑥 = 0 (4.1)

The equation (4.1) has 𝑢(𝑥, 𝑡) = 𝑥
1+𝑡 as a solution, if we assume 𝑐 = 1.

Then 𝑢0(𝑥) := 𝑢(𝑥, 0) = 𝑥

Using the backward Euler scheme, the equation can be re-written as:

𝑢𝑛 − 𝑢𝑛−1

𝜏
+ 𝑐𝑢𝑛

𝑑

𝑑𝑥
𝑢𝑛 = 0

We set 𝑢𝑛 = 𝜇𝑛−1, where 𝜇𝑛−1 is the mean of 𝑢𝑛−1, to deal with the non-linearity:

27



𝑢𝑛 + 𝜏𝑐𝜇𝑛−1
𝑑

𝑑𝑥
𝑢𝑛 = 𝑢𝑛−1

Consider 𝑢𝑛 to be a Gaussian process.

𝑢𝑛 ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙))

And the linear operator:

ℒ𝑐
𝑥 = · + 𝜏𝑐𝜇𝑛−1

𝑑
𝑑𝑥 ·

so that

ℒ𝑐
𝑥𝑢𝑛 = 𝑢𝑛−1

Problem at hand: Estimate 𝑐. Using 20 data points, we will be able to estimate c to be 0.9994.

For the sake of simplicity, take 𝑢 := 𝑢𝑛 and 𝑓 := 𝑢𝑛−1.

4.1.2 Step 1: Simulate data

Take data points at 𝑡 = 0 for (𝑢𝑛−1) and 𝑡 = 𝜏 for (𝑢𝑛), where 𝜏 is the time step.

𝑥 ∈ [0, 1], 𝑡 ∈ {0, 𝜏}
In [3]: tau = 0.001

def get_simulated_data(tau, n=20):
x = np.random.rand(n)
y_u = x/(1+tau)
y_f = x
return (x, y_u, y_f)

(x, y_u, y_f) = get_simulated_data(tau)

In [6]: show_1(x,y_u,y_f)

4.1.3 Step 2: Evaluate kernels

1. 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙) = 𝜃𝑒𝑥𝑝(− 1
2𝑙 (𝑥𝑖 − 𝑥𝑗)

2), where 𝜃, 𝑙 > 0



2. 𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝑐) = ℒ𝑐
𝑥𝑖
ℒ𝑐
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢 + 𝜏𝑐𝜇𝑛−1
𝑑

𝑑𝑥𝑖
𝑘𝑢𝑢 + 𝜏𝑐𝜇𝑛−1

𝑑
𝑑𝑥𝑗

𝑘𝑢𝑢 + 𝜏2𝑐2𝜇2
𝑛−1

𝑑2

𝑑𝑥𝑖𝑥𝑗
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝑐) = ℒ𝑐
𝑥𝑖
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢 + 𝜏𝜇𝑛−1𝑐
𝑑

𝑑𝑥𝑖
𝑘𝑢𝑢

4. 𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝑐) is given by the transpose of 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝑐)

4.1.4 Steps 3 and 4: Compute NLML and optimize the hyperparameters

In [ ]: m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
"Nelder-Mead", options = {'maxiter' : 1000})

In [11]: m.x[2] # This is our inferred value for c

Out[11]: 0.9994300669651587

4.1.5 Step 5: Analysis w.r.t. the number of data points (up to 25):

In this section we want to analyze the error of our algorithm using two different ways and plot its time complexity.

1. Plotting the error in our estimate for c:

The error is given by |𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑐𝑡𝑟𝑢𝑒|.

We have altogether ran the algorithm five times, each time increasing the number of data points:

In [150]: show_2(lin, ones, res)

We see that for n sufficiently large (in this case 𝑛 ≥ 5), we can assume the error to be bounded by 0.5. It seems to be
difficult to (even roughly) describe the limiting behavior of the error w.r.t. the number of data points.

2. Plotting the error between the solution and the approximative solution:

Another approach of plotting the error is by calculating the difference between the approximative solution and the true
solution. That is: Let 𝑐 be the parameter, resulting from our algorithm. Set Ω := ([0, 1] × 0) ∪ ([0, 1] × 𝜏). Then we



can calculate the solution of the PDE

𝑑

𝑑𝑡
�̃�(𝑥, 𝑡) + 𝑐�̃�(𝑥, 𝑡)

𝑑

𝑑𝑥
�̃�(𝑥, 𝑡) = 0. (4.2)

and set the error to ‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω. The norm can be chosen freely. In our case, finding the solution to a given 𝑐
is very simple. It is given by �̃�(𝑥, 𝑡) = 1

𝑐𝑢(𝑥, 𝑡) = 1
𝑐

𝑥
1+𝑡 . We thus get:

‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω = ‖1

𝑐
𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω = |1

𝑐
− 1|‖𝑢(𝑥, 𝑡)‖Ω ∝ |1

𝑐
− 1| (4.3)

The plots of the errors look as follows:

In [155]: show_2(lin, ones, res)

<Figure size 360x216 with 0 Axes>

3. Plotting the execution time:

All in one plot (the blue dashed line follows 𝑓(𝑥) = 0.01𝑥2.2):

In [92]: show_3(lin, timing)



The time complexity seems to be around 𝒪(𝑛2.2) (blue-dashed line).

4.2 The inviscid Burgers’ Equation - A different approach

In this chapter it is our goal to infer, that a parameter is best set to zero. For this we take a slightly modified version of
the Burgers’ Equation and can still work with the solution 𝑢(𝑥, 𝑡) = 𝑥

1+𝑡 from the previous chapter:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕𝑢

𝜕𝑥

For the solution to be valid, 𝜈 = 0 must hold. That again would yield the inviscid Burgers’ Equation. Note that on the
right hand side of the equation, we are only taking the first derivative w.r.t. x -in contrast to Burgers’ Equation-, since
taking the second derivative 𝜕2𝑢

𝜕𝑥2 = 0 would imply the validity of our solution independent of the value of 𝜈. To show
that taking different time schemes is possible, we use the forward Euler scheme in this example.

4.2.1 Problem Setup

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥 (4.4)

Setting 𝑢(𝑥, 𝑡) = 𝑥
1+𝑡 , we expect 𝜈 = 0 as a parameter.

Then 𝑢0(𝑥) := 𝑢(𝑥, 0) = 𝑥.

Using the forward Euler scheme, the equation can be re-written as:

𝑢𝑛 − 𝑢𝑛−1

𝜏
+ 𝑢𝑛−1

𝑑

𝑑𝑥
𝑢𝑛−1 = 𝜈

𝑑

𝑑𝑥
𝑢𝑛−1 (4.5)

and setting the factor 𝑢𝑛−1 = 𝜇𝑛−1 (analogously to the previous subchapter this is the mean of 𝑢𝑛−1) to deal with the
non-linearity:



𝜏𝜈
𝑑

𝑑𝑥
𝑢𝑛−1 − 𝜏𝜇𝑛−1

𝑑

𝑑𝑥
𝑢𝑛−1 + 𝑢𝑛−1 = 𝑢𝑛

Consider 𝑢𝑛−1 to be a Gaussian process.

𝑢𝑛−1 ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙))

And the linear operator:

ℒ𝜈
𝑥 = · + 𝜏𝜈 𝑑

𝑑𝑥 · −𝜏𝜇𝑛−1
𝑑
𝑑𝑥 ·

so that

ℒ𝜈
𝑥𝑢𝑛−1 = 𝑢𝑛

Problem at hand: Estimate 𝜈 (should be 𝜈 = 0 in the end).

For the sake of simplicity, take 𝑢 := 𝑢𝑛−1 and 𝑓 := 𝑢𝑛.

4.2.2 Step 1: Simulate data

Take data points at 𝑡 = 0 for (𝑢𝑛−1) and 𝑡 = 𝜏 for (𝑢𝑛), where 𝜏 is the time step.

𝑥 ∈ [0, 1], 𝑡 ∈ {0, 𝜏}
In [10]: tau = 0.001

def get_simulated_data(tau, n=20):
x = np.random.rand(n)
y_u = x
y_f = x/(1+tau)
return (x, y_u, y_f)

(x, y_u, y_f) = get_simulated_data(tau)

In [81]: show_1(x, y_u, y_f)

4.2.3 Step 2: Evaluate kernels

1. 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙) = 𝜃𝑒𝑥𝑝(− 1
2𝑙 (𝑥𝑖 − 𝑥𝑗)

2)



2. 𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) = ℒ𝜈
𝑥𝑖
ℒ𝜈
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢 + 𝜏𝜈 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢 − 𝜏𝜇𝑛−1
𝑑

𝑑𝑥𝑖
𝑘𝑢𝑢 + 𝜏𝜈 𝑑

𝑑𝑥𝑗
𝑘𝑢𝑢 + 𝜏2𝜈2 𝑑

𝑑𝑥𝑖

𝑑
𝑑𝑥𝑗

𝑘𝑢𝑢 − 𝜏2𝜈𝜇𝑛−1
𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢 − 𝜏𝜇𝑛−1

𝑑
𝑑𝑥𝑗

𝑘𝑢𝑢 −
𝜏2𝜈𝜇𝑛−1

𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢 + 𝜏2𝜇2

𝑛−1
𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) = ℒ𝜈
𝑥𝑖
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢 + 𝜏𝜈 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢 − 𝜏𝜇𝑛−1
𝑑

𝑑𝑥𝑖
𝑘𝑢𝑢

4. 𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) is given by the transpose of 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈).

4.2.4 Steps 3 and 4: Compute NLML and optimize the hyperparameters

In [76]: m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
"Nelder-Mead", options = {'maxiter' : 1000})

In [77]: m.x[2] # This is our inferred value for \nu

Out[77]: 0.00021347647791778476

4.2.5 Step 5: Analysis w.r.t. the number of data points (up to 25):

In this section we want to analyze the error of our algorithm and plot its time complexity.

1. Plotting the error in our estimate:

The error is given by |𝜈𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝜈𝑡𝑟𝑢𝑒|.

We plot the error with respect to the number of data samples for five runs of the program:

In [100]: show_2(lin, res)

<Figure size 360x216 with 0 Axes>

We see that for n sufficiently large (in this case 𝑛 ≥ 8), we can assume the error to be bounded by 0.16.

2. Plotting the error between the solution and the approximative solution:



Another approach of plotting the error is by calculating the difference between the approximative solution and the true
solution. That is: Let 𝜈 be the parameter, resulting from our algorithm. Set Ω := ([0, 1] × 0) ∪ ([0, 1] × 𝜏). Then we
can calculate the solution of the PDE

𝑑

𝑑𝑡
�̃�(𝑥, 𝑡) + �̃�(𝑥, 𝑡)

𝑑

𝑑𝑥
�̃�(𝑥, 𝑡) = 𝜈

𝑑

𝑑𝑥
�̃�(𝑥, 𝑡). (4.6)

and set the error to ‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω. The solution is given by �̃�(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝜈 = 𝑥
1+𝑡 + 𝜈. We thus get:

‖�̃�(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖Ω = ‖𝑢(𝑥, 𝑡) + 𝜈 − 𝑢(𝑥, 𝑡)‖Ω ∝ |𝜈| (4.7)

Here, the two error terms coincide.

3. Plotting the execution time:

The blue-dashed line follows 𝑓(𝑥) = 0.032𝑥2.

In [59]: show_3(lin, timing)

We observe a time complexity of roughly 𝒪(𝑛2) (blue-dashed line).

4.2.6 Comparison with a no-mean version

Looking at the setup following (4.4), we might ask, how much better our result would be, when replacing the factor
𝑢𝑛−1 by the function itself, instead of the mean. Clearly, this is only for comparative purposes and would be impossible
in an application, since the function 𝑢𝑛−1 is assumed to be unknown.
We will see, that the error will be smaller, in our case by a factor of 178 for 𝑛 ≥ 8.

Setting the factor 𝑢𝑛−1 = 𝑢0(𝑥) = 𝑥 in (4.5), we get:

𝜏𝜈 𝑑2

𝑑𝑥2𝑢𝑛−1 − 𝜏𝑥 𝑑
𝑑𝑥𝑢𝑛−1 + 𝑢𝑛−1 = 𝑢𝑛

The linear operator looks just slightly different:

ℒ𝜈
𝑥 = · + 𝜏𝜈 𝑑

𝑑𝑥 · −𝜏𝑥 𝑑
𝑑𝑥 ·

so that

ℒ𝜈
𝑥𝑢𝑛−1 = 𝑢𝑛.



Our kernels evaluate to:

1. 𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙) = 𝜃𝑒𝑥𝑝(− 1
2𝑙 (𝑥𝑖 − 𝑥𝑗)

2)

2. 𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) = ℒ𝜈
𝑥𝑖
ℒ𝜈
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢+𝜏𝜈 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢−𝜏𝑥 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢+𝜏𝜈 𝑑
𝑑𝑥𝑗

𝑘𝑢𝑢+𝜏2𝜈2 𝑑
𝑑𝑥𝑖

𝑑
𝑑𝑥𝑗

𝑘𝑢𝑢−𝜏2𝜈𝑥 𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢−𝜏𝑥 𝑑

𝑑𝑥𝑗
𝑘𝑢𝑢−𝜏2𝜈𝑥 𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢+

𝜏2𝑥2 𝑑2

𝑑𝑥𝑖𝑑𝑥𝑗
𝑘𝑢𝑢

3. 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) = ℒ𝜈
𝑥𝑖
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙)

= 𝑘𝑢𝑢 + 𝜏𝜈 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢 − 𝜏𝑥 𝑑
𝑑𝑥𝑖

𝑘𝑢𝑢

4. 𝑘𝑢𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈) is given by the transpose of 𝑘𝑓𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝑙, 𝜈).

After constructing the nlml we get:

In [17]: m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
"Nelder-Mead", options = {'maxiter' : 1000})

m.x[2] # This is our prediction for \nu

Out[17]: 0.00042724953581625225

We can analyze the error in multiple runs and look at the execution time:

1. Plotting the error in our estimate for 𝜈

The error is given by |𝜈𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝜈𝑡𝑟𝑢𝑒|.
In [30]: show_4(lin, est, res)

We see that for n sufficiently large (in this case 𝑛 ≥ 5), we can assume the error to be bounded by 0.0009.

2. Plotting the execution time:

In [57]: show_5(lin, timing)



The time complexity seems to be as before roughly 𝒪(𝑛2).



CHAPTER

FIVE

APPROACH WITH PYGPS

5.1 Parameter Estimation for a linear operator using pyGPs

When starting to work on this project, we were looking for a suitable Python package giving us the capabilities we
needed concerning Gaussian Processes. We therefore implemented the early code using the pyGPs-package [8]. It is a
package best suited for classical Gaussian Process Regression or Classification. After installing pyGPs and testing it,
using the provided test data, there appeared an ‘Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll’ - error,
which we were not able to resolve. By switching from Windows to a Linux Cluster, this issue could be circumvented.

Our approach with pyGPs went as follows:

1. We assume Gaussian Priors with zero mean and an RBF Kernel for u and f, i.e.:

𝑢(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥, 𝑥′;𝜎𝑢, 𝑙𝑢))

𝑓(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑓𝑓 (𝑥, 𝑥′;𝜎𝑓 , 𝑙𝑓 ))

2. Given the data {𝑋𝑢, 𝑌𝑢} and {𝑋𝑓 , 𝑌𝑓}, we can now optimize the hyperparameters of the two Gaussian Pro-
cesses separately using pyGPs.

3. Since 𝑓 = ℒ𝜑
𝑥𝑢(𝑥), we know that the covariance matrix for f is given by 𝑘𝑓 = ℒ𝜑

𝑥′ℒ𝜑
𝑥𝑘𝑢𝑢 (cf. Chapter 1.3.1).

As an approximation, we set 𝑘𝑓 = 𝑘𝑓𝑓 . As a consequence, also

𝑘𝑓 (𝑥𝑖, 𝑥𝑖) = 𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑖)

must hold for all data points 𝑥𝑖. Rearranging leads to some function

𝜑 = 𝑔(𝜎𝑢, 𝜎𝑓 , 𝑙𝑢),

which we can evaluate.

Now this approach worked for simple examples (e.g. in the Example implementation), though it failed for more
complicated ones. As an attempt to resolve this problem, we wanted to avoid the approximation in step 3 and work
with the correct covariance matrix instead. The pyGPs-package allows the user to define custom covariance functions.
This was of no avail mainly due to incongruities in the pyGPs source code regarding the derivatives of covariance
functions in combination with insufficient documentation in that regard and the resulting complexity of the task itself.
As an example, we have included a custom covariance function in the appendix. We finally ceased expanding upon
this approach, since it is not clear, whether the independent optimization of the hyperparameters for the functions u
and f would yield the result we are striving for.

5.1.1 Example implementation

Assumptions:

37



ℒ𝜑
𝑥𝑢(𝑥) = 𝑓(𝑥)

𝑢(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑢𝑢(𝑥, 𝑥′; 𝜃))

𝑓(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑓𝑓 (𝑥, 𝑥′; 𝜃, 𝜑))

𝜃 = {𝜎, 𝑙}

Chosen operator: ℒ𝜑
𝑥𝑢(𝑥) = 𝜑 * 𝑢(𝑥)

We choose the following two functions to sample the data (The factor 12 can be varied):

𝑢(𝑥) =
√
𝑥

𝑓(𝑥) = 12 * 𝑢(𝑥) = 12
√
𝑥

Problem at hand: Given {𝑋𝑢, 𝑦𝑢} and {𝑋𝑓 , 𝑦𝑓}, estimate 𝜑.

We clearly expect 𝜑 to be estimated as being as close to 12 as possible.

We will get an estimate of 12.05 using 15 evenly spaced data samples in the interval [0, 2𝜋].

We employ a GP with a RBF kernel for u and f:

𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃𝑢) = 𝜎2
𝑢 exp(− 1

2𝑙2𝑢
(𝑥𝑖 − 𝑥𝑗)

2)

𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃𝑓 ) = 𝜎2
𝑓 exp(− 1

2𝑙2𝑓
(𝑥𝑖 − 𝑥𝑗)

2)

We use the known transformation behavior of Gaussian Processes:

𝑘𝑓𝑓 (𝑥𝑖, 𝑥𝑗 ; 𝜃, 𝜑)
= ℒ𝜑

𝑥𝑖
ℒ𝜑
𝑥𝑗
𝑘𝑢𝑢(𝑥𝑖, 𝑥𝑗 ; 𝜃)

= 𝜑2𝜎2
𝑢 exp(− 1

2𝑙2𝑢
(𝑥𝑖 − 𝑥𝑗)

2)

Equating the two expressions we have for 𝑘𝑓𝑓 and comparing a diagonal entry (where 𝑥𝑖 = 𝑥𝑗), it follows that
𝜎2
𝑓 = 𝜑2𝜎2

𝑢, i.e.:

𝜑 =
𝜎𝑓

𝜎𝑢

In [9]: def main():

import numpy as np
import pyGPs

# Generating data:
# Keeping it as simple as possible, using sine instead of sqrt the pyGPs-
# optimizer won't be able to calculate the optimal hyperparameters,
# independent of the method
x_u = np.linspace(0, 2*np.pi, 15)
y_u = np.sqrt(x_u)

x_f = x_u
y_f = 12.0*np.sqrt(x_f)

# The function u is assumed to be a Gaussian Process.
# After a linear transformation, f has to be a Gaussian Process as well.

model_u = pyGPs.GPR()



model_u.setData(x_u, y_u)
model_u.optimize(x_u, y_u)

model_f = pyGPs.GPR()
model_f.setData(x_f, y_f)
model_f.optimize(x_f, y_f)

# Note that in hyp only the logarithm of the hyperparameter is stored!
# Characteristic length-scale l is equal to np.exp(hyp[0]) (Default: 1)
# Signal variance sigma is equal to np.exp(hyp[1]) (Default: 1)

# This should give 12 as output:
print(np.exp(model_f.covfunc.hyp[1])/np.exp(model_u.covfunc.hyp[1]))

# Prevents execution by Sphinx:
if __name__ == '__main__':

main()

Number of line searches 40
Number of line searches 40

12.049201003414321



CHAPTER

SIX

CONCLUSION

It has been demonstrated that estimating parameters using a Gaussian process approach works well for a variety of
PDEs arising from linear operators. Even though we have worked with time schemes in the example of Burgers’
Equation, this methodology in general circumvents the need for any discretization methods. When working with truly
noisy data, the parameter s (which we have set to 1e-7 in most cases) can be varied or even optimized as well. This
approach unfortunately can’t really be applied to non-linear equations, only by using workarounds like replacing the
non-linear term with the mean as we did in Burgers’ Equation, essentially transforming the non-linear equation to a
linear one. Using this remedy, we still get good results as we saw in Chapters 4.2.4 and 4.2.5. In our case, five to eight
data samples were sufficient to learn the parameters within a margin of error of 0.041 and 0.0009 in the linear, and 0.5
and 0.16 in the non-linear cases. Using 20 data samples, we were able to estimate the parameters to an accuracy of 0.6
percent.

6.1 Problems with the RBF kernel

One of the problems we noticed with the RBF kernel is that for more than 30 data points, the final covariance matrix
was frequently ill-conditioned. This happens more often, when the length-scale is large. With the increased number of
points, the probability of points being close to each other increases and then the respective columns of the covariance
matrix will be almost equal, especially when working with a large length-scale. Hence, this kernel is not good enough
for practical purposes on large datasets. The immediate solution that comes to mind to tackle this problem is to do a
singular value decomposition. [1] outlines the RBF-QR algorithm to avoid these issues. Stable computations can also
be achieved using Hermite polynomials [2], [3].

6.2 Non-linearity

In Burgers’ Equation we approximated the non-linear term by a constant term. This yields good results for some
special cases but is not a generic approach. The problem arises because the product of Gaussian processes does
not result in a Gaussian process. Nevertheless, we could utilize the fact that the product of Gaussian distributions
is also Gaussian in order to come up with a proper solution. Another approach is to assume priors over the kernel
hyperparameters and infer parameters with MCMC sampling schemes [4].

6.3 Kernel computations

The current framework involves two computations for every operator over the kernel. It is easy to do this by hand
for simple operators but even then there is scope for manual error. It would be nice to have a tool to compute the
transformed kernels automatically. Some progress has been made at this front resulting in a package for symbolic
kernel computations available on this project’s GitHub repository [5].

40



APPENDIX

A

APPENDIX

A.1 Demo of pyGPs

Here, we demonstrate a short program to show how to use the pyGPs-package for regression tasks.

In [4]: import numpy as np
import pyGPs

We are generating data by taking 50 evenly spaced values between -5 and 5 as our set of points X. For our respective
set of points Y we are generating Gaussian-distributed values with a parabola shaped mean and an RBF Kernel with
an added error term as our covariance:

In [5]: X = np.arange(-5, 5, 0.2)
s = 1e-8 # error term
n = X.size
m = 1/4*np.square(X) # mean
a = np.repeat(X, n).reshape(n, n)
k = np.exp(-0.5*(a - a.transpose())**2) + s*np.identity(n) # covariance
Y = np.random.multivariate_normal(m, k, 1)
Y = Y.reshape(n) # Converting y from a

# matrix to an array

We treat the values 𝑥 ∈ 𝑋 (whilst 𝑋 ⊆ R) as our input points and the values 𝑦 ∈ 𝑌 (𝑌 ⊆ R) as corresponding output
points. Handing these over to our model variable as data, we can use pyGPs’ Gaussian Process Regression (With a
zero mean, an RBF Kernel and Gaussian likelihood as default).

Note, that we’re using a zero mean Gaussian Process prior for our data, which has been generated by a parabola-shaped
mean Gaussian. This shows the flexibility of the model.

Using this, we can predict output values for values of x outside of our initial range between -5 and 5.

In [17]: model = pyGPs.GPR()
model.setData(X,Y)
# model.setPrior(mean=pyGPs.mean.Zero(), kernel=pyGPs.cov.RBF()) is redundant
model.optimize(X,Y)
model.predict(np.array([5,6,7,8,9,10]))
model.plot()

Number of line searches 40

41



A.2 Own Covariance function for the Heat Equation with pyGPs

The definition of this kernel was an attempt to train a pyGPs-GPR-model with the kernel given by 𝑘𝑓𝑓 in Chapter
3.1.2, in accordance with the approach as it was described in Chapter 5.

The coefficients were calculated using the heat_equation_with_pygps-v2.ipynb notebook on our GitHub-Page.

The optimal parameters for 𝑘𝑢𝑢 were estimated as [𝜎𝑢, 𝑙𝑢] = [2𝑒− 05, 1291919.81].

In [1]: # The kernel has to be added to cov.py, which is located (with Windows and
# Anaconda) in C:\Users\SurfaceAdmin\Anaconda3\Lib\site-packages\pyGPs\Core

# Unfortunately the kernel is basically equal to zero and the optimizer
# will stick with the default value for the hyperparameter, which in turn
# returns 1.0 for phi.

# Own Kernel function (the try-except block was only added to prevent
# error-messages concerning the unknown Kernel-class after execution of
# the code):

try:
class MyKernel2(Kernel):

def __init__(self, log_phi=0.):
self.hyp = [log_phi]

def getCovMatrix(self,x=None,z=None,mode=None):
self.checkInputGetCovMatrix(x,z,mode)
p = np.exp(self.hyp[0]) # phi
A = 0
if not x is None:

n, D = x.shape



A = np.zeros((n,n))
if not z is None:

nn, D = z.shape
A = np.zeros((nn,nn))

if mode == 'self_test':
A = np.zeros((nn,1))

elif mode == 'train': # compute covariance matrix for
# the training set

A = np.zeros((n,n))
for i in range(n):

for j in range(n):
A[i][j] = (p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \

1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22) - \
2.39e-22*(x[i][0] - x[j][0])**2 + 3.09e-16)* \
np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
3.87e-7*(x[i][1] - x[j][1])**2)

elif mode == 'cross': # compute covariance between data sets x and z
m = z.shape[0]
A = np.zeros((n,m))
for i in range(n):

for j in range(m):
A[i][j] = (p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \

1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22) - \
2.39e-22*(x[i][0] - z[j][0])**2 + 3.09e-16)* \
np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
3.87e-7*(x[i][1] - z[j][1])**2)

return A

# We are taking the derivative w.r.t. p, but are multiplying it with 2*p or p,
# since that seems to be the pattern in the source code of pyGPs as well:

def getDerMatrix(self,x=None,z=None,mode=None,der=None):
self.checkInputGetCovMatrix(x,z,mode)
p = np.exp(self.hyp[0]) # phi
n = 0
if not x is None:

n, D = x.shape
if not z is None:

nn, D = z.shape
if mode == 'self_test': # self covariances for the test cases

A = np.zeros((nn,1))
elif mode == 'train': # compute covariance matrix for

# the dataset x
A = np.zeros((n,n))
for i in range(n):

for j in range(n):
A[i][j] = (p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \

1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22) - \
2.39e-22*(x[i][0] - x[j][0])**2 + 3.09e-16)* \
np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
3.87e-7*(x[i][1] - x[j][1])**2)

elif mode == 'cross': # compute covariance between data
# sets x and z

A = np.zeros((n,nn))
for i in range(n):

for j in range(nn):
A[i][j] = (p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \



1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22) - \
2.39e-22*(x[i][0] - z[j][0])**2 + 3.09e-16)* \
np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
3.87e-7*(x[i][1] - z[j][1])**2)

if der == 0: # compute derivative matrix wrt 1st parameter
if mode == 'train':

A = np.zeros((n,n))
for i in range(n):

for j in range(n):
A[i][j] = 4*p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \

1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22)*\
np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
3.87e-7*(x[i][1] - x[j][1])**2)

elif mode == 'cross':
A = np.zeros((n,nn))
for i in range(n):

for j in range(nn):
A[i][j] = 4*p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \

1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22)*\
np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
3.87e-7*(x[i][1] - z[j][1])**2)

else:
raise Exception("Calling a derivative in RBF that doesn't exist")

return A
except:

pass

In [2]: # Has to be added to pyGPs/Testing/unit_test_cov.py and then unit_test_cov.py
# has to be executed.
# For testing purposes only:

def test_cov_new(self):
k = pyGPs.cov.MyKernel() # specify your covariance function
self.checkCovariance(k)

A.3 Exploring the GPy package

In [1]: import time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

In [2]: n = 10
np.random.seed(int(time.time()))
t = np.random.rand(n)
x = np.random.rand(n)
y_u = np.multiply(np.exp(-t), np.sin(2*np.pi*x))
y_f = (4*np.pi**2 - 1) * np.multiply(np.exp(-t), np.sin(2*np.pi*x))

In [3]: import GPy

In [4]: kernel = GPy.kern.RBF(input_dim=2)
kernel

Out[4]: <GPy.kern.src.rbf.RBF at 0x10660f9b0>

In [5]: m = GPy.models.GPRegression(np.matrix([t, x]).T, y_u.reshape(y_u.size,1),kernel)

In [6]: from IPython.display import display
display(m)



<GPy.models.gp_regression.GPRegression at 0x10660ff28>

In [7]: fig = m.plot()
display(GPy.plotting.show(fig, filename='basic_gp_regression_notebook_2d'))

/usr/local/lib/python3.6/site-packages/matplotlib/figure.py:1743: UserWarning:This figure includes Axes that are not compatible with tight_layout, so its results might be incorrect.

In [8]: m.optimize(messages=True)

Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0003 1.797920e+01 3.159042e+02
00s03 0012 3.656938e+00 9.295373e+00
00s06 0023 6.417812e-01 7.386639e-03
00s09 0035 6.255299e-01 4.347322e-06
00s10 0040 6.255208e-01 1.657704e-08
00s12 0045 6.255205e-01 6.876193e-11
00s12 0046 6.255205e-01 6.876193e-11

Runtime: 00s12
Optimization status: Converged

Out[8]: <paramz.optimization.optimization.opt_lbfgsb at 0x1067d2ba8>

In [9]: m.optimize_restarts(num_restarts = 10)

Optimization restart 1/10, f = 0.6255204911801915
Optimization restart 2/10, f = 0.6255204901419562
Optimization restart 3/10, f = 0.6255214894302625
Optimization restart 4/10, f = 0.6255204755438637
Optimization restart 5/10, f = 0.625520537160762
Optimization restart 6/10, f = 0.6255204592848189
Optimization restart 7/10, f = 0.6255204754204922
Optimization restart 8/10, f = 0.6255213104151442
Optimization restart 9/10, f = 0.6255213338652572
Optimization restart 10/10, f = 0.6255205894920346



Out[9]: [<paramz.optimization.optimization.opt_lbfgsb at 0x1067d2ba8>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10317ffd0>,
<paramz.optimization.optimization.opt_lbfgsb at 0x1067d2908>,
<paramz.optimization.optimization.opt_lbfgsb at 0x103fce0f0>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10667c668>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10780b080>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10781fdd8>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10781f3c8>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10667c400>,
<paramz.optimization.optimization.opt_lbfgsb at 0x10781fda0>,
<paramz.optimization.optimization.opt_lbfgsb at 0x1067d2a58>]

In [10]: display(m)

<GPy.models.gp_regression.GPRegression at 0x10660ff28>

In [11]: fig = m.plot()
GPy.plotting.show(fig, filename='basic_gp_regression_notebook_optimized')

/usr/local/lib/python3.6/site-packages/matplotlib/figure.py:1743: UserWarning:This figure includes Axes that are not compatible with tight_layout, so its results might be incorrect.

In [ ]:



BIBLIOGRAPHY

[1] Gregory E. Fasshauer and Michael J. McCourt. Stable Evaluation of Gaussian Radial Basis Function Interpolants.
SIAM Journal on Scientific Computing, 34(2):A737–A762, jan 2012. URL: http://epubs.siam.org/doi/10.1137/
110824784, arXiv:arXiv:1302.5877, doi:10.1137/110824784.

[2] Bengt Fornberg, Elisabeth Larsson, and Natasha Flyer. Stable Computations with Gaussian Radial Basis Func-
tions. SIAM Journal on Scientific Computing, 33(2):869–892, jan 2011. URL: http://epubs.siam.org/doi/10.1137/
090750688http://epubs.siam.org/doi/10.1137/09076756X, arXiv:arXiv:1302.5877, doi:10.1137/09076756X.

[3] Anna Yurova and Katharina Kormann. Stable evaluation of Gaussian radial basis functions using Hermite
polynomials. ArXiv e-prints, sep 2017. URL: https://arxiv.org/pdf/1709.02164.pdfhttp://arxiv.org/abs/1709.02164,
arXiv:1709.02164.

[4] Ben Calderhead, Mark Girolami, and Neil D Lawrence. Accelerating Bayesian Inference over Nonlinear Differen-
tial Equations with Gaussian Processes. Advances in Neural Information Processing Systems 21, pages 217–224,
2009.

[5] Ahmed Ratnani, Kumar Harsha, Arthur Grundner, and Kangkang Wang. Machine Learning for Hidden Physics
and Partial Differential Equations. 2018. URL: https://github.com/ratnania/mlhiphy.

[6] Gabriel J. Lord, Catherine E. Powell, and Tony Shardlow. An Introduction to Computational Stochastic PDEs.
Cambridge University Press, Cambridge, 2014. ISBN 9781139017329. URL: http://ebooks.cambridge.org/ref/id/
CBO9781139017329, doi:10.1017/CBO9781139017329.

[7] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear differential equations us-
ing Gaussian processes. Journal of Computational Physics, 348:683–693, 2017. URL: http://dx.doi.org/10.1016/
j.jcp.2017.07.050, arXiv:1701.02440, doi:10.1016/j.jcp.2017.07.050.

[8] Marion Neumann, Shan Huang, Daniel E. Marthaler, and Kristian Kersting. Pygps – a python library for gaussian
process regression and classification. Journal of Machine Learning Research, 16:2611–2616, 2015. URL: http:
//jmlr.org/papers/v16/neumann15a.html.

[9] E Solak, R Murray-Smith, W.E. Leithead, D.J. Leith, and C.E. Rasmussen. Derivative observations in
Gaussian process models of dynamic systems. Nips 15, pages 8, 2002. URL: https://papers.nips.cc/paper/
2287-derivative-observations-in-gaussian-process-models-of-dynamic-systems.pdf.

[10] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. Volume 14. The
MIT Press, 2004. ISBN 026218253X. URL: http://www.gaussianprocess.org/gpml/chapters/RW.pdf.

[11] R B Platte and T A Driscoll. Polynomials and potential theory for Gaussian radial basis function interpolation.
SIAM Journal on Numerical Analysis, 2005. doi:10.1137/040610143.

[12] Marion Neumann, Shan Huang, Daniel E Marthaler, and Kristian Kersting. pyGPs – A Python Library for Gaus-
sian Process Regression and Classification. Journal of Machine Learning Research, 16:26112616, 2015.

[13] Carl Jidling, Niklas Wahlström, Adrian Wills, and Thomas B. Schön. Linearly constrained Gaussian processes.
ArXiv e-prints, mar 2017. URL: http://arxiv.org/abs/1703.00787, arXiv:1703.00787.

47

http://epubs.siam.org/doi/10.1137/110824784
http://epubs.siam.org/doi/10.1137/110824784
https://arxiv.org/abs/arXiv:1302.5877
https://doi.org/10.1137/110824784
http://epubs.siam.org/doi/10.1137/090750688 http://epubs.siam.org/doi/10.1137/09076756X
http://epubs.siam.org/doi/10.1137/090750688 http://epubs.siam.org/doi/10.1137/09076756X
https://arxiv.org/abs/arXiv:1302.5877
https://doi.org/10.1137/09076756X
https://arxiv.org/pdf/1709.02164.pdf http://arxiv.org/abs/1709.02164
https://arxiv.org/abs/1709.02164
https://github.com/ratnania/mlhiphy
http://ebooks.cambridge.org/ref/id/CBO9781139017329
http://ebooks.cambridge.org/ref/id/CBO9781139017329
https://doi.org/10.1017/CBO9781139017329
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://dx.doi.org/10.1016/j.jcp.2017.07.050
https://arxiv.org/abs/1701.02440
https://doi.org/10.1016/j.jcp.2017.07.050
http://jmlr.org/papers/v16/neumann15a.html
http://jmlr.org/papers/v16/neumann15a.html
https://papers.nips.cc/paper/2287-derivative-observations-in-gaussian-process-models-of-dynamic-systems.pdf
https://papers.nips.cc/paper/2287-derivative-observations-in-gaussian-process-models-of-dynamic-systems.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://doi.org/10.1137/040610143
http://arxiv.org/abs/1703.00787
https://arxiv.org/abs/1703.00787


[14] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Inferring solutions of differential equations using
noisy multi-fidelity data. Journal of Computational Physics, 335:736–746, 2017. URL: http://dx.doi.org/10.1016/
j.jcp.2017.01.060, arXiv:1607.04805, doi:10.1016/j.jcp.2017.01.060.

[15] J. Rashidinia, M. Khasi, and G. E. Fasshauer. A stable Gaussian radial basis function method for solving non-
linear unsteady convection–diffusion–reaction equations. Computers and Mathematics with Applications, 2018.
doi:10.1016/j.camwa.2017.12.007.

[16] Pedro Henrique de Almeida Konzen, Esequia Sauter, Fabio Souto de Azevedo, and Paulo Ricardo de Ávila
Zingano. Numerical simulations with the finite element method for the Burgers’ equation on the real line. ArXiv
e-prints, may 2016. URL: http://arxiv.org/abs/1605.01109, arXiv:1605.01109.

[17] Michael P. Lamoureux. The mathematics of PDEs and the wave equation. In Seismic Imaging Summer
School. Pacific Institute for the Mathematical Sciences, 2006. URL: http://www.mathtube.org/sites/default/files/
lecture-notes/Lamoureux\protect\T1\textbraceleft\T1\textbackslash{}_\protect\T1\textbracerightMichael.pdf.

http://dx.doi.org/10.1016/j.jcp.2017.01.060
http://dx.doi.org/10.1016/j.jcp.2017.01.060
https://arxiv.org/abs/1607.04805
https://doi.org/10.1016/j.jcp.2017.01.060
https://doi.org/10.1016/j.camwa.2017.12.007
http://arxiv.org/abs/1605.01109
https://arxiv.org/abs/1605.01109
http://www.mathtube.org/sites/default/files/lecture-notes/Lamoureux\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright Michael.pdf
http://www.mathtube.org/sites/default/files/lecture-notes/Lamoureux\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright Michael.pdf

	Preface
	About Gaussian Processes
	Introduction to Gaussian processes
	Simple example of a Gaussian process
	Linear operators on GPs

	Parameter estimation with Gaussian Processes
	1D Linear operator with one parameter
	2D Linear operator with one parameter
	1D Linear operator with two parameters
	1D linear operator with a zero parameter

	Linear PDEs
	Heat equation
	Wave equation

	Non-linear PDEs
	The inviscid Burgers’ Equation
	The inviscid Burgers’ Equation - A different approach

	Approach with pyGPs
	Parameter Estimation for a linear operator using pyGPs

	Conclusion
	Problems with the RBF kernel
	Non-linearity
	Kernel computations

	Appendix
	Demo of pyGPs
	Own Covariance function for the Heat Equation with pyGPs
	Exploring the GPy package

	Bibliography

