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Abstract
In order to evaluate the fit of the regression model, firstly the basic regression model as-
sumptions were checked. Since, if various assumptions cannot be fulfilled, most statistical
methods and parametric methods based on normal distribution - often used to evaluate the
goodness of fit - cannot be used in further analysis. To check these model assumptions, we
utilize diagnostic plots (such as residual plots). Then, we try to determine the distribution
of errors, targets, and predictions. We investigate various different distributions - to be fur-
ther analyzed with the least residual sum of square error rates. By identifying the model’s
distribution, we are able to evaluate how well our model fits on data. Then we statistically
validate the model distribution through the Kolmogorov-Smirnov test (KS test), visualize our
findings via Exploratory Data Analysis (through the use of Quantile-Quantile plots, resid-
ual plots, etc.)- to confirm our findings on the best-fitted distribution of our regression model.

Secondly, we perform anomaly detection to analyze our extreme values and its’ impact on
our model conclusion. Our approach is to first determine the type of outlier we are interested
in detecting based on the number of variables of interest (based on the number of variables of
interest). Thus, we implement mixture of both univariate and multi-variate outlier detection
methods - in order to find our threshold for possible outliers (required for predicting out-
liers). Then, for univariate outliers we implement the Tukey’s method (using interquartile
range), whereas. For multivariate analysis - we briefly discuss methods for the operational
definitions, and implement the Mahalanobis distance to calculate initial thresholds for our
data set. Then, based on our findings, we implement the Isolation Forrest to predict new
outliers in our test sample. Lastly, we compare and assess our detection methods via the F1

score, precision and recall.

Lastly, to find the possible loss caused by using our model, we analyze the absolute residual
and percentage residual from two perspectives: Value at risk (VaR), which gives the maximal
loss at a certain confidence level, and Expected Shortfall (CVaR), which focuses more on
the tail risk. With these two risk metrics, a completed risk review can be generated. To
obtain VaR and CVaR, four methods are used: Parametric method, Historical simulation,
Bootstrap, and Extreme value theory. By comparing the VaR and CVaR values calculated in
the four different methods, we are able to come up with a more accurate result. Additionally,
we also tested the accuracy of the VaR value with Kupiec LR test.
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1 Introduction
With over 40 years of experience, msg life’s consumers depend on their exceptional industry-
leading expertise and expect high standards in software solutions and products. Currently,
msg life is implementing machine learning techniques-which in itself rises technical, and
mathematical challenges. Thus, msg life’s overall objective of this project is to ensure that
the new machine-learning-based methods developed to retain their high standard of accuracy;
enabling them to provide their consumers with innovative and market-competitive tools with
confidence.
For this study, we focus on neural networks developed to primarily calculate insurance pre-
miums - which can also in the future be used to calculate other key related values. The aim
of this study is to 1) propose methods to measure the goodness of fit of this neural network,
and essentially, on the entire sample space, 2) visualize the model fit through explanatory
data analysis, and, 3) ensure every procedure proposed is reproducible and can be imple-
mented for different data-sets and future models. Our biggest challenge here, firstly, arises
from the nature of the neural networks ("the black-box"). Ensuring stable findings and ac-
curacy in predicted values for new instances (not used during the testing and training phase)
is extremely challenging to validate. Secondly, the growing sample size of the data set, and
a large number of features to consider permits us from testing every different scenario, when
predicting and validating premium rates. Thus, this also creates additional challenges in
terms of the computational resources required.
Hence, to validate the performance and fit of the regression model - to essentially verify it’s
quality given the sample space - we break down our approach in three different steps (briefly
describe in the next section). Firstly, we assess the overall adequacy of the model, proposing
methods to find the best distribution fit (for residuals, and response variables), and, then
utilizing statistical methods and visualizations to confirm our findings. Then, we analyze
our extreme events or outliers by implementing different outlier detection models - to ensure
stable findings, and assess the impact on our conclusions. Lastly, we investigate the financial
risk and loss through various risk assessment measurements and tools - while analyzing the
overall financial implications of our findings.

1.0.1 Data

Data was provided by msg life, with includes both input and output values with 100,000
observations. We consider five covariates (or independent variables) in addition to the ob-
served response variable and its predicted values (obtained by the neural network). Thus,
as the goal of the regression neural network model is to predict the premiums based on the
input values; our observed dependent variable (referred to as "target") and the fitted (or
predicted) dependent variable (referred to as "prediction") represents the number of pre-
miums for the individual policyholder, i. Whereas, the covariates of interest (attributes of
the policyholders, and their variable class) includes the following: 1) sex of the policyholder
(binary), 2) risk class (nominal, with high, medium, low classes), 3) age of the policyholder
(continuous), 4) policy years (continuous), and the 5) time the policyholder wants to pay
premiums (in years, continuous). Table 6.1 provides a summary of the statistics of our whole
data set, per risk class.
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2 Evaluation Of A Neural Network Regression Model
To assess the goodness of fit of the neural network - through the use of statistical methods
and diagnostic plots - is an essential step of a model’s post-evaluation stage. As only inves-
tigating the models’ predictive abilities does not provide us with full insights on the model’s
structural fit, estimation nor the statistical significance of various aspects of the derived
model [1]. Hence, the purpose of this chapter is to analyze how the specified model struc-
ture describes the adequacy of the model and to ensure that interesting attributes of input
variables (features) are not included in the ’unmodeled’ portions of the model (the model’s
residuals). Specifically, if the model’s error terms behave like "white noise" - in other words,
has zero mean and constant variance and are "independent identically distributed"(i.i.d) -
then we can conclude the regression model is of adequate structure. Since if there is "strong"
evidence against these model properties (with respect to the error term) this indicates a type
of specification bias in our model, resulting in sub-optimal accuracy, predictive powers, and
questionable model fit.
Hence to test the adequacy of a neural networking regression model, we utilize: screening
and detection tools (through visualizations such as normality plots), and statistical testing
procedures appropriate for testing the adequacy of the model’s fit.

2.1 General Setting of a Neural Network Regression Model

The goal of a neural network regression model is to formulate a function that maps a set of
input variables to a quantitative variable with some unknown values (the estimate). Thus,
similar to "standard" regression analysis, the goal is here to also to find functions of the
given input variables (covariates) adequate for the defined task. [2]
Suppose we define the target variable as yi ∈ R, for i observations, the vector with k input
variables as xi ∈ Rk as x̄i = (1, x′i)

′,and error terms of the model as εt. Then, the following
neural network regression model can be (generally) formulated as:

yi = f(xi; θ) + εi (1)

Here, generally, the function f(xt; θ) one layer(with n hidden neurons) of a multi-layer feed-
forward neural network [1]. Thus, between the input and out puts (the regression estimates)
- lays the hidden units of the network. However, due to the scope of this study we mainly
focus on the post-evaluation stage of the model and it’s regression estimates - specifically
analyzing the error terms of the model [3]

2.2 Regression Assumptions

Moreover, εi is (generally) specified as εi = ri, with ri residuals (such that the estimates of
errors are calculated by the difference between the target and predicted values). Thus, we
check our assumptions such that the εi terms are independent and identically distributed
random variables. Additionally, we also check if these terms are normally distributed (even
though it is not a necessary and an arbitrary assumption) as normality provides us with
desirable properties, such as simpler interpretations and calculations for further analysis of
the errors. Hence, if we find that the random variables εi are indeed normally distributed,
then it satisfies the following assumptions:



2 EVALUATION OF A NEURAL NETWORK REGRESSION MODEL 6

1. E[εi] = 0 (Zero mean)

2. εi are independent random variables

3. Has constant variance or Variance homogeneity: V ar(Yi) = V ar(εi) = σ2

In this case, εi are independent identically distributed random variables with distribution:
εi ∼ N(0, σ2). Which also implies that the errors contain no additional structure, and we
can conclude there is no strong evidence of against the fit of the model.
Homoscedasticity. Homeoscedasticity is the assumption that the variance of the residuals
or error terms is constant across all fitted values. Violations of this assumption (referred to
as "heteroscedasticity") when analyzing the model not only imply that the error variance is
changing (with the fitted values) but can also imply impaired efficiency and that the "stan-
dard" measurements used for determining the coefficient standard errors are also inaccurate.
Additionally, heteroscedasticity makes estimating the actual standard deviation of forecast
errors problematic, resulting in confidence ranges that are too large or too tight.
Confidence intervals for out-of-sample predictions will be likely to be unnecessarily tight
if the variance of the errors increases with the expectation of the predictor. When esti-
mating coefficients, heteroscedasticity may also have the consequence of giving too much
weight to a small subset of the data. To detect any violations against homoscedasticity,
we utilize residual diagnostic plots and analyze further dependencies among the residuals
by interpreting a quantile-comparison plot [4]. Here, assumptions are violated if errors get
systematically larger in one direction by a significant amount. Later, we perform Leven’s
test for heteroscedasticity to verify our observations.
Independence of errors and Zero Mean. If there is no evident relationship nor structural
dependency between the residuals and the variables in the model - then both the assumption
of error independence and zero mean hold. As violations of the independence assumption
indicate the sample values may be correlated (known as "multicollinearity") with strong
evidence of a dependency (or a structural pattern). Hence, even if the model is correctly
specified, correlations among the residuals, with a non-zero mean may influence the model
to under-predict or over-predict depending on the configuration of the covariates.
As, firstly, these patterns contain information that the regression model was unable to cap-
ture during its training on the training set, resulting in a model that is either inadequate
or sub-optimal. [5]Secondly, a non-zero error mean indicates skewed model estimates. Such
that, for instance, the model would underestimate with large positive error mean and overes-
timates large negative error means. To check these assumptions, we once again utilize resid-
ual diagnostic plots to visualize correlations between the predictors and residuals. Then we
also briefly analyze the variance inflation factor (VIF) to quantify the correlations between
the model variables.
Normality. As stated, though the assumption of normally distributed errors is arbitrary,
leveraging quantile-comparison plots to analyze the distribution of the error estimates, the
residuals, is very effective in assessing the model fit. Given quantile-comparison plots are
often utilized to examine tail behavior of the model residuals, such as outliers, skewness,
and light or heavy tails. This is crucial as highly skewed distributions compromise the
interpretation of the model and the estimation of coefficients[6]. Additionally, interpret-
ing quantile-comparison plots for normality also helps us interpret and possibly adjust for
dependencies among the residuals[7].
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2.2.1 Results & Discussion

To detect non-constant error variance, we first analyze the scatter plots of residuals and
standardized residuals versus predicted value, shown in Figure 2.1. We observed the residuals
are randomly disturbed almost uniformly across the y-axis with no evident "funnel-shaped"
structures. Though there is a slight increase in residuals as the predicted values increase
(often commonly expected) - there are no strong indications of heteroskedasticity as the
relationship is relatively not extreme. We confirm these findings by performing the Levene’s
Test (grouping by the risk classes), where we fail to reject the null hypothesis of variance
homogeneity at a 5% significance level (with p-value = 0.1009, and 5 degrees of freedom).

Figure 2.1: (1) Residual vs. Fitted Values Plots, (2) Squared Standardized Residuals
(Scale-Location)

However, we also observe more positive values for the residuals as there is more residu-
als concentrated above 0, especially for small predicted values. This indicates that the
residual mean may be above zero for low predicted values, implying that the model un-
derestimates for large positive error mean. This is especially evident when we analyze
the standardized residuals(2.1), and when computing the mean of the raw residuals for
all observations(E(ri) = 6.003). Additionally, it is clear that there may a large amount of
outliers which may also contribute to the skewed model estimates. To verify our results,
we perform the Levine-s test of variance homogeneity (against the null hypothesis that the
variances are equal across all instances). Based on our results, at 5% significance level, we
concluded that we did not have enough evidence to reject the null hypothesis ( with p-value
0.1054) of constant variance.
In addition to check the assumptions of the independence of errors between covariates (and
to detect multicollinearity), we utilize scatter plots with residual and independent variables.
Regarding age, duration of the contract, gender, and risk class, residuals randomly scattered
around the horizontal-line of zero, with no apparent pattern. However, the variance of resid-
ual decreases while age is increasing, which we have to account for during further analysis.
We further verify these findings through the VIF. Where we found age and the number of
policy years to have VIF values between 8-10 (age with 8.42 VIF, and 9.44 the policy years).
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This is expected as both variables are dependent on each other ( as the number of policy
years is determined by the age of the policyholder).Hence, we conclude, there is no strong
evidence of multicollinearity. This occurs if our regression model differs from the actual
model or we have outliers. As a result, the model will not predict optimally for many of
the observations. It is recommended that either: the implications of the results should be
repeated after the removal of outliers,redundant variables are removed, or re-conceptualizing
the meaning of the predictor may help solve this issue. [8]

Figure 2.2: (1) Distribution of Residuals, (2) Normality Quantile-Quantile Plot

Q-Q plot and P-P plot were used to identify normality or residual. It is evident that normal-
ity does not meet since the distribution of residuals (in Figure 2.2) do not follow the normal
distribution. To solve this issue, we tried applying various transformations on the predicted
values (for example, logarithmic and polynomial transformations), and Box-cox transforma-
tions. However, there were still somewhat strong indications of the non-normally distributed
errors. Therefore, we conclude the normality assumption cannot be fulfilled for model error
terms.Thus, we have to further analyze, compare and fit different error distributions.

2.3 Distribution Fitting

Until now, we still have no clear indication regarding the underlying distribution of our
variables of interest, i.e., the distribution of errors, targets, and predictions. If we know the
distribution of these variables, we can assess how well the model fits. Thus, in the following
section, we examine various distributions against our data and, utilize goodness-of-fit tests
to determine which distribution and parameter estimates fit the given data the best.

2.3.1 Workflow of Distribution Fitting

To verify the distribution our data may follow, we hope to develop a tool to automate
this process for any unseen dataset. This process is based on the python package ’distfit’. It
compares the actual frequency(f) to the model’s anticipated frequency (f-hat), then computes
the residual sum of squares (RSS). It returns the best-fitted distribution is returned with the
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corresponding parameters. To start with, we try to compare whether our data follows the
eight commonly used distributions in ’distfit’[9]. These are normal distribution, generalized
extreme value (GEV) distribution, exponential distribution, gamma distribution, pareto
distribution, log normal distribution, weibull distribution, beta distribution, t distribution,
and uniform distribution. If none of them has a good fit, we will expand to fit our data to
a larger set of distributions derived from the ’scipy’ library. Then, different goodness of fit
methods was performed to evaluate how well the data follows each distribution. In addition,
Q-Q plots and P-P plots help us visualize the goodness of fit intuitively. In order to make
this process faster and to reuse the same procedure for any data set, we created a tool to
automate the above process.

Figure 2.3: User Interface of the Tool developed

Figure 2.3 shows us the user interface of the tool we developed. Users are able to import
the data set into the program and select the corresponding variable they want to fit. Then
they can define the category of the distributions, the top n distributions they want to pick,
and the sorting criteria of the result distributions. In the end, a PDF file will be generated
including the RSS error values, Q-Q plots, and P-P plots of the top n distributions and the
K-S test result of the corresponding distributions to the path user provided.

2.3.2 Goodness of Fit Measurement

In this section, different goodness of fit measurements are introduced to select the distribution
our data follows. We used basic metrics, Q-Q plot, P-P plot, and Kolmogorov-Smirnov
Test(K-S Test) to measure this project.

Metrics Regression metrics for evaluation are most commonly used in the goodness of fit
analysis since it is easy to calculate and provides an easy way to compare different models.
In this project, the residual sum of squares(RSS) was used, which is defined as in eq.2 where
yi is the actual value and f(xi) is the predicted value. It calculates the sum of the square of
the difference between the true and predicted value. If RSS is low, we got a model which is
close to our raw data.

RSS =
n∑

i=1

(yi − f(xi))
2[10] (2)
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Kolmogorov-Smirnov Test (K-S Test) The Kolmogorov-Smirnov one-sample distribu-
tion test is often used to examine whether the samples come from a given distribution [11].
It is based on the empirical distribution function(ECDF). ECDF is defined as:

EN =
n(i)

N
[12] (3)

where n(i) is the number of data smaller than the value Xi and Xi is the ordered data point
from smallest to largest. Then the KS-test calculated the maximum distances between two
curves[13].
The test is defined by:
H0: The data follow a specified distribution
Ha: The data do not follow the specified distribution

The Kolmogorov-Smirnov test statistic is defined as

D = max
1≤i≤n

(F (Xi)−
i− 1

N
,
i

N
− F (Xi))[12] (4)

F (X) is the theoretical cumulative distribution of the distribution tested. The hypothesis
is rejected if the test statistic is greater than the critical value from the table, depending on
the confidence interval and the sample size[12].
The advantage of using the K-S test is that the test is exact and non-parametric. Moreover,
we can use the test statistic to compare the goodness of fit easily. Unlike other goodness of
fit tests, the K-S Test can test whether samples follow any distribution without making some
assumptions. In addition, the critical value of the K-S Test does not depend on reference
distribution, which gives us a clear comparison of the goodness of fit performance.

2.3.3 Results and Discussion

In this section, methods in 2.3.2 were implemented on target and error values to investigate
how they are distributed.

Fitting a distribution on error value As mentioned in 2.1, choosing a correct error
distribution is critical for us to evaluate the performance of the model.
We started by finding out a suite of candidate probability distributions distributions with
the least RSS values. Q-Q plots and P-P plots give an intuitive measurement of goodness of
fit. To verify which distribution best fits the error estimates, the K-S Test was performed on
a subset with a sample size of 10000. Table 2.1 shows the three lowest test statistic values
of all distributions tested.

Table 2.1: Test statistic of K-S Test on error value

Distribution Test statistic
Johnson SU 0.0083

t 0.02600
Double Gamma 0.0300
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Moreover, the critical value of 0.05 significance level with a sample size of 10,000 can be
calculated from [12] as

C =

√
−1

2
ln(

α

2
)[14] (5)

Dcrit =
C√

10000
= 0.0136. (6)

where α is the confidence interval. We fail to reject the null hypothesis of the K-S Test aganist
the Johnson SU distribution fit. Therefore, we suggest that the Johnson SU distribution fits
the error estimates the best. Figure 2.4 shows a comparison of empirical error distribution
and the fitted error distribution.

Figure 2.4: Empirical vs. Fitted error distribution

Johnson SU distribution is a transformation of the normal distribution, which can solve
a skewed normal distribution with four parameters. The probability density function for
johnson SU is defined as in eq.7.

f(y, a, b) =
b√
y2 + 1

φ(a+ b ∗ log(y +
√
y2 + 1) (7)

where y = x−loc
scale

, φ is the probability distribution function(pdf) of a normal distribution and
a,b are the shape parameters.
Location and scale parameters are used to transform the distribution into the standardized
form. The shape parameter ’a’ corresponds to the skewness of the distribution and ’b’ tells
the kurtosis of the data. A positive skewness corresponds to a skew-left distribution, and
a negative skewness means we have a right-skewed distribution. Kurtosis is a statistical
measure that defines how heavily the tails of distribution differ from the tails of a normal
distribution which can only be greater than 0 by definition.
The corresponding shape parameters, location, and scale parameters were derived by max-
imizing the likelihood when fitting the distribution on error values with the sample size
of 10000 using the python package ’stats’. The parameters estimated are (a=-0.4732,
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b=1.3960,loc=-0.7811, scale=8.0959). The K-S Test indicates that the Johnson SU dis-
tribution fits our error value well. In our case, the error distribution is a light skewed-right
normal distribution, which indicates that more errors are clustered around the left tail of the
distribution, and the right tail is longer. In addition, we observed a positive kurtosis which
indicates that the error distribution is peaker than the normal distribution, i.e., more error
values are clustered around the mean value. However, it also tells us that the tail of the
error distribution is heavier than the normal distribution, which indicates we have observed
more error values with high absolute values, which can be a risk.
The Johnson SU distribution with four parameters provides us a highly flexible model, which
can account for any conditional mean and variance in any degree of positive or negative skew-
ness combined with positive levels of kurtosis[15]. With the help of flexible error distribution,
we can capture more features of the error values to describe the data more accurately.

Fitting a distribution on predicted and target value Ten most likely distributions
matched for the predicted value were sorted with the RSS value. K-S Test was performed
on the top 10 distributions, and we selected three distributions with the lowest test statistic,
and the results are shown in Table 2.2. The three distributions selected are the Johnson SU,
inverse Gaussian, and power lognormal distribution.

Table 2.2: Test statistic of K-S Test on predicted value

Distribution Test statistic
Johnson SU 0.01628

Inverse Gaussian 0.01682
Power Lognormal 0.01881

Figure 2.5 shows a comparison of empirical predicted value distribution and the fitted pre-
dicted Johnson SU distribution.

Figure 2.5: Empirical vs. Fitted predicted
value distribution

The python package ’stats’ estimated the corresponding shape parameters, location, and
scale parameters when fitting the predicted values to a JohnsonSU distribution. The param-
eters are given as follows: a = −2.6294, b = 0.6536, location = 1196.1891, scale = 243.0011.
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In this case, the distribution still has a negative skewness and a positive kurtosis parameter.
It is noteworthy that the predicted value is a highly positive-skewed distribution, where most
of the values are around 0. The kurtosis value tells that the distribution is not so peaky.
However, we cannot accept the null hypothesis since the test statistic is greater than the
critical value. On the other hand, the Johnson SU distribution is a two sided distribution
between −∞ and ∞. All predicted values are greater than 0. Although the Johnson SU
distribution fits the predicted value well, we still have to reject that the predicted value
follows the Johnson SU distribution. For further analysis, one should consider further trans-
formations on the response variables, such as box-cox transformations etc.
To evaluate the goodness of fit of the regression model, people often try to compare whether
or not the observed value distribution is consistent with the predicted value distribution by
the goodness of fit tests[16]. The two-sample K-S Test was used to detect whether the target
value and the predicted values are consistent. The test statistic for the two-sample K-S Test
is 0.0159. Furthermore, the critical value of a two-sample K-S Test with a sample size of
10000 and a significance level of 0.05 is:

Dcrit = 1.36

√
n1 + n2

n1n2

= 1.36

√
10000 + 10000

10000 · 10000
= 0.0192.[12] (8)

Since the test result is lower than the critical value, we conclude that the regression model
provides good predictions of the target values.

3 Anomaly Detection

3.1 Introduction

As the primary goal of this project is to ultimately investigate our methods to measure the
goodness of fit over the entire sample space ( in addition to visualizing the fit via explanatory
data analysis ); it is crucial we create procedures to analyze, and, more importantly, detect
the presence of outliers ( or ’anomalies’) in our data set. As anomaly detection identifies
certain deviating patterns given the distributions of the variables of interest - it allows us to
further assess instances that do not fulfill our expectations and ensures stable findings.
In recent years, anomaly detection has played a significant role in a variety of fields and has
been deemed crucial in several application domains [17]. The anomaly detection algorithms
implemented in these types of applications (such as network intrusion detection, credit card
fraud analytics, and fault detection) are not only essential - but they also require the corre-
sponding algorithms to have the following key properties: high accuracy, and high detection
performance with extremely fast execution.
Given these requirements, our primary goal in this chapter is to propose anomaly detection
algorithms and methods for any given msg data set (including new ’unseen’ and existing
data). The key motivations of previous and existing comparative studies in anomaly de-
tection can often be categorized into addressing the following topics: 1) explicitly defining
anomalies 2) comparison of existing and new anomaly detection methods, and 3) addressing
the lack of ’good’ benchmarks and performance measures. [18] To achieve this - we must first
ensure our proposed algorithm can identify the outliers in our dataset that are ’infrequent’
and evidently ’different’ from the assumed distribution. Then, secondly, ensure that our
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proposed methods also can predict and identify all ’new’ anomalies or outliers given a new
dataset. [19]
Therefore, to design an algorithm that can complete the given tasks above with high ac-
curacy, high detection functionality with fast execution - requires a three-step process with
different methodologies (with the corresponding major challenges, comparable to previous
studies, and the methodology):

1. Operational Definitions. There exists a variety of different operational definitions of
anomalies or outliers - which then determines the different statistical and type of outlier
detection methods required (dependent on the study design and data). Hence there
is no ’universal’ definition of an outlier nor a defined threshold for what is considered
an extreme event. The question we aim to answer here is: What is an outlier or
’anomaly’ in the data-set? To do this we implement methods to detect: univariate
outliers (Tukey’s Range Test) and multivariate outliers (Mahalanobis Distance).

2. Anomaly Detection Methods. Based on the operational definition and threshold
pre-selected in the step before, we need to predict ’new’ outliers on unseen data as
well. This includes using a mixture of unsupervised, and supervised methods. Based
on our research, we found the Isolation Forrest is the most suitable for this study.

3. Performance Evaluation Measures. Similarly to the definition of outliers, there
is no universal ’good’ benchmark to compare and assess the performances of the algo-
rithms in the previous step. Yet, since we need to evaluate different types of algorithms
to each other - we also require a ’standard’ performance measure for comparability pur-
poses. Thus, the main question we address here is: What are the appropriate or ’good’
benchmarks and performance measures for our proposed detection methods?

3.2 Definition of Outliers

Before comparing different operational definitions and outlier detection methods - we must
first distinguish the type of outlier we are interested in. Specifically, whether or not we aim
to detect univariate or multivariate outliers. Since we are interested in the errors of the
fitted response values and its’ observed values, we also need to investigate univariate error
outliers. Nevertheless, we must consider data sets containing our fitted or observed response
variable (premiums) with errors - to gain more insight into the goodness of fit. Thus, we
need to implement various outlier detection methods accordingly (as we cannot use the same
algorithm to detect both univariate and multivariate outliers).

3.2.1 Univariate Outliers

To detect univariate outliers, we focus on statistical methods commonly used for analyz-
ing goodness of fit. Implementing these methods provides us a threshold - by finding po-
tential outliers and determine the initial range of extreme values we require for further
investigation[20]. Since in the previous chapter, we found that we need to account for highly
skewed distributions. This implies we may require robust and non-parametric methods (for
new sets of data). Consequently, for these purposes, the Tukey’s range test or the interquar-
tile range (IQR) approach is the most effective for this scenario.
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Tukey’s Range Test. Essentially, the Tukey’s range test (also known as the Tukey’s
method) through the use of boxplots (shown in 3.1 visualizes the dataset and graphically
assess it by dividing it into five essential values (based on quartiles):

1. First Quartile (Q1): represents 25% quartile of the observations

2. Median: the center or middle value of the (sorted) data - representing 50% quartile
of the observations

3. Third quartile (Q3): 75% quartile of the observation

4. Interquartile range (IQR): the range representing the distance between Q1 and Q3

Figure 3.1: Visualizing Uni-variate Outliers via Box-plots

Since these values are determined by the median, quartiles (indicating 25 % to 75% of the
instances), and the minimal and maximal values of our observations. We can easily visualize
and determine the extreme values through the use of IQR, and utilizing its fundamental
feature referred to as ’whiskers’ (see Figure). Assume we define the lower boundary and the
upper boundary respectively as:

Inner fence: [Q1− 1.5 ∗ IQR, Q3 + 1.5 ∗ IQR]

Outer fence: [Q1− 3 ∗ IQR, Q3 + 3 ∗ IQR]
(9)

Then the largest and smallest values of our dataset within the boundaries define our whiskers.
Such that we distinguish between possible and probable outliers or extreme values - if any
observations fall outside of boundaries or between the range. Specifically, extreme values
located between the range of the inner fence and outer fence are labeled as ’possible outliers’
whereas instances whose values exceed the boundaries of the outer fence are labeled as
’probable outliers’. Thus, the key advantage of the Tukey method is that - it does not require
the data to be normally distributed - it can be extended to or can be adjusted for highly
skewed distributions (found in this study) through the use of logarithmic transformations
(i.e. the ’log-IG’method) [21].
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3.2.2 Results & Discussion

Firstly, the data is split by training and testing subsets such that 25% of data is used for
training (n0 = 25000 samples), and the remaining 75% is used for testing ( n1 = 75000).
Note, we pre-processed categorical and nominal covariates (such as gender, risk-class of pol-
icyholders) using dummy encoding. Our observed response variables are defined as ’target’,
where ’prediction’ refers to the fitted values. For univariate outlier detection, only the re-
sponse values and errors are of interest to us. Additionally, as we can: 1) extend the Tukey
Range test to the logarithm scale (required for response values only), and 2) be interested
mainly in the distance (error) between the fitted and response values. The logarithmic trans-
formations of both target and prediction values (denoted as ln(target) and so forth) are first
calculated and, then the absolute errors were derived (given by Equation (??)).

Table 3.1: IQR, 25% Quartile (Q1) and 75% Quartile (Q3) of Observations

Variables IQR Q1 Q3 mean std min max
errors 8.43 -1.73 6.70 2.85 8.08 -65.40 -65.40
abs_errors 6.32 1.90 8.22 6.08 6.04 0.00 0.00
ln_target 1.75 8.21 9.97 9.15 1.19 6.48 6.48
ln_prediction 1.75 8.21 9.96 9.15 1.19 6.48 6.48

Figure 3.2: Visualizing Uni-variate Outliers via Box-plots

Whereas, based on the results for anomalies in absolute errors a high ’contamination rate’
(the portion of detected outliers within the training samples) of 7.54% for possible outliers
(1885 total possible outliers) was detected whereas a (somewhat expected) contamination
rate, at 2.31%, was detected for extreme values located outside of the outer fence (578
total outliers, with error, mean of 2.7049). Comparing the summary statistics for probable
outliers, the absolute error outliers detected had a mean log prediction value of 7.78 (or
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2178.76) which indicates that we need to account for outliers for low predicted premium
rates - located between the minimum and the 25th quartile (see Figure 3.3, (a), where ’flag
= 1’ indicated an outlier).

Figure 3.3: Visualizing Uni-variate Outliers via Box-plots

Furthermore, for the covariates, error anomalies on average were detected for policyholders
with the following attributes: 28 years of age, with contracts covering 14.6 years, and the
average time of 9.6 years which the policy wishes to pay the premiums. Hence, for policy-
holders with these key attributes, predicated premiums are more likely to deviate from the
true values (on average, by 2.71). More specifically, the premiums predicted for policyholders
(with attributes stated above) are more likely to be higher than the observed premiums.

3.3 Multi-variate Outlier Detection Methods

As previously stated, since different methods use different operational definitions - the goal
here is to implement "flexible" algorithms suitable to detect outliers in high-dimensional
data. Often (in most cases), we can group these definitions into the following categories: 1)
Distance-based definitions (instances with fewer than p neighboring points) or (2 Density-
based definitions (instances which are in regions of low density or low relative density.),
and 3) Isolation-based anomalies (instances most susceptible to isolation.). However, for
this study, identifying initial potential outliers by utilizing the Mahalanobis distance metric
(defined in the next section) deems to be the most effective - in terms of computational
simplicity, efficiency, flexibility, and accuracy [22]. Especially in multivariate analysis tech-
niques, the Mahalanobis distance has a wide range of applications in various methods (such
as deterministic classification and pattern analysis).

3.3.1 The Mahalanobis distance

Geometrically, we can identify multivariate outliers by calculating the shortest distance
between the instances. The Euclidean distance is widely implemented for similar purposes
to measure the shortest possible distance between two instances. However, if we have highly
correlated variables, the Euclidean distance fails to account for the correlation between the
variables and fails to account for the different scales.
An alternative to the Euclidean distance, the Mahalanobis distance (a scale-invariant metric)
- utilizes the covariance or correlation between the variables, the variability of each variable,
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and scales its contribution to the distance value [23]. It measures how much an instance
deviates from the mean of distribution by the number of standard deviations. In other
words, it determines the distance between the point x ∈ Rp (distance point), sampled from a
p-dimensional probability distribution given by fx(.), and the mean of the given distribution
µ(x) = E(X). Thus, assuming there exists finite second-order moments of fx(.), and the
covariance matrix is defined as: Σ = E(X −µ)2. Then the Mahalanobis distance is given by
the following:

D(X,µ) =
√

(X − µ)TΣ−1(X − µ) (10)

Thus, an instance is classified as an potential outlier if an instance has large a Mahalanobis
distance from the distribution. Note the Mahalanobis distance reduces to the Euclidean
distance if we consider uncorrelated variables with unit variance (if the covariance matrix is
equivalent to the identity matrix).

3.3.2 Results & Discussion

To find abnormal observations in at least one dimension, we need first to identify our groups
or clusters of normal instances (also referred to as ’normal’ or ’reference’ patterns) within
our training set. Only then we can identify the instances that do not behave like normal
instances and label them as outliers. Hence, we first split our data-set once again (training
data-set with 60% of the instances, 15% for validation, and 25% for testing) and implement
the Mahalanobis distance algorithm. Then, we consider the data set containing only the
response variables and the errors. It allows us to analyze further the impact of our error
outliers concerning our premium values which are of high interest to us.
For the data-set with 60,000 instances, we observe a total of 1584 multivariate errors with
a similar contamination rate to the univariate outliers detected at 2.64%; with an average
Mahalanobis distance of 5.47 for instances flagged as outliers.

Figure 3.4: Multivariate Outliers Detection

Also, similar to our findings for univariate outliers, we observe that multivariate outliers
(labeled as flag = -1 for outliers) in Figure 3.4 were again found for low premium values in
target and predicted values in the training set. When analyzing our summary statistics of the
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only multivariate detected outliers (on the whole and original scale, given in Table 6.1), then
we see that our multivariate outliers for the errors range from the range of [-34.15,35.39]. This
indicates that premiums for an individual policyholder are underestimated by a maximum
value of 34.15 while underestimating by a minimum value of 35.39. In general, for the
covariates, outliers with an average of 28 years of age, with a duration of a contract of 13.7
years, and 7.8 years to pay for the premium were detected. Similar behavior also applies to
the validation and test set.
However, as observed, since the Mahalanobis uses standard deviation, our results can be
susceptible to the presence of outliers. Thus we must consider methods that utilize more
robust estimators, such as the minimum covariance determinant (MCD), for calculating the
Mahalanobis distance. For further studies, we must also account for the time-consuming
computations required for measuring the Mahalanobis distance for large sample sizes.

3.4 Anomaly Detection Methods

Often in existing studies, anomaly detection is also referred to as ’outlier detection’. Even
though there exists an overlap between the methods; there is an evident distinction between
the two detection algorithms as well. Unlike the previous outlier detection methods discussed,
here, we aim to determine if a new observation is an outlier. Thus, in this scenario, we
refer to a "new" identified outlier as a ’novelty’ anomaly. In contrast to outlier detection
(the previous sections) the anomaly detection, implemented in this section, consists of both
outlier detection and novelty detection methods. In this study, we implement the following
detection method - for predicting outliers.
Forest Trees (or iForest): is the first isolation-based anomaly detection method proposed
by Liu et.al (2008). The general idea of these methods is based on the notion that often
isolating anomalies is an easier task compared to isolating than normal instances; because
they are in ’few and different’. In other words, this model-based method explicitly isolates
anomalies rather than describing normal instances by utilizing the following anomaly prop-
erties: 1) they are the minority group of instances, and 2) they contain attribute-values that
are highly different from normal instances. [24]
The procedure consists of an ensemble of isolation trees (referred to as iTrees), such that
each iTree is a special binary tree built from a subsample. Then, each iTree isolates all
abnormal instances from the subsamples by identifying the shortest average pathlengths on
the iTrees since the outliers can be split out easily bypassing only a few edges in the tree.
Key advantages of this method include the following: 1) fast performance, and 2) can achieve
high detection performance with high efficiency even with small subsamples.

3.4.1 Results & Discussion

In this section, we implement the isolation forest algorithm for only the training set to
build our model and use the validation set to evaluate the performance and find the best
model. The test set gives us the final performance measurement of our model at the end.
Implementing the isolation forest provides us with comparable results about the previous
Mahalanobis distance.
The isolation forest model we implemented was based on the python package ’scikit-learn.’
The model contains three hyper-parameters: the number of trees estimated in the forest, the
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contamination rate, and the number of samples fed into each tree. Liu et al. already show
that a subsampling size of 256 could achieve excellent model performance, not depending on
the data size[25]. Therefore, we kept the subsampling size as a constant of 256. Grid search
was performed to find the best hyper-parameter by a contamination rate between 0.001 and
0.06 with a step size of 0.001 and the number of trees between 50 to 500 with a step size of
50. We used the F1 score to measure the model’s performance, which describes the trade-off
between precision and recall. A high F1 value indicates the precision value is close to the
recall value in a classification problem. The F1 score is defined as: [26]:

F1 =
2

R−1 + P−1
(11)

where R stands for recall and P stands for precision. We found our best model with a
contamination rate of 0.047 and a number of trees of 300 with the highest F1 score.

Figure 3.5: Distribution of scores of each data point

After obtaining this model, we applied it to the training set and validation set. Figure 3.5
shows the distribution of scores in the training set. All data points with negative scores were
classified as outliers and the percentage of the outliers is exactly the contamination rate we
set at the beginning.

Figure 3.6: Multivariate Outliers Detection
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Based on our results, we observed that the 2820 anomalies detected have an average score
of -0.0394 in the training set. In the validation set, we found 772 outliers in 15000 data
with an average score of -0.0389. The model can find 1046 outliers detected based on the
Mahalanobis distance in the training set, i.e., we got 66% recall. For the validation set, we
found 188 outliers among 398 calculated by Mahalanobis distance. However, only 1046 out
of 2820, and 188 out of 772 outliers are detected correctly in the training and the validation
set, which gives us a precision of around 37% and 24%, respectively.
The outliers observed concerning the target, prediction, and error are shown in Figure 3.6.
The score of single data interprets how likely it could be an outlier(score ’-1’ indicates that
data is more likely to be an outlier). From the outliers detected, we found that there are
more outliers for target and prediction larger than 60000(logarithm of target and prediction
larger than 11) comparing to 3.4. Regarding the error, outliers detected from the model
have a value of error in all ranges. Our findings would seem to show that the model predicts
the data with the logarithm of error smaller than 0.004 wrongly. We got a similar behavior
for the validation set.

3.5 Performance Assessment & Evaluation

As previously stated, our goal here is to: without a ’universal’ definition to provide a ‘stan-
dard’ for performance assessment - based on the type of variable of interest. Since we can not
obtain a model with both precision and recall high, we use F1 score to measure the trade-off
between precision and recall. F1 score has a range between 0 and 1, whereas 0 is the worst
case, and 1 is the best case. The isolation forest model was applied for the test set to find
the performance of the model. Additionally, since the dataset is unbalanced (as the sample
size of anomalies and normal instances vary), we also use the Area Under the Curve (AUC)
as a measurement to assess performance[27].

3.5.1 Results & Discussion

For the test set, 1212 outliers were detected from the isolation forest model. The model can
find 441 out of 644 outliers calculated by Mahalanobis distance as the same for the training
and validation set, which gives us 68% of recall. The precision of the model is around 53%.
By applying eq.11, we got a F1 score of 0.6. When we apply the model to our test set,
we got relatively high precision, recall, and the F1 score. Figure 3.7 shows us a Receiver
Operating Characteristic curve(ROC). The ROC curve describes the performance of a binary
classification problem at different thresholds. The Area under the ROC curve is called
AUC, which provides an aggregate measure of performance across all possible classification
thresholds ranging between 0 and 1[28]. A high AUC indicates that our model predicts class
1 as one and class -1 as -1 better. In the test set, the AUC score reached around 0.97, which
shows us a good performance of the model.
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Figure 3.7: AUC of Isolation Forest model on test set

4 Risk Analysis

4.1 Introduction

To illustrate the risk of using our neural network model to do the data migration, we assess
the potential loss of an individual contract that could be brought by the usage of our model.
In this chapter, we consider two types of risk measurements: the standard deviation and
Value at Risk (VaR) or Expected Shortfall (CVaR). These risk measurements allow us to
analyze the potential loss at a high confidence level and thus, can be used to evaluate whether
our model is trustful or not.

4.2 Theory

4.2.1 Standard Deviation

The standard deviation or Variance is the simplest method to show the risk level. The
higher the standard deviation and variance, the higher the risk. Since Markowitz proposed
the portfolio theory based on standard deviation as the risk indicator in 1952[29], standard
deviation has become a common risk measurement widely used today. However, this tradi-
tional risk metric has a significant downside: only considering the average deviation is not
enough to describe the large losses caused by the low probability events. Therefore, the
standard deviation is not our optimal risk metric.

4.2.2 VaR and CVaR

Value at Risk (VaR), developed by J.P. Morgan Chase & Co., is a widely used risk metric
by financial institutions and regulators worldwide - it shows the worst-case loss with a given
probability. From the academic perspective, there are plenty of researches on different ways
to calculate VaR. In terms of our model, some approaches are not applicable because our
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dataset is non-time-series. Although, it is still feasible to apply the VaR concept into our
risk measurement framework.
Unlike the standard deviation, VaR is the maximal expected loss in a given time horizon
under a certain confidence level. Given our data, since there is no time horizon and the loss
of an individual contract does not follow the normal distribution. Therefore, we do not use
the function derived by the so-called variance-covariance method, which has strong normal
distribution assumptions. Instead, we simply take the original definition of VaR:

Probability(Loss > V aR) = 1− p[30] (12)

where 1-p is the confidence level.
However, we can not get a completed risk measurement framework with only VaR because it
ignores the tail risks. Nevertheless, it is exactly the tail risk that decides the severity of the
losses. Therefore, there are a lot of criticisms against VaR, among which the most important
criticism is subadditivity. If the contract loss follows subadditivity, the risk of a contract
portfolio will be lower than the sum of risks of its components. Subadditivity is one of the
four conditions of coherent risk measurement, and the other three are positive homogeneity,
monotonicity, and translation invariance [31]. Positive homogeneity means that the risk of
an aggregation of X contracts is X times the risk of a single contract. Monotonicity means
the greater the return, the higher the risk. Translation invariance states that if we add
an amount k to the aggregation of contracts then the risk is reduced by the same amount.
Therefore, VaR is not a coherent risk metric because it can not satisfy subadditivity.[30]
To get a coherent risk measurement, an additional risk metric, Expected Shortfall(CVaR), is
introduced by Rockafellar and Uryasev (2000) [32]. CVaR measures the conditional expected
value that the loss exceeds the VaR value at a given confidence level [32]:

CV aR = E(Loss|Loss > V aR) (13)

where the confidence level of VaR and CVaR is 1-p.
To some extent, CVaR overcomes the shortcomings of VaR. As CVaR answers the question
"if the loss occurs in a bad condition, how bad could the loss be?". If the VaR value is
150 Euro with a confidence level of 97%, the CVaR shows the average of extreme losses
beyond 150 Euro with a confidence level of 97%. Thus, CVaR completes the processes of
risk analysis in addition to VaR, and we will show the relevant results later.
We have investigated four methods to estimate 95% VaR and CVaR: Parametric method,
Historical Simulation, Bootstrapping, and Extreme Value Theory.

Parametric Method: Our approach is to,firstly, find the best fit distribution of the losses,
and then use the 95% percentile of the loss distribution as the 95% VaR.

Historical Simulation: The core of the Historical Simulation method is to use historical
data to represent the future. Specifically, it takes the maximum historical loss value at a
certain confidence level as the VaR. In our case, firstly comes sorting the individual loss (Li)
in ascending order, and then calculating the corresponding percentiles according to different
confidence levels to obtain the VaR values.
Additionally, we also calculated the stressed VaR. As part of the regulatory requirements,
the Basel Agreement mandates disclosure of stressed VaR. Similarly, we select the worst 10%
scenarios and assume the objective function (loss) will follow one of the worst 10% scenarios.
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Sorting the possible loss values from small to large, we can find the stressed VaR at a 95%
confidence level.
Accuracy of VaR: There are many ways to test the VaR model, and the Proportion of Failures
(POF) Test method proposed by Kupiec [26] is the most authoritative and practical one.
The basic idea of the POF test method is if the actual loss is less than VaR, this event is
denoted as 1. If the loss is greater than VaR, it is denoted as 0. If N is the number of events
denoted by 0 (the number of events that the actual loss exceeds VaR), 1−p is the confidence
level of VaR, T is the total number of events, Kupiec gives the maximum likelihood statistics
[26]:

2Ln(LR) = 2 ∗ [(T −N) ∗ ln(
1− N

T

1− p
) +N ∗ ln(

N

T ∗ p
)] (14)

Since 2Ln(LR) is similar to the chi-square distribution with 1 degree of freedom. Therefore,
when p = 0.05, the critical value is 3.841. That is to say, if the 2Ln(LR) value is smaller
than 3.841, the VaR is accurate, otherwise, it is not accurate [33].
The historical simulation method has significant advantages. It does not need to make
assumptions about the statistical distribution of losses. It completely relies on historical
data to calculate the VaR. However, the biggest disadvantage of the historical simulation
method is that it assumes the future risk patterns will be the same as past. This is not
necessarily true in reality.

Bootstrap: In other VaR calculation methods, the focus is often on the point estimate of
VaR. However, only a point estimate is not enough. We are more interested in the error
between the point estimate obtained from the data and the true value of the statistic in the
unknown population. Interval estimation, a confidence interval for the target statistic, can
help us in this regard. Bootstrapping is a powerful approach to do interval estimation.
For bootstrapping, the most important part is to perform resampling with replacement,
and the sample size should be the same as the amount of data we have. Then we do the re-
sampling for T times. As for each sample, we sort the losses in ascending order and therefore
get the 95% percentile as the 95% VaR. By re-sampling T times, we can get T VaR values.
To get the 95% interval, we simply sort the T values and find the interval ranging from the
2.5% percentile to 97.5% percentile.

Extreme Value Theory (EVT): In financial VaR calculation, there are mainly two meth-
ods: Block Maxima Method (BMM) and Peak-Over-Threshold Method (POT) [34]. BMM
is mainly used for time-series data. Therefore, we use the POT method to find the threshold.
By using POT to find the threshold, the excess values follow General Pareto Distribution
(GPD) [34].
Threshold: the most important setting in the POT method is to find a threshold to define
the extreme values. Here, we investigated two methods to find a proper threshold. The
first method is to use a mean excess plot, and another one is to use rules of thumbs in
finance researches. Usually, in Financial Risk Management, the empirical tail estimator is
(N − K)/N [34], where N is the total amount of data and K is the number of data that
exceeds the threshold. If we set the confidence level as 95%: 0.95 = (N −K)/N , K can be
obtained easily and the threshold is thus the 95% percentile. By defining extreme values in
such a way and fitting the excess values into GPD, the Q-Q plot can be easily obtained. By
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comparing the Q-Q plots, we can choose the optimal method to set a threshold.
VaR and CVaR: After getting the best parameters of GPD with maximum likelihood esti-
mation, we can obtain the estimations of VaR and CVaR with the following equations (u is
the threshold) ([34]):

V aR = u+
β

h
∗ [(

N ∗ (1− q)
K

)−h − 1] (15)

CV aR =
V aR + β − h ∗ u

1− h
(16)

where βisthescaleofthebestGPDfit, histheshapeofthebestGPDfit, andqistheconfidencelevel(e.g.95%).
Besides, the probability that the actual loss will be greater than a certain value M can be
calculated by the following equation [34]:

Probability(Loss > M) =
K

N
∗ (1 + h ∗ M − u

β
)
−1
h (17)

4.3 Empirical Result

Since both positive and negative residuals are not ideal, which brings losses to the clients,
we take the absolute value of residuals, percentage loss, and logarithm loss into account. For
i = 1, 2, 3......100000, we have the following three loss functions:

Li1 = |targeti − predictioni| (18)

To eliminate the impact of the magnitude of the target values on absolute losses, we also
include the percentage loss (Li2) to our dataset:

Li2 =
|targeti − predictioni|

targeti
(19)

Considering the outliers, we do the log-transformation. Note all the target and prediction
values are greater than 10. Hence, the logarithm loss of each contract(Li3) is:

Li3 = |ln(targeti)− ln(predictioni)| (20)

In addition to the difference between absolute loss, percentage loss, and logarithm loss, we
also split the dataset into three parts according to risk classes: high, middle, and low-risk
class. This way, we can compare the risk characteristics of different risk classes. Note that,
in terms of the three risk classes analysis, the maximal i is no longer 100000, but the number
of data in each risk class.
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Table 4.1: VaR and CVaR for the whole dataset: Li1

Method Pearson 3 Gamma Beta Historical
Simulation Bootstrap EVT

VaR 17.5319 17.5591 17.6113 17.5777 (17.4065,17.7462) 17.5787
CVaR 24.3953 24.4198 24.4762 24.4445 (24.1812,24.7129) 24.4442

Table 4.2: VaR and CVaR for the whole dataset: Li2

Method GPD IGD EW Historical
Simulation Bootstrap EVT

VaR 0.0035 0.0028 0.0028 0.0029 (0.0029, 0.0029) 0.0029
CVaR 0.0047 0.0040 0.0040 0.0040 (0.0040, 0.0041) 0.0045

4.3.1 VaR and CVaR for the whole dataset

The summary of empirical results of VaR and CVaR for the whole dataset are shown in
Table 4.1, Table 4.2, and Table 4.3.
Note for the stressed VaR, we choose 5% of the largest losses from the historical losses.
For the whole dataset, we would observe 5000 largest losses, and the potential loss of a
new contract will have 5000 possible scenarios. Sort these 50000 losses and take the 95%
percentile to get the 95% confidence stressed VaR. For the Extreme Value theory, we set the
threshold as the 95% percentile of the loss. Thus, the CVaR values are given following the
corresponding VaR.
From Table 4.1, we observe that the VaR values obtained are all in the range between 17.40
and 17.74. Additionally, the stressed VaR from Historical Simulation is 33.87. This states
that if the new contract suffers from an extremely bad situation, the stressed VaR under
that condition is 33.87. We also tested the accuracy of the mean of the 95% VaR confidence
interval obtained from Bootstrapping, and the Kupiec-LR test result is 0.0033, which is
smaller than 3.841. Therefore, there is no evidence of any inadequacy in the underlying VaR
measure. The CVaR values are all lying between 24.18 and 24.71, and this range is slightly
larger than VaR. Except for Bootstrapping, the results from all other methods are near 24.4.
In terms of the result of CVaR, it states that if the losses are greater than the VaR, the
severity of the losses is around 24.4.
The results shown in Table 4.2 indicate that a 95% confidence worst loss for a contract is
about 0.29%, with accuracy test results 2Ln(LR) of 0.00336. Thus, the underlying VaR
measure is accurate. The CVaR values are all lying between 0.40% and 0.47%, which means
if the real percentage loss is larger than VaR, the expected loss will be about 0.4%. As for the
logarithm loss, the VaR varies to some extent. Except the result from Mielke distribution,
95% VaR of Li3 is around 0.003, which means we are 95% sure that | ln(targeti)

ln(predictioni)
|(when targeti

> predictioni) or | ln(predictioni)
ln(targeti)

|(when targeti < predictioni) is less than 1.00693. It means
that we are 95% sure that the prediction and the target will not deviate more than 0.693%
from each other. If the real Li3 is greater than the corresponding VaR, the expectation of
this expression can be around 0.13%.
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Table 4.3: VaR and CVaR for the whole dataset: Li3

Method GPD recipinvgauss Mielke Historical
Simulation Bootstrap EVT

VaR 0.0035 0.0028 0.0056 0.0029 (0.0029,0.0030) 0.0029
CVaR 0.0047 0.0040 0.0067 0.0041 (0.0040,0.0041) 0.0046

Table 4.4: VaR and CVaR for the high/middle/low risk class: Li1

High genexpon mielke burr Historical
Simulation Bootstrap EVT

VaR 22.9033 22.6052 22.6601 23.2005 (22.8186, 23.6032) 23.2031
CVaR 30.8127 30.5886 30.6330 31.1276 (30.5883, 31.6359) 31.1277

Middle genexpon beta betaprime Historical
Simulation Bootstrap EVT

VaR 14.4604 14.5727 14.5777 14.5000 (14.3361, 14.6849) 14.5030
CVaR 19.1021 19.2201 19.2315 19.1523 (18.8523, 19.4499) 19.1537

Low genexpon weibull_min beta Historical
Simulation Bootstrap EVT

VaR 13.9385 13.9284 14.0280 13.9536 (13.6793, 14.2277) 13.9574
CVaR 18.5291 18.5209 18.6095 18.5512 (18.2473, 18.8741) 18.5517

4.3.2 VaR and CVaR after splitting

To further analyze the impact of risk classes on losses, we once again split the data into
three parts: high-risk class, middle-risk class, and low-risk class. Afterwards, we repeat the
analysis (similar to Section 4.3.1), and the results of Li1, Li2, Li3 are shown in Table 4.4,
Table 4.5, and Table 4.6.
Based on Table 4.4, the absolute loss of the high-risk class (around 23) is higher than the
loss of the middle and low-risk classes (around 14). However, if we consider the percentage
loss in Table 4.5, the percentage loss of the high-risk class is even slightly lower than that of
the middle and low-risk classes. Table 4.6 can also confirm this characteristic. It shows that
the greater the original premium, the more likely to have higher losses. As seen from Table
4.6, there is no obvious difference in the deviation of prediction from target relative to the
smaller one between target and prediction regarding 3 risk classes.
To conclude, we are 95% sure the absolute loss of a contract will not be greater than 17.5
Euro. In addition, the 95% worst percentage loss is around 0.29%. In terms of risk class
splitting, the high-risk class has greater absolute losses but lower percentage and logarithm
losses.

5 Conclusion
Through the discussion above, we have successfully evaluated the provided neural network
model in aspects of goodness of fit, anomaly detection and risk analysis. Firstly, we checked
the adequacy of the model’s structure by analyzing the residuals and their assumptions. We
concluded there was no "strong evidence" of any violations of certain statistical properties,
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Table 4.5: VaR and CVaR for the high/middle/low risk class: Li2

High GPD powerlognorm lomax Historical
Simulation Bootstrap EVT

VaR 0.0020 0.0024 0.0023 0.0025 (0.0024, 0.0026) 0.0025
CVaR 0.0033 0.0037 0.0036 0.0038 (0.0037, 0.0039) 0.0043

Middle recipinvgauss GPD EW Historical
Simulation Bootstrap EVT

VaR 0.0030 0.0026 0.0030 0.0030 (0.0029, 0.0030) 0.0030
CVaR 0.0041 0.0037 0.0041 0.0041 (0.0041, 0.0042) 0.0046

Low recipinvgauss mielke halfgennorm Historical
Simulation Bootstrap EVT

VaR 0.0031 0.0060 0.0030 0.0030 (0.0030, 0.0031) 0.0030
CVaR 0.0042 0.0067 0.0042 0.0042 (0.0041, 0.0042) 0.0047

Table 4.6: VaR and CVaR for the high/middle/low risk class: Li3

High GPD powerlognorm EW Historical
Simulation Bootstrap EVT

VaR 0.0028 0.0024 0.0024 0.0025 (0.0025, 0.0026) 0.0025
CVaR 0.0041 0.0037 0.0037 0.0038 (0.0029, 0.0031) 0.0043

Middle recipinvgauss GPD EW Historical
Simulation Bootstrap EVT

VaR 0.0030 0.0038 0.0030 0.0030 (0.0029, 0.0031) 0.0030
CVaR 0.0041 0.0050 0.0041 0.0041 (0.0029, 0.0031) 0.0046

Low recipinvgauss GPD mielke Historical
Simulation Bootstrap EVT

VaR 0.0031 0.0039 0.0059 0.0030 (0.0030, 0.0031) 0.0030
CVaR 0.0042 0.0050 0.0067 0.0042 (0.0030, 0.0031) 0.0047

and, hence, that the error terms are independent identically distributed (i.i.d.) process with
zero mean and constant variance. However, we recommend further analysis on the functional
fit of the model (beyond the scope of this study). For goodness of fit, we used the standard
matrices, Q-Q plots, P-P plots and the K-S test to identify the distribution of the given
data and developed a tool to automate this process. By applying the evaluation methods,
we found that residual values follow a Johnson SU distribution. And the distribution of the
target values corresponds to that of the predicted values.
Additionally, when assessing the goodness of fit of our model, we stated that accounting
for outliers ensures stable findings; especially since the presence of outliers has a significant
impact on the conclusions we draw from the model fit. Hence, we proposed various outlier
detection methods to detect both univariate error outliers (through the Tukey’s Range test),
and multivariate outliers given the data-set(for prediction, target, and error values using
the Mahalanobis distance). As for anomaly detection, the isolation forest method shows us
a good performance for detecting new outliers - given the whole data set. Unfortunately,
we were unable to determine a model with both high precision and recall values. Thus, we
recommend for future studies, utilizing the area under the curve (AUC) as the performance



5 CONCLUSION 29

measure. Overall, we are able to detect existing univariate and multivariate outliers based
on the given samples.
In terms of risk measurements, we investigated four methods to calculate VaR and CVaR,
and these methods can verify each other pretty well. In such way, we have come up with
the trustful approximate loss of a new contract from 3 perspective. Besides, we also found
the risk class has influence on the absolute loss of a new contract, but not on the percentage
loss or logarithm loss.
However, our work can be improved in the following aspects: for the goodness of fit, the
tool we developed tries to fit some common distributions. In order to improve the efficiency
of the process, firstly, all distributions may be grouped into various categories. Then, we
can test and compare how well the values fit on each group of distributions. However, this
requires further analysis before we can determine the candidate distributions which could
fit the model. Furthermore, for anomaly detection, comparing and utilizing a mixture of
other general approaches, with new sets of data (include statistical methods, classification-
based methods, and clustering-based methods) to validate our findings, may also improve the
accuracy of our outlier and anomaly detection methods. The risk analysis focuses mainly
on the individual contract and we did not go to the portfolio level. The aggregated risk
measurements can provide more information on a portfolio level. Besides, other coherent
risk metrics like spectral risk measure is also worth investigating.
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Appendix

6 Appendix

Table 6.1: Appendix B.1 Summary Statistics of Error Outliers

gender risk x n t target prediction errors
count 1584.0 1584.0 1584.0 1584.0 1584.0 1584.0 1584.0 1584.0
mean 0.4451 0.8807 26.8535 13.7058 9.5764 2272.3323 2272.545 -0.2126
std 0.4971 0.7926 6.6395 9.9337 7.5996 1006.4824 1008.2294 11.3419
min 0.0 0.0 18.0 1.0 0.0 651.8595 654.4008 -34.1577
25% 0.0 0.0 21.0 5.0 4.0 1603.7722 1602.9882 -9.2877
50% 0.0 1.0 26.0 12.0 8.0 1975.1632 1976.2856 -5.3731
75% 1.0 2.0 31.0 21.0 14.0 2660.0725 2658.4964 9.4877
max 1.0 2.0 50.0 47.0 44.0 9390.0503 9390.478 35.3943

Figure 6.1: Residual vs. Age and Residual vs. Duration of contract Plot
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Figure 6.2: Residual vs. Time, Gender and Risk Class Plot

Figure 6.3: Visualizing Distributions of All variables
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