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INTRODUCTION: OVERVIEW J/NSg
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a SITUATION a TASK e ACTION

To provide consumers with

< . . o Analysis of the fit of a Neural Creating reproducible and
@) innovative & market-competitive ) .
G ) Network Regression Model automatic procedures
tools confidently
1. Offer new machine learning 1. Given the predicted values and future 1. Goodness of fit: predicted,
techniques related values observed and error values
Ll . .
= 2. Data: Large Sample size: 100,000 0 [Regressiel AssUmpo s
o * Distribution Fitting
8 2. Ensure methods retain high Input values: Key Attributes of individuals o | ) hod
2 standard of accuracy . Anomaly Detection Methods
* Includes binary, continuous and _ )
nominal variables 3. Risk Analysis
To guarantee “that msg life Given the nature of neural networks, Every procedure proposed can be
'-é-' software solutions are up to the ensure stable findings in post- implemented to analyze the
8 highest standard of accuracy.” evaluation stage goodness of fit and implications
5
o

% ) A




CHATPER 1: .Mmsg

EVALUATION OF A REGRESSION MODEL

Assess if regression model assumptions are fulfilled:

REGRESSION ASSUMPTIONS * Goodness of Fit tests, Diagnostic plots and statistical tests

General Workflow of Distribution Fitting

* Find the Error Distribution

* Find the Predicted Value Distribution

* Results and Discussions on given data set

DISTRIBUTION FITTING




ASSESS THE MODEL FIT MSg

Post-Evaluation Stage: assess specification and statistical significance of model aspects

PURPOSE

Evaluate: structural fit and prediction power via “what is left unmodelled”

Residuals of Model: should behave like “white-noise” ( random error)

STRATEGY

Analyze: statistical properties of error terms tells us if there is evidence of “specification bias”

Perform Adequacy or Diagnostic tests

Part 1: Assess: identically independently distributed residuals with zero mean & constant variance
1) EJ€;] = 0(Zero mean)

€; are independent random variables (Independence)

APPROACH
N

)
3) Constant variance: Var(e;) = o2 (Variance homogeneity)
)  Normally distributed (assumption not required though ideal)

- Visualizations for screening & Statistical tests

Part 2: Characterize: the distribution of error to gain insight on prediction accuracy



PART 1: REGRESSION ASSUMPTIONS o[11SJ
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Residuals vs. Predicted Values Scale-Location
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Predictions Predictions

* No “strong” signs of Heteroskedasticity ( i.e. if “funnel-shape” pattern signs of non-constant variance)
* No signs of violations against Independence assumptions (random scattering above and below 0)

* Signs of clustering (lower values of predictions) — confirm via statistical tests

1) Leven test for Heteroskedasticity:
* Fail to reject the null hypothesis of variance homogeneity at a 5% significance level (p-value = 0.1009)

2) Variance inflation factor (VIF): quantifies the correlations between the model variables:

* No strong evidence of multicollinearity
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PART 1: REGRESSION ASSUMPTIONS o[11SJ
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* Normality assumption is arbitrary but ideal

* If residuals are normally distributed - it makes interpretation and mathematical derivations more convenient
* Based on initial observations — the residuals are not normally distributed

* An accurate error distribution is essential — to compare predictive powers of the model or (fat tails) of target
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PART 2: DISTRIBUTION FITTING

=

HOW DO WE FIT THE ERROR DISTRIBUTION?

Perform K-S test

Fit Data Points on Sorting Performance P‘:'f_’;%'lgs"':ftfo;”:
pitbtons witn RSS error distributions
7y

(Choose other groupl No the test statistic low2

distr score [ Ioc sale | arg
0 | foldcauchy 2.30E-11 | 651.06 | 7684.87 | (0.0023,)

1] j 293E-11 | 64493 | 652239 | (3.1816, 0.7285)

2 | fisk 3.23E-11 | 650.875 | 7781.72 | (1.2847,)

3 | lognorm 4.34E-11 | 642.862 | 8025.3 | (1.3308,)

4 [ lomax 5.45E-11 | 651.06 | 18243.8 | (1.8587,)

5 | genpareto 5.45E-11 | 651.06 | 9815.25 | (0.5379,)

6 7.04E-11 | 626.036 | 36.8813 | (5.8522, 0.3117)

7 i i 9.81E-11 | 525.381 | 9028.11 | (1.544934559324497,)
8 | halfcauchy 1.32E-10 | 8.06968 | 8555.87

9 1.87E-10 | 651.06 | 3466.01 | (0.5132073284540746,)

L of transformation J‘ han the critical value

‘error’
K-S Test halfcauchy
KstestResult(statistic=0.08944303437163575, pvalue=0.0)
invweibull
K istic=0.03 pval .359240788226701e-91)

f
KstestResult(statistic=0.03631000715070565, pvalue=5.507824840493931e-115)

betaprime
K: 1 ic=0.0364098 , pvalue=1.2881801578058749-115)

burr

KstestResult(statistic=0.03225899425729595, pvalue=7.618967412399628e-91) Select the most
invgamma i i i i

K: lt(statistic=0.03 pvalue=15055272074246615e-116) suitable distribution
johnsonsu

KstestResult(statistic=0.013754513174349059, pvalue=7.308881092159986e-17)
foldcauchy
K. 1

istic=0.04733; , pvalue=3.611165977966616e-195)
powerlognorm
KstestResult(statistic=0.01806752912046075, pvalue=8.70898429576523%¢-29)
invgauss
KstestResult(statistic=0.016572096549770127, pvalue=2.7566963142091437e-24)
exponpow
K ic=0.2 31167114, pvalue=0.0)
fisk
K istic=0.0334562279565314, pvalue=1.1079731661704413e-97)
loglaplace

KstestResult(statistic=0.062433335077018315, pvalue=0.0)

¢ Distribution Fitting - O

Welcome

Dataset: |

No. Distribution: ‘ Xz

Label Name: \
Distribution Selection: [~ full I popular
I7 RSS | wasserstein

Fitting Method: ks [ energy

Save Path: \

Confirm




PART 2: DISTRIBUTION FITTING

ERROR DISTRIBUTION

Kolmogorov—Smirnov (K-S) Test
Results of Top 3 distributions:

Distribution Test statistic
Johnson SU 0.0083
t 0.02600
Double Gamma 0.0300
0o/
—— empirical distribution
—— johnsonsu
1 | == Cll low (0.05)
0.06 : : --= Cll high (0.05)
0.05 1
0.04
>
g
E]
£o0
0.02
001
0.00
-40 -20 0 20 40
Values

=

Probability Density Function of Johnson SU distribution:

b
f(v,a,b) = ﬁq)(cw blog(y +yy*+1)
y

Wherey = %:;:, @ is the pdf of a normal distribution and a,b are

the shape parameters.

Johnson SU distribution: Flexible
It deals with different skewness and kurtosis

The Johnson SU Probability Density
theta=0; sigma=1
05

04

0.3~

Density

02

01

00

-4 -2 : 2 4 [1]

Params
gamma=-1.1; delta=1.5
gamma=0.5; delta=0.8

gamma=-1.1; delta=0.8
gamma=0.5; delta=0.5




DISTRIBUTION FITTING

=

DISTRIBUTION OF THE PREDICTED VALUES

K-S test Results of Top 3 Distributions:

Distribution Test statistic
Johnson SU 0.01635

Inverse Gaussian 0.01682
Power Lognormal 0.01881

johnsonsu

a=-2.63, b=0.65, loc=1196.19, scale=243.00
0.00010 E E —— empirical distribution
—— johnsonsu
=== Cll low (0.05)
-== Cll high (0.05)
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Fitting the Johnson SU distribution on Target values:

0.00010 E E —— empirical distribution
—— johnsonsu
=== Cll low (0.05)
--- Cll high (0.05)
000008
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>
2
v
3
g
£
000004
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\alues

Two-Sample K-S Test Statistic
(sample size = 10000):
0.0159



CHATPER 2: ANOMALY DETECTION «MSsg

INTRODUCTION

APPROACH

METHODS

RESULTS

\
Overview: Situation, Insights & Strategy, Questions & Goals and
Tasks
J
)
Outline: Comparison of Methods (Previous Studies) and Challenges
J

Overview: Implementations (3 - step approach)

Summary: all algorithms (Abby & Xiaoyu)

| 10



INTRODUCTION: OVERVIEW MSg

STRATEGY

/J Anomaly Detection: identify deviating patterns (i.e. ‘outliers’)
* Do not fulfill expectations

* Significant impact on conclusions drawn

* Accounting for outliers ensures stable findings
Algorithms integrated in today’s applications:

* Requires: high accuracy, high detection performance, with fast execution.

* For example: credit card fraud analytics, network intrusion detection, etc.

TASKS & GOALS

1. Identify ‘infrequent’ and evidently ‘different’ instances, given the distribution

2. Ensure that proposed methods can also predict and identify all ‘new’ anomalies — given a new dataset.

| 11



L i f e

OVERVIEW:APPROACH msg

1. Definition of Anomalies 2. Anomaly Detection Algorithms 3. Performance Measure
\N./ O
- _
% -
What is exactly is an ‘Anomaly’? Which algorithm to implement? How to evaluate the methods?
Outlier Detection Methods Novelty Detection Methods Performance Measures
* |dentify extreme events; via * Unsupervised, Supervised or Semi- * No universal “good” benchmark -but
statistical and outlier detection Supervised use a standard’ performance
methods * Clustering, Classification or Outlier e
Ensemble Methods * AUC, median-AUC, and Average
Precision
Challenges: Challenges: Challenges:
* Different operational definitions  Different operational definitions e Influential Factors
*  Parametric Methods *  Parameter choice (bias) « Dependency on benchmarks
* Llarge Sample Size * Dependency on ‘ground truth’

GOAL: Anomaly detection algorithm with high accuracy & detection performance, and fast execution

| 12



OVERVIEW: METHODS INVESTIGATED INSg

. N ~N ~ ~
Operational Number of Variables Type of Outlier Detection Methods Measures
Definitions

Interquartile range
(IQR)
// r )
Univariate Z - Scores
\\ \_ J
Type of ; i
Outliers [ )
Mahalanbois Distance
gl " Local Outlier Factor
. ocal Outlier Factor
Multivariate (LOF)
\\ N _g
Anomaly Scores with
i-Forest
" J DA VA v,

| 13



OVERVIEW:SELECTED METHODS =l

UNIVARIATE OUTLIER DETECTION

TUKEY’S RANGE TEST
* Qutliers: residuals, predicted, & target values (individually)

* Detection via Boxplots (visually) & Interquartile range - IQR (quartiles)

* Extreme values lie outside of:

\ (1) Inner fence: [Q1-1.5*%IQR, Q3 + 1.5*IQR] (2) Outer fence: [Q1-3*IQR, Q3 + 3*IQR] /

MULTIVARIATE OUTLIER DETECTION
MAHALANBOIS DISTANCE

Training Data-set Only: outliers considering in errors, target, prediction only
* Potential outlier if large Mahalanobis distance from the distribution

DX, = V& — WTT X — @)

. J

ISOLATION FORREST (I-FOREST) DETECTION
ANOMALY SCORES WITH |-FOREST

* 3 Datasets: training, validation and test subsets

Main Idea: isolating anomalies is an easier task compared to isolating the normal instances

| 14



RESULTS:TUKEY'S RANGE TEST msg

UNIVARIATE OUTLIER DETECTION o=
Tukey method extended to the
log-1Q method
No. of , :
Type of Samole Size Outliers: (log) No. of Outliers: No. Of Outliers: .
Outliers P - Vo8 (log) Prediction Errors * Zero outliers : (log) target &
Target L.
prediction values
Probable
Outliers 25,000 0 0 >78 * Errors & Absolute error :
Poostzs[jble 25 000 0 0 1885 e 7.54 % contamination rate for
uthiers possible outliers (1885 outliers)

» 578 Probable Outliers:
| contamination rate, at 2.31%

i

I * Qutliers detected had a mean
for prediction (log) values at
7 8 9 10 1 2 7 8 9 10 1 1 778

In_target In_prediction )

P AR INE Y 4 b Indicates: we need to account for
outliers in lower predicted values -
located between the minimum

60 -40  -20 0 2 40 80 80 0 10 2 30 40 50 80 70 80 and the first quartile

errors abs_errors

->

| 15



Mahalanbois_Distance

RESULTS:MAHALANOBIS DISTANCE INSg
MULTIVARIATE OUTLIER DETECTION

In(errors) In_target
fag ° 14 ° fag
[ ] 1 e -1
0 ° ° 0
e 1 * 12 L] e 1
® e o
’:.o - ° 5. E: .
10
° .30 o4 %™ 0,
4” ~F v P
¢ : S
J [ 3 L] .50‘% %
& B e oo =
o o 2 o,
‘e /Q,, Q| : v}"s. [ ]
i 2 )
Fe]
g
= 6
5=
g

0.000 0002 0004 0006 0008 0010 0012 7 8 a 10 1 12
h(errors) In_target

60,000 instances, total of 1584 multivariate outliers observed
Similar contamination rate to the univariate outliers detected at 2.64%;

Instances with over 4.03 Mahalanobis distance flagged as outliers

L i f e

In_prediction vs. In_error

0012 o fag

0010

0.008

h(errors)
o
(=]
(=]
(=]

0.004

0.002

0.000

7 8 9 10 1 12
In_prediction

Low observed response values are more prone to being underestimated or overestimated by the model

| 16



RESULTS:ISOLATION FORREST INSg
ANOMALY DETECTION METHODS

In(errors) In_target In_prediction vs. In_error
Tomaly
Data Split -
B Training set 005 005 | w
) ) g 0.00 g 000 E, 0.004 5? @‘g.‘,%“
Validation . SRR .
set o o T “ﬁ%:i’»’»”
£ 1= 1 ooz *g & ’J.f{%:g,&ﬁ < g .
Test set -0.10 ., . .".- “e o -0.10 B gifg";%a? ?E;‘-"
-0.15 i s 0, -0.15 = 0.000 : 2 .? ; g%%%‘\%%}};g;ﬁ%@m
0.000 0.002 :)1(?;0,3) 0.006 0.008 7 8 i‘_’arge‘w " 12 7 8 hfpremc(,:,?] n 12
e Training set: Build a : . .
nodel g * 60,000 instances, total of 2820 multivariate outliers detected
» Qutliers cover all range of error values
* Vallsatlon set: ¥e;'fy the « Outliers predicted have either very high or low target values
performance of the e Our model could predict 66% outliers calculated by Mahalanobis
model .
distance
» Test set: Final evaluation e Precision is relatively low: about 37%

of the model

| 17



PERFORMANCE & EVALUATION o[T1S(J
ANOMALY DETECTION METHODS

IN THE TEST SET

10 //,’/—’_—__d_—_'
’
’
/
4
,
’
’
J

08
2
206
]
=
7]
o
Q
304
©
w

0.2

J/ — test set AUC = 0.9759
0.0 --~- baseline AUC = 0.5
0.0 0.2 04 0.6 038 1.0

True positive rate

e 25,000 instances, total of 1212 multivariate outliers detected
* Model could predict 441 out of 644 outliers calculated by Mahalanobis distance (i.e. 68% Recall)

* Precision is about 53%
« High AUC: 0.9766
 Relative high F; score: 0.6

| 18



CHATPER 3: RISK ANALYSIS NS

INTRODUCTION How to find the trustful 95% VaR and CVaR?

Loss Functions: absolute loss, percentage loss
and logarithm loss.

LOSS & DATA ’

Two perspectives: whole dataset and breakdown
according to 3 risk classes.

Parametric Method, Historical Simulation,
Bootstrap, and Extreme Value Theory.

| 19



INTRODUCTION

VALUE AT RISK - VaR

* Given theloss L and a confidence level a €
(0,1), VaR is given by the smallest number
x such that the probability that the loss
exceeds x is not larger than 1 — «a.

EXPECTED SHORTFALL- CVaR

* “If things do get bad, what is the expected
loss?

 (CVaRis the expected loss given that the loss
is greater than the VaR.

e  We use 95% VaR and CVaR as risk
measurements.

pdf

cdf

x 107

=

15}

051

0

1

0.8

06

04r

02r

0 1 1 1
-6000  -4000 -2000 0 2000

L (loss)

4000
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LOSS FUNCTIONS AND DATA MSg

LOSS FUNCTIONS

 Absolute loss = |target — prediction|

« Percentage Loss = absolute loss
target
 Logarithm loss = |In(target) — In(prediction)|

DATA

 Whole dataset
e Splitting according to risk classes: high, middle, and low risk class

* To explore if the 95% VaR and CVaR of these 3 risk classes vary dramatically.



METHODS MSg

PARAMETRIC METHOD EXTREME VALUE THEORY

* Fit loss into different distributions and * The threshold is set as the 95% percentile of
find the top 3 distributions. the historical loss.

* Take 95% percentile of the distribution .

B and h are the scale and shape of the best

as the 95% VaR. GPD fit. g is the confidence level (e.g. 95%).

B |(N=@1—q)\T"
N
HISTORICAL SIMULATION
VaR + f —h*u
CVaR =
* Find 95% worst loss of the historical 1—-h

loss as 95% VaR. N .
* The probability that the actual loss will be
greater than a certain value M can be
calculated by the equation:

M- u>{%%}

. _K
Probability(Loss > M) = N (1 + h ;

| 22



M

ETHODS

BOOTSTRAP

=

95% confidence interval of VaR : We resample T times and get T VaR values, and then find the 95%
confidence interval of VaR (2.5% quantile, 97.5% quantile).

2In(LR) = 2+ [(T — N) *In

Accuracy Test of the mean of the interval: Kupiec — LR test

N

T
1-p

+ N *In

T =p

LR is likelihood ratio. If actual loss > VaR, we denote this event by 0, Otherwise, we denote it by 1.
N is the number of Event 0. 1 — P is the confidence level of VaR. T is total number of events.

For p = 0.05, if 2In(LR) < 3.841 - accurate
For p = 0.05, if 2In(LR) > 3.841 - not accurate



RESULTS

WHOLE DATASET

30

25

20

1

(€]

1

o

(€]

Absolute loss

24.40 24.42 24.48 24.44 24.44
17.53 17.56 17.61 17.58 17.58
Pearson 3 Gamma Beta Historical

mVaR mCVaR Simulation

We are 95% sure that the absolute loss of a new

contract will not be greater than 17.6 EUR.

We are 95% sure the loss of a new contract will not
be greater than 0.3%.

0.0080
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0.0040
0.0030
0.0020
0.0010
0.0000

0.0050

0.0040

0.0030

0.0020

0.0010

0.0000

0.0047

0.0035

GPD

0.0047

0.0035

GPD

Logarithm loss

=

0.0067
0.0056
0.0040 0.0041
0.0028 0.0029
recdpinvgauss Mielke Historical
Simulation
B VaR 1 CVaR
Percentage loss
0.0040 0.0040 0.0040
0.0028 0.0028 0.0029

0.0046

0.0029

0.0045

0.0029

mVaR

CVaR

Historical
Simulation
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RESULTS

RISK CLASS SPLIT

25

2

o

15

1

o

wv

o

VaR - Absolute loss

0.007

Distribution1l Distribution2 Distribution3 Historical
Simulation

0.006

0.005

0.004
0.0031

N

e

o

m High = Middle m Low

High risk class tends to have higher absolute loss, but lower percentage loss

M54

VaR- Percentage loss

0.006

0.003 0.003

0.003
0.00
0.00 I

Distribution1 Distribution2 Distribution3 Historical

Simulation

m High mMiddle mLow

0.003
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CONCLUSION & RECOMMENDATIONS INSg

L i f e

EVALUATION OF * The efficiency of the process is low since we tried to find which
REGRESSION distribution in our list may fit the data
MODEL * All distributions we fit can be grouped in different categories

Presence of outliers has a significant impact on the conclusions drawn

Further research other various outlier detection methods to detect all
types of outliers (Unsupervised or Semi-supervised methods)

» Higher target implies higher absolute loss, but the percentage loss could
be lower.

* The 95% VaR of a new contract disregarding of risk class is around 17.5
EUR or 0.3%.
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THANK YOU!

Questions?




