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Abstract

As one of an airline’s most valuable assets, the aviation industry aims at maximizing
aircraft productivity. The resulting tight schedules are sensitive to disturbances which
can quickly lead to unfavorable delays. There are numerous variables that play a role
in a single flight’s punctuality, such as ground processes, runway congestion, pandemic
restrictions etc. In recent years, Lufthansa has continuously grown its understanding of
these influential factors and established a digital ops twin in Celonis EMS. To obviate
rotational delays and provide better service for passengers, Lufthansa collaborates with
Celonis and the TUM Data Innovation Lab to predict and prevent rotational delays i.e.
the difference between flights’ Scheduled Time of Departure and Actual Time of Depar-
ture.

The goal of this project is to construct, test and optimize a predictive model for rota-
tional delays using the Celonis Machine Learning Workbench. Further, the results will be
presented in the Celonis Dashboard interface for the Lufthansa Ops Steering Department
to gain insights into potentially delayed flights and initiate countermeasures.

This report documents the end-to-end pipeline of the project. The chapters 1 and 2 give
an introduction, explain motivations for this project and describe the Celonis platform. In
chapter 3, the rotational process of an aircraft will be introduced. The data preparation
process including finding relevant features and wrangling data is shown in chapter 4. The
following chapter illustrates the process of training different machine learning models, their
results and optimization. After obtaining a model which achieves reasonable performance
on the Lufthansa dataset, the prediction pipeline is set up in chapter 6. The set up of
the Celonis dashboard displaying the predicted delay probabilities for use in production
is described in chapter 7. To conclude, potential improvements and suggestions for the
future are discussed in the last chapter.
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1 Introduction

1.1 Content and Background

This paper documents the work we have done from November 2021 to February 2022 on
the project of predicting and preventing rotational delays of aircraft with the sponsors
Lufthansa Airlines and Celonis as part of the TUM Data Innovation Lab. In our project
we used real flight data tracked by Lufthansa in the Celonis Execution Management Sys-
tem (EMS) to create a machine learning model that predicts delays of flights and displays
the information in a dashboard within Celonis Studio for the operational departments of
Lufthansa to work with.

In the following, we briefly introduce our two project partners and briefly describe the
Celonis Execution Management System and the Machine Learning workbench. After out-
lining the motivation behind the project and our goal, we describe the rotational process
of aircraft and its different phases, on which the data for our project was tracked. The
next chapter offers detailed insights into the statistical data exploration we did. Then we
continue to describe the machine learning model we developed as well as its prediction and
the prediction pipeline. Ultimately, we present our dashboard displaying the predictions
and come to a conclusion for this project including limitations of the model.

Our first project partner Lufthansa Airlines is part of the Lufthansa group and carried over
145 million passengers on over one million flights in 2019. While the numbers decreased
due to Covid19-related travel regulations over the last two years, the Lufthansa group
remains Europe’s largest airline group that operates flights worldwide [1]. Celonis, our
second project partner is the global leader in Execution Management and has pioneered
and shaped the term ”process mining”. The Execution Management System (EMS)
enables companies to run their business processes in an intelligent, data-driven way that
finds inefficiencies in day-to-day operations and suggests possible paths for improvement
[2].

1.2 Celonis EMS and the Machine Learning Workbench

The Celonis Execution Management System (EMS) is the platform Celonis provides to
businesses, which ultimately allows them to eliminate corporate inefficiencies in processes
and operations of various domains. The EMS consists of five core pillars covering any
facet of business: Real Time Data Ingestion, Process Mining, Task Mining, Planning
Simulation, Visual Daily Management and Action Flows. Within the EMS, Celonis
Studio allows to create apps that are perfectly suited for various business purposes such
as for example dashboards or process views [Fig. 1].
Apart from Celonis Studio, the major part of this projects work has been done in the
Machine Learning Workbench within the EMS that utilized the data from the already
existing digital operations twin Lufthansa created over the past years in Celonis. More
information on the Machine Learning Workbench and the way we utilized it during our
project will be provided within section 4.1.
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Figure 1: Celonis Studio App Example

2 Motivation

For an airline it can be argued that their aircraft are among their most expensive assets,
which indicates that they should provide a high productivity to yield a profitable return
on investment. As a consequence the operating hours of an individual aircraft should be
as high as possible with minimum down times. As flight schedules are tight and passenger
as well as luggage streams have to be handled, the interdependency leads to the delay of
one flight influencing the punctuality of many other flights. Naturally, a lot of variables
influence the punctuality, such as for example ground processes, passenger number or
airport congestions (variables will be discussed deeper in Section 4.1).

As a response Lufthansa has utilized the Celonis EMS to create a digital operations twin
with the goal to increase the knowledge about these influencing variables. Per flight, up to
80 timestamps of core processes are tracked and connected based on the unique identifier
”Flight- + Date ” as CASE KEY. Timestamps and data are collected an updated in Celonis
on a daily basis, enabling a close-to live data tracking situation.

2.1 Goal of this Project

The goal of this project was to utilize the vast amount of data gathered to further develop
the digital twin from assessing post-flight root-cause analyses for delays to actual predic-
tion of rotational delays caused by influencing variables. As currently most data points
center around the turnaround process from landing of one flight till the takeoff of the next
flight (see Chapter 3 for process details), more factors influencing flight time had to be
added. As a next step a machine learning model was designed and constantly validated
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in close contact with the project partners. Ultimately, the output of the machine learning
model - that is the predicted delay for certain flights taking place in the (near) future
- had to be pushed to a dashboard as a Celonis EMS skill to enable the Ops Steering
department to react with potential countermeasures to prevent the predicted delays.

As the goal of the project was complex and involved multiple sub goals and deliverables,
the different outputs were combined into a comprehensive SMART goal (Specific, Mea-
surable, Achievable, Relevant, Time-bound) as a central guideline for the project:

We will develop a machine learning model that predicts the estimated delay
of flights based on several features in the flight process and a dashboard
based on feedback from future users until February 10th in Celonis EMS.

The SMART Goal set the start of the project to align all stakeholders and helped to keep
clear track of focus throughout the project and the two milestone meetings.

2.2 Project Management

While the SMART Goal was useful to define and clarify the overarching goal and deliv-
erables of the project, the tasks to be carried out were still complex. Thus, we created a
project plan, which breaks down the goals into manageable sub tasks. As it can be seen
in Fig. 2 , our project consisted of four main phases split by two milestone meetings with
our TUM supervisor Ricardo.

Figure 2: Project Timeline with Milestones and sub tasks

The project timeline was updated regularly and discussed in the weekly meetings between
the student teams and the project mentors to ensure results stayed within the planned
time frame and make changes together if necessary.

3 Rotation Process

Aircraft are valuable assets to airlines, they must be operated in a productive manner.
Lufthansa operates more than 300 aircraft with more than 1500 daily flights. During
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a day, each aircraft has an itinerary to accomplish that in the vast majority of cases
consists of two or more flight legs. To complete a flight leg, the previous ones have to
be fulfilled, e.g., it is not possible to depart from Hamburg to Vienna if the airplane
has not completed the previous leg from Hamburg to Frankfurt (Fig.3). Besides this
evident situation, if an aircraft arrives late (inbound delay) and the delay cannot be
absorbed by the turn-around time it will depart late in the next flight leg. Lufthansa
defined a minimum ground time between two legs for each aircraft type. This ground
time includes complex sub-process such as refueling, passenger de-boarding/boarding,
luggage handling, safety inspection, etc. It is a big challenge for the operations team to
steer complex ground processes and tight schedules to minimize the disruptions. Further,
Lufthansa is a hub carrier, many domestic and international passengers transfer from one
flight to another at Frankfurt (FRA) and Munich (MUC) Airports (around 200000 daily
passengers). Due to the complex operations, flights are susceptible to different delays,
e.g. inbound/outbound delay, rotational delays, non-rotational (reactionary delay due to
awaiting crew, passengers etc.)

Figure 3: Aircraft rotation process description

3.1 Typical Ground Process

Once the aircraft is on-block, the ground operation services start. The ground services
are classified in several sub-processes. Each sub-process is scheduled and managed by the
operations team. The sub-processes are managed by data features (with time-stamps).
The sub-processes are described in Fig.4 and 5 below. Not all sub-processes are sequential
and influence the flight delay equally. As shown in the figure below, catering, cleaning and
crew preparation processes can happen only after the de-boarding process. Further these
three processes are not dependent on each other and can be operated simultaneously.
Similarly, fueling and water service can start even before the de-boarding process is com-
pleted. Further there are several other factors that influences the departure delay, such
as departure/landing runway, parking position, weather, traffic etc. Lufthansa records all
ground service processes (timestamps) at FRA and MUC airports for its daily flights.
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Figure 4: Ground handling processes

Figure 5: Critical path of ground services

4 Data Preparation

Lufthansa’s data model within Celonis is linked to several internal databases and provides
data on ground operation processes and activities, passenger data, crew and flight planning
data and data on flight legs. Before constructing a dataset to train a machine learning
model on (see chapters 4.2 and 4.3), we created a Celonis Analysis to be able to access the
data from the Celonis Machine Learning Workbench. Then, we performed a Root Cause
Analysis on the data to help us identify the most important data tables and features
within Lufthansa’s data model. These steps are described in more detail in the following
subsections.
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4.1 Introduction

4.1.1 Data Set

After some initial data exploration, where we examined the features’ correlation with flight
delay, and discussions with our mentor from Lufthansa, we focused on data describing
ground operation processes and flight legs. Therefore, we mainly relied on two data tables
where one contains general flight data and one contains more detailed process information
on ground operation processes. The data from these two tables could easily be brought
together since the data is stored by flight number in both so they could be joined on a
given case key. We joined the two data tables in an OLAP (Online Analytical Processing)
table in Celonis Studio. This table could then be accessed from within the Celonis Ma-
chine Learning Workbench and served as the main data source for further data processing.

To include seasonal effects and the impact of the Covid-19 pandemic on airlines, we se-
lected Lufthansa flights (with prefix ”LH”) from the most recent 12 months, 1 December
2020 to 1 December 2021, as our training data. The selected raw data set had approx-
imately 200,000 rows. In the following, we treated either delay time or delay indicator
as our independent variable. Which one to be used, depends on whether we consider the
project goal in the context of a regression or a classification problem.

4.1.2 Celonis: Analysis and ML Workbench

The data from the Celonis data pool is loaded into an OLAP table via the correspond-
ing Data Model in Celonis Studio. First, a Celonis Analysis is created which accesses
this Data Model. A Data Model defines table metadata, the cardinality between tables,
namely whether two tables have a 1:1, 1:N or M:N relationship, and the primary keys used
to join tables. The Analyses in Celonis are used to visualise and interactively explore data.
In this Analysis, a new sheet containing an OLAP table is added. Afterwards, columns
(dimensions) are selected from the data model using PQL, a query language similar to
SQL used in process mining. Additionally, KPIs (Key Performance Indicators) could be
defined using PQL queries. The columns and KPIs could be selected interactively using
the Celonis Studio interface as well as PQL.

After that, this table is loaded in the Machine Learning Workbench, which is an integrated
Python development environment based on JupyterLab. Using the library PyCelonis, a
Python API wrapper for Celonis, a Celonis instance could be connected and accessed
inside a Python script or Jupyter notebook; this is described in their documentation [10].

4.1.3 Root Cause Analysis

Root Cause Analysis (RCA) is defined as the process of identifying the root cause of faults
or problems, which are defined by appropriate KPIs. The library PyCelonis contains a
method for this process [10].

KPIs are quantitative measures of performance with regards to specific objectives or de-
sired goals. They are regarded as a means to measure success in business analytics. For



4 DATA PREPARATION 10

this particular problem description, the most important KPI is the duration of delay, cal-
culated by subtracting actual departure time (ATD) by the standard/planned departure
time (STD). We would like to minimize the delays of all flights; delays are considered as
”unwanted behavior”. For example, the KPI Delay time in minutes is generated with
the query

DATEDIFF(MI, ’ATD’, ’STD’)

given timestamps ATD and STD.

Another KPI, the indicator variable Delay flag is generated with

CASE

WHEN DATEDIFF(MI, ’ATD’, ’STD’) < 15 THEN 0

WHEN DATEDIFF(MI, ’ATD’, ’STD’) >= 15 THEN 1

ELSE NULL

END

The purpose of RCA is to get an idea of which variables having which values are most
likely to influence a delay. The results help us gain an understanding of features to look
out for. Additionally, this serves as an input towards refining features that are going in
the model, alongside feedback from domain experts as well as related literature regarding
flight delay prediction.

Figure 6 shows a sample output of RCA in PyCelonis. This shows the features which,
when having a particular value, causes the highest percentages of delay, indicated by high
KPI values, namely the ratio of ”bad cases” to all cases. The entries are sorted by KPI
value in descending order.

Figure 6: Celonis Root Cause Analysis

4.2 Feature Engineering

After identifying a first set of potentially relevant features, we iteratively refined the se-
lected feature set based on feedback from our Lufthansa mentor. Getting insights from
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the business perspective was very helpful for gaining a deeper understanding of the co-
herences within the data and for finalizing the features which would go into our training
data set. This section will describe the features we decided on, how we refined them and
also elaborates on further features we constructed.

4.2.1 Basic features

For the construction of our training data set, we focused on data describing ground oper-
ation processes and flight legs. This data could easily be brought together since the data
on ground operation processes is also stored by flight number. We refer to the features
we directly extracted from the available data tables as basic features.

For handling the data, we included the Case key for each flight, which consists of its
flight number and flight date. Flight number and Flight date were also used as in-
dividual features for faster access to this information unit. The STD is another central
feature of our data set, which served as a basis to calculate and add further features.
These will be described in the following subsections. To account for any temporal effects
on the delay, we further integrated Month, Day and Weekday features into our data set.
Also, the features Flight of the day and Rotation type were added to cover rota-
tional effects. Flight of the day indicates a flight’s position within the corresponding
aircraft’s rotation while Rotation type gives information on whether the aircraft has
been parked for a longer time, e.g., over night. Further features that were included are
Departure and Arrival Airport, Subfleet, which indicates the aircraft type used for
a flight, the Total Number of Passengers Booked, Departure Runway, Taxi-in and
Taxi-out time as well as Flight Distance and Calculated Flight Time. As labels
to train our model on, we made use of the features Delay flag and Delay delta, where
the first one is a binary feature indicating if a flight has been delayed or not and the latter
represents an integer value describing the delay time in minutes. Which one of these two
was utilized, depends on the type of model used. We will give more details hereon when
describing selected models and experiments in section 5.

4.2.2 Weather features

In addition to the basic features contained in Lufthansa’s data model within Celonis,
we added further features, which could potentially influence the operation’s punctual-
ity. Weather conditions are one of these potential influencing factors as for example low
visibility and snow might result in flights being delayed. Therefore, we complemented
our training data set by adding historical weather data. The data was automatically
gathered for each case in our data set based on its flight number and flight date from
the Iowa Environmental Mesonet provided by Iowa State University [3]. The database
contains historical weather data from around the world in a METAR (METeorological
Aerodrome Report) format. This format for reporting weather data is frequently used in
aviation. It was particularly useful for our use case because it is specifically generated
for individual airports and contains weather observations relevant to air traffic operation.
As the METAR format contains the information in an unstructured string-type format,
we implemented a parser to extract information on visibility, wind direction and speed,
and an indicator variable to signal whether there was snow. While visibility and the snow
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indicator can directly affect air traffic operations, wind direction and speed can be used
as a proxy for the runway in use. Since the runway in use can be estimated based on wind
direction and speed, the wind data was used to impute missing runway data during data
munging as described in section 4.3.

4.2.3 Traffic features

Intuitively, if many flights occur at a certain point in time, there is a higher risk of traffic
jams, since there is an increased chance that an aircraft must wait for other aircraft using
the same runway to be cleared for takeoff or landing. Frankfurt and Munich airport have
distinct peak times as can be seen in Figure 7 and Figure 8. The figures plot the number
of flights in the dataset in a time period of 30 minutes against time buckets. For example,
there were about 2900 flights in Munich taking off between 09.00-09.30 for the selected
period of the dataset.

The traffic feature is encoded as a variable indicating whether at a flight’s scheduled
departure time the traffic expected at the corresponding airport is above or below average.
Traffic for future flights which do not take place in any of the time buckets could be safely
assumed as zero, meaning there are no concurrent flights.

Figure 7: Relative number of flights per time bucket in Frankfurt Airport (FRA)

Figure 8: Relative number of flights per time bucket in Munich Airport (MUC)

4.2.4 Event-related features

As mentioned above, the aim of our project is to predict rotational delays. Thus, the
duration of each ground operation process plays an important role in the departure delay of
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aircraft. Lufthansa’s data base consists of log data of many events associated with flights.
Unfortunately, timestamp data cannot be used as features in most of the traditional
Machine Learning models. Consequently, we generated features based on calculations
performed on the event log. For instance, the boarding time is defined as Boarding End

Time minus Boarding Start Time. However, due to the lag between real-time events
and the input of the data into the system, most of these features are not available for
prediction. To tackle this issue, we chose to compute the median of each event-related
feature grouped by Flight Number.

4.2.5 Features from the previous flight

Due to the tight schedule and connecting passenger streams, one flight’s delay may affects
the punctuality of many other flights. Thus, based on the premise that a delayed flight
delays the next flight using the same aircraft, especially when said aircraft is in the middle
of a rotation, features corresponding to the previous flight are created. These features
include indicators if the previous flight is delayed or cancelled as well as static features
such as distance, number of passengers and flight time of the previous flight. The previous
flight can also be referred to as the inbound flight since we are focusing on flights departing
from Frankfurt and Munich (see section 4.3).

4.3 Data Munging

For this project, we worked with the entire database of Lufthansa, which contains mul-
tiple tables with various functions. These table corresponds to different branches and
operations of Lufthansa Airline and its data is generated separately. As a results, we
are facing many challenges that come with real-life big data sets: imbalanced data, high
dimensionality, missing values, outliers and assorted errors etc. In order to provide a clean
data set for training and testing the machine learning model so that it will not be confused
by outliers or incorrect data, it is important to perform a thorough data munging to the
features we engineered as described in the previous subsection 4.2.

4.3.1 Removing Duplicates of Case Keys

The first step is to check the Case keys of our data, theoretically, this variable should be
an unique ID to identify a certain flight, LHXXX, on a certain date. However, we discovered
that there are duplicates of Case keys in the database. After looking at examples of the
duplicate flights and talking to our Lufthansa mentor, we found out that most of the
duplicates are caused by triangle flights. Triangle flights often involve making stops along
the way. The plane will take off from its hub city and fly to its stop. After landing, the
aircraft will offload passengers and take on new ones before heading to its final destination.
Since triangle flights have a different process than normal flights that we want our model
to learn, we choose to not include those duplicates. About 2% of the raw data is dropped
by this action.
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4.3.2 Removing Cancelled Flights

Secondly, we decided to remove all the flights that have been cancelled since cancellation is
not the scenario Lufthansa aims to predict. By setting flags on the variable Cancellation
Time, we managed to eliminate cancelled flights. It should be noticed that this action
needs to be performed after removing duplicates because there exist cases where one of
the duplicate case keys is recorded as cancelled while the other is not.

4.3.3 Removing Flights with Zero and Negative Passengers

Another ”strange” phenomenon we found in the data set is that some flights have a Total
Number of Passengers Booked of zero or even negative-valued. With the feedback from
our mentors, we interpreted those flights as ferry flights, i.e. non-revenue-generating flight
operation that requires moving an aircraft from one place to another. Considering the
aim of this project is to predict delay for Lufthansa to take measures to counter the delay
and provide a better passenger experience, ferry flights should not be included as well.
Therefore, a rather low percentage of raw data is removed.

4.3.4 Filtering Flights Departing from MUC & FRA

Due to the unavailability of certain features for departure airports which are not Lufthansa’s
hubs, it was decided that only flights departing from the airports Frankfurt and Munich
will be considered. Consequently, the dashboard will only show prediction results for
flights taking off from these two airports. Roughly half of the raw data is dropped during
the filtering process.

4.3.5 Handling Missing Value

Real-world data often has a lot of missing values. The cause of missing values can be
data corruption or failure to record data. The handling of missing data is very important
during the pre-processing of the data as many machine learning algorithms do not support
missing values. In our training data, we encountered mainly three types of missing data
and counter them with different measures:

1. Missing Independent Variables
Less than 1% of the data instances lack the target value, Delay. We chose to remove those
rows directly since it is the variable we want to predict and there is no way to impute it.

2. Missing Inbound Information
Some flights have empty inbound flight information due to our previous decision of drop-
ping flights with duplicate case keys. Since the number of rows with missing information
is relatively low and the short duration of the project did not allow us to apply complex
methods to estimate and replace this missing data, these rows were removed. This oper-
ation also made sure that we include only single direct flights in the data set.

3. Missing Runway Data
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For about 44% of the cases in our training data set, the Runway information was missing.
However, information on the runway in use was deemed relevant and potentially related
with the occurrence of delays as discussed with our Lufthansa mentor. Also, the runway
in use heavily depends on the prevailing wind conditions. Thus, we constructed a map-
ping to estimate the runway in use from the wind data. The mapping is based on a set
of rules which we were provided by our mentor and was then applied to approximate the
actual runway in use where the data was missing. The weather data added as described
in 4.2 served as input.

4. Missing Other Dependent Variables
We also discovered missing values in other dependent variables. For numerical dependent
variables, we choose to impute those with the median of the variable grouped by Flight

Number. Similarly, we replaced missing values in categorical variables by the most frequent
value (mode) grouped by Flight Number (across the time span 01.12.2020 to 01.12.2021).
However, there are still missing values in several features such as distance because no there
was no information available in the database for some flights. In this case, we chose to drop
the corresponding instances. It is also worth mentioning that some instances exhibited
zero-valued Taxi Time. By definition of the Taxi Time as the total time of an aircraft’s
movement on the ground, it is physically impossible for an aircraft to have a taxi time
of zero. We suspect these zeros are actually missing values. The reason it is shown as
zero is because the columns are initialised with zero in the database. Thus we impute all
the zero values in Taxi Time as well. We would further suggest modifying the Lufthansa
database in this respect to avoid confusion between zero and missing values for future
analyses on the data.

4.3.6 Removing Outliers

Last but not the least, we detected a right skewed distribution of the independent variable
Delay Delta. In Fig. 9, we can see that the majority of the data points are scattered
around zero, meaning we have a heavily imbalanced dataset. To tackle this issue, we
decided to remove any delay larger than 200 minutes.

Figure 9: Histogram of Delay Delta
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After the afore-mentioned steps of data preparation, we obtained a relatively clean data
set consisting of roughly 10,000 flights between 01.12.2020 and 01.12.2021. Subsequently,
we will train and test different models on this data set.

5 Machine Learning Model

5.1 Selected Models and Experiments

In the machine learning context, the original problem of predicting rotational delays of
aircraft can be formulated either as a classification or as a regression problem. Classifi-
cation itself can be further divided into binary or multi-class classification. This section
explores the results of experiments on the different problem formulations as well as the
benefits and drawbacks when used in the production environment. Finally, a decision on
one of the problem formulations is made and carried over into the following sections.

The model is trained on the data set described in sections 4.2 and 4.3. For this section,
the data is temporally split with a 70:30 ratio between training and test set.

A random forest model is chosen due to its ability to handle large data sets with high
dimensionality, as evident in the data set. In addition, since the dataset is imbalanced
with about 70% of the flights not delayed and about 30% delayed, the effect of resampling
using SMOTE-NC and Balanced Random Forest are also investigated. SMOTE-NC [4] is
an algorithm to augment data of the minority class using the nearest neighbors of these
cases, and the suffix ”NC” refers to its ability to handle mixed data sets of continuous
and nominal features. Meanwhile, a Balanced Random Forest classifier downsamples
the majority class(es) in a classification problem. The principal structure of all model
experiments is visualized in Fig. 10.

5.1.1 Metrics for Comparison

The following section defines the most relevant metrics to measure the performance of a
machine learning model with regards to predicting aircraft delay. Further, assume that
flights labeled with class 0 are not delayed, and those with class 1 are delayed.

The precision of class 1 is the percentage of delayed flights that are predicted correctly.
That is, the number of flights correctly labeled as delayed divided by the number of flights
labeled as delayed including those which are not actually delayed:

Precision =
True positives

True positives + False positives
(1)

The recall of class 1 is defined as the percentage of delayed flights which are identified
by the model. That is, the number of flights correctly labeled as delayed divided by the
number of flights which are factually delayed, including those which are actually delayed
but are not labeled as delayed:
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Figure 10: Model Pipeline

Recall =
True positives

True positives + False negatives
(2)

The average precision is the weighted mean of precision values achieved at each recall
threshold.

Average precision =
∑
n

(Rn −Rn−1) · Pn (3)

where Pn and Rn are the precision and recall on the nth threshold.

5.1.2 Binary classification

In operational terms, a flight is considered delayed when it is more than 15 minutes late.
Therefore, the indicator variable of delay is defined as follows:
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delay flag =

{
0, if 0 ≤ delay < 15

1, if 15 ≤ delay < 200

The results of different experiments on binary classification are described in Fig. 11 and
Fig. 12.

Accuracy: 0.725
Precision: 0.382
Recall: 0.600
F1-score: 0.467
Average precision: 0.453
ROC-AUC: 0.743

Figure 11: Binary classification confusion matrix and metrics

Accuracy: 0.769
Precision: 0.431
Recall: 0.462
F1-score: 0.446
Average precision: 0.435
ROC-AUC: 0.731

Figure 12: Binary classification + Upsampling with SMOTE-NC confusion matrix and
metrics

It can be concluded that resampling improves the accuracy. However, delayed flights are
predicted less accurately.

5.1.3 Multiclass classification

In multiclass classification, the delay indicator is divided into more fine-grained categories.
As agreed upon with our mentors, we chose four categories for our experiments on mul-
ticlass classification. This would allow flight planners to prioritize the handling of flights
with the highest risk of a delay. Therefore, the following categories are defined for the
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delay variable:

delay flag =


0, if 0 ≤ delay < 15

1, if 15 ≤ delay < 30

2, if 30 ≤ delay < 60

3, if 60 ≤ delay < 200

The results of our experiments using multiclass classification are described in Fig. 13 and
Fig. 14.

Figure 13: Multiclass classification confusion matrix and metrics

Figure 14: Multiclass classification + Upsampling with SMOTE-NC confusion matrix and
metrics

It can be concluded that the accuracy is low, and the biggest problem is that classes which
are supposed to be far from each other, namely classes 0 and 3, are frequently confused
as it can be seen from the confusion matrix. Upsampling only improved the prediction
very slightly.

Therefore, comparing binary and multiclass classification, it was decided that binary
classification is more suitable, since multiclass classification would produce less accurate
results.
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5.1.4 Regression

In a regression problem, the target value, delay time, is continuous.

The metric used for regression is R2 score which measures the strength of the relationship
between the model and the dependent variable. As the R2 score for the training data is
high, ranging between 0.8 and 0.9, yet low for the test set, ranging between 0 and 0.1, the
model appears to have overfit the training data. Aside from that, the difference between
the actual delay time and predicted delay time is more than 15 minutes for 15% of the
test set.

Therefore, comparing the regression results to those achieved on binary classification, it is
decided that binary classification is more suitable, since a regression model would produce
less accurate results.

5.2 Hyperparameter Tuning

The Optuna library provides a framework for hyperparameter optimization. A study ob-
ject is created, where a model is trained by optimizing for a particular metric, for instance
maximizing precision. It is also possible to optimize over multiple objectives or metrics;
a Pareto front plot could be drawn to visualize which parameter sets result in Pareto-
optimal solutions with respect to these metrics.

For a random forest model, its hyperparameters, namely n estimators, max features,
max depth, min samples split, min samples leaf and class weight are to be opti-
mized.

First, parameter spaces for every hyperparameter are defined. Then, a sampler narrows
down the search space using previous runs and its evaluated objective values. The default
sampler used in Optuna is TPE (tree-structured Parzen estimator). This determines the
next set of parameters sampled. At the end, the ”best trial” is used to predict the test
set, which are reported in the results below.

Experiments proposed in this section cover combinations of different metrics to be opti-
mized and the model used. The parameter search space and the number of iterations are
kept constant for all experiments. The results are listed in Table 1.
Based on these results, achieving a high precision and recall from this generated dataset
is not possible. Therefore, a compromise between a higher precision and higher recall has
to be agreed upon.

5.3 Results

The machine learning goal of this project is to produce a model that can accurately pre-
dict delayed flights so that the operations team will have a higher trust in the predictions
the model makes. Nevertheless, due to the limitations of the model as discussed in the
previous section, with the domain requirements in mind, there are three possible outcomes:

https://optuna.readthedocs.io/en/stable/tutorial/index.html
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html#optuna.samplers.TPESampler
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Model type Optimized metrics Train:val:test split precision(class 1) recall(class 1)
RF precision 60:20:20 0.61 0.18

balanced RF precision 60:20:20 0.38 0.66
RF precision, recall 60:20:20 0.38 0.67
RF average precision 60:20:20 0.43 0.52

balanced RF precision, recall 60:20:20 0.50 0.35
balanced RF average precision 60:20:20 0.47 0.55

XGBoost average precision 60:20:20 0.46 0.51

Table 1: Hyperparameter optimization results

1. Model with high precision, but low recall:
The flights predicted as delayed are actually delayed. This saves the operations team from
having to take measures for false positives. However, a lot of actually delayed flights are
not predicted as delayed by the model.

2. Model with high recall, but low precision:
There are more flights that are predicted as delayed than are actually delayed. However,
a lot of flights that are not at risk of being delayed are marked as delayed, and this could
cause additional work for taking measures while it would actually not be necessary.

3. Model with average recall and average precision:
Balanced Random Forest models [5] belong in this category. These show a reasonable
tradeoff between precision and recall. It was decided that a balanced random forest
model optimized for precision as highlighted in section 5.2, will be used for the prediction
pipeline as described in chapter 6. This corresponds to the domain requirement that the
operations team would like to allocate their resources wisely and take measures only for
flights that actually have a high risk of delay.

6 Prediction

6.1 Data Availability

Since the predictions will be performed on future flights, it is important to note that
at the time of prediction only a limited amount of data is available for the respective
flights. Data which is unavailable at the time of prediction might present itself as missing
values. These missing values need to be treated before applying the model to the data
for prediction to ensure correct inference. To identify (partly) unavailable features and to
anticipate for which features missing values might occur during prediction, we examined
the feature availability for future flights. We therefore extracted the available data for
the features contained in our training data set on a randomly chosen day at 8 am UTC
time. Based on this excerpt, we investigated which features would be available for flights
with an scheduled time of departure 0-2 hours, 2-4 hours, 4-6 hours and 6-8 hours into
the future. We found that most features are either available or unavailable for future
flights. There are only few features, for which the availability decreases the further a

https://imbalanced-learn.org/stable/auto_examples/applications/plot_impact_imbalanced_classes.html#use-of-specific-balanced-algorithms-from-imbalanced-learn
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flight’s STD is located in the future. This is only the case if more data for this feature
becomes available as the time of the flight approaches. An example for such a feature
is Calculated Flight Time, which is only inserted into the system a few hours before
a flight’s STD. As a consequence of our findings, we adapted the data munging process
performed on our training data to fit the requirements of the data for prediction to form
part of the prediction pipeline.

6.2 Prediction Pipeline

After having trained and tested different models on historical data and having selected
one of them based on specific metrics, we proceeded to generate predictions for future
flights. These will then be used as input to the Dashboard as our final deliverable. In
Fig. 15, we illustrate the main structure of the prediction process.

Figure 15: Prediction Pipeline

First of all, we export data of flights we want to perform prediction on. This includes
flights of the current day (”today”) and flights of the precedent five days (because flights
will be linked to inbound flights from the previous few days). The features we extracted
are the same ones as those in the training data used to train the model as described in
section 4.2. As the weather data in our training data set was based on historical weather
reports, we needed to access and add weather forecasts to the data set for the prediction.
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We could not use the same source as for the historical weather here since the Iowa Envi-
ronmental Mesonet does not provide weather forecasts. Instead, we built a connection to
the Aviation Weather Center’s database [6] to source weather forecasts for the current day
in a TAF (Terminal Aerodrome Forecast) format. The TAF format is used for reporting
weather forecast information in a similar encoding as in appears in the METAR format
of historical weather reports. Thus, we could apply a similar parsing strategy to extract
visibility, snow and wind direction and speed.

Then, we performed a series of data munging and imputation steps on the whole data
set, which are similar to those described in section 4.3 for the training data set. Hence,
details are omitted here. Subsequently, by applying the selected pre-trained model, we
generate predictions of Delay Flag and Delay Probability and push the data back to
the Celonis data pool.

7 Dashboard

7.1 Design Approach

A key goal we aimed for when designing the dashboard was user-centricity. We wanted to
make sure that the results predicted by the machine learning model will be displayed in
the most suitable way for the people at Lufthansa working with it. To do so, we created
a low-effort, non-functional wireframe version of the dashboard and discussed it with the
Operations Control Team at Lufthansa, represented by Dirk Dewald, Senior Director of
the Operations Control Center at Lufthansa. We concretely asked him to give us feedback
on the wireframe we provided and discussed it. Specifically, we wanted to know if there
was any key information missing or if any information that was displayed was unnecessary
in order to maximize usability for the staff. The meeting provided a lot of feedback, which
we incorporated in order to build the functional dashboard, and can be seen in figure 16.

Figure 16: Non-functional dashboard wireframes with user feedback

7.2 Results and Usability

A dashboard is created in Celonis based on the results of the machine learning model
described in the previous sections of this report. The dashboard is directly connected
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to the data model, including the results table from the ML prediction model. Figure
17 displays the dashboard in Celonis Studio. On the left side (grey background) of the
dashboard few functionalities are provided for better visibility of the results. A filter
is provided to view flight prediction for Frankfurt and Munich airports separately. The
prediction table with the present day prediction results is shown in the bottom section of
the dashboard. Flight prediction with 50 percent prediction probability are shown in the
dashboard. However it is possible for users to update prediction with a manual entry of
prediction threshold probability in the dashboard. The actual delay of the flights during
the day’s operation are constantly updated based on the actual operation and shown in
the dashboard. A flight is considered delayed if the difference between STD and ATD is
greater than 15 minutes.

Figure 17: Prediction dashboard

8 Conclusion and Outlook

During the 10-week project, we successfully made use of the vast amount of data provided
by Lufthansa and the technical resources provided by Celonis and developed a model to
predict rotational delays. We preprocessed the relevant data and built and trained a Ran-
dom Forest model to yield predictions indicating which flights on the current day might
be delayed. Furthermore, we visualized the prediction results of our model in a Celonis
Dashboard. This dashboard is being delivered to the Lufthansa Ops Steering Department,
where it can be used as a decision aid in initiating countermeasures for flights with an
anticipated delay. We have thereby achieved our SMART goal, which we had formulated
in the beginning of the project as

We will develop a machine learning model that predicts the estimated delay
of flights based on several features in the flight process and a dashboard
based on feedback from future users until February 10th in Celonis EMS.



8 CONCLUSION AND OUTLOOK 25

It is important to consider that there are several limitations of the presented delay predic-
tion tool, which arise from different stages during its construction and represent room for
further improvement. The training data set used for the machine learning model consists
of flights carried out between 1 December 2020 and 1 December 2021. Within this time
frame, air traffic was heavily affected by the COVID-19 pandemic, the associated travel
restrictions and consequent special requirements, which were subject to frequent changes.
Some of the restrictions are still in place at the time of this project so it can be assumed
that some of the characteristics of the training data set are similar to those which can
be found in the world at the time of the project. However, there will also be differences
which might affect the model’s capability to predict flight delays negatively. For future
improvement, it is thus recommended to retrain the model on data which resembles the
current amount of air traffic.

During data munging, we mainly resorted to imputing missing values by their median
or mode. While this method is low in complexity and can be implemented with small
effort, it will only yield a rough approximation of the actual value. Approximating the
values based on other influencing features would instead give more accurate results. For
the implementation of this approach, one would need to construct a mapping between
the influencing features and the feature to be estimated. Depending on the complexity of
the relationship, the mapping can either be determined based on rules or might require
training another model to learn the relationship and represent the mapping. Due to the
short duration of our project, we thus mainly resorted to the coarser imputation method
to avoid training further models for representing the more complex relationships. How-
ever, there are many features in the data, for which missing values could be approximated
using, e.g., another model. To give an example for such a feature, the duration of the
deboarding process could be approximated based on baggage count, passenger number
and whether the aircraft is an intercontinental or continental aircraft. Thus, we suggest to
further improve the data munging process by using more accurate imputation methods.
As they cannot only be applied to the training data but also to the data for prediction,
this will most likely be beneficial for the model’s performance as well as for the correctness
of predictions.

Moreover, the accuracy of the predictions could potentially be further improved by ap-
plying a different predictive algorithm. There is reason to assume that given the large
amount of data available, a neural network would have outperformed the Random For-
est model, which we have been using, since neural networks have also been performing
better in comparable use cases described in the literature [7, 8]. Additionally, the long
short-term memory (LSTM) component in neural network architectures can handle and
predict sequential data better compared to state-of-the-art models [9]. As neural networks
require more powerful computational resources than we had available for this project, we
were not able to perform any experiments to validate this hypothesis for the given use case.

All of the limitations mentioned above should be considered when working with the de-
livered delay prediction tool and can serve as a basis for the tool’s further improvement.



References

[1] Lufthansa, Lufthansa Group Website, https://www.lufthansagroup.com/en/company.html,
Accessed: 02.02.2022

[2] Celonis SE, Celonis Website, https://www.celonis.com/company/,
Accessed: 02.02.2022

[3] Iowa Environmental Mesonet, Iowa Stat University Database,
https://mesonet.agron.iastate.edu/ASOS/, Accessed: 03.02.2022

[4] Chawla et al. 2002. SMOTE: Synthetic Minority Over-sampling Technique,
https://arxiv.org/pdf/1106.1813.pdf, Accessed: 03.02.2022

[5] Chen et al. 2004. Using Random Forest to Learn Imbalanced Data,
https://statistics.berkeley.edu/tech-reports/666, Accessed: 03.02.2022

[6] TAF Text Data (by station ID), Aviation Weather Center,
https://www.aviationweather.gov/taf/data, Accessed: 03.02.2022

[7] Gui et al., 2019. Flight delay prediction based on aviation big data and machine
learning. IEEE Transactions on Vehicular Technology, 69(1), pp.140-150.

[8] Kim et al., 2016. A deep learning approach to flight delay prediction. IEEE/AIAA
35th Digital Avionics Systems Conference (DASC), pp. 1-6.

[9] Huang et al., 2020. Modeling train operation as sequences: A study of delay pre-
diction with operation and weather data. Transportation Research Part E: Lo-
gistics and Transportation Review, Volume 141, 2020, 102022, ISSN 1366-5545,
https://doi.org/10.1016/j.tre.2020.102022.

[10] Celonis SE, PyCelonis documentation, https://celonis.github.io/pycelonis/index.html/,
Accessed: 11.02.2022

26


	Abstract
	Introduction
	Content and Background
	Celonis EMS and the Machine Learning Workbench

	Motivation
	Goal of this Project
	Project Management

	Rotation Process
	Typical Ground Process

	Data Preparation
	Introduction
	Data Set
	Celonis: Analysis and ML Workbench
	Root Cause Analysis

	Feature Engineering
	Basic features
	Weather features
	Traffic features
	Event-related features
	Features from the previous flight

	Data Munging
	Removing Duplicates of Case Keys
	Removing Cancelled Flights
	Removing Flights with Zero and Negative Passengers
	Filtering Flights Departing from MUC & FRA
	Handling Missing Value
	Removing Outliers


	Machine Learning Model
	Selected Models and Experiments
	Metrics for Comparison
	Binary classification
	Multiclass classification
	Regression

	Hyperparameter Tuning
	Results

	Prediction
	Data Availability
	Prediction Pipeline

	Dashboard
	Design Approach
	Results and Usability

	Conclusion and Outlook

